王建设2,,
1. 河北大学生命科学学院, 保定 071000;
2. 中国科学院动物研究所, 北京 100101
作者简介: 陈家苗(1996-),女,硕士研究生,研究方向为生态毒理学,E-mail:1475902495@qq.com.
通讯作者: 王建设,jianshewang@ioz.ac.cn
基金项目: 国家自然科学基金面上项目(21777160)中图分类号: X171.5
Research Progress in Environmental Distribution and Toxicity of Per- and Polyfluoroalkyl Ether Substances
Chen Jiamiao1,2,Wang Jianshe2,,
1. School of Life Sciences, Hebei University, Baoding 071000, China;
2. Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
Corresponding author: Wang Jianshe,jianshewang@ioz.ac.cn
CLC number: X171.5
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:全氟和多氟烷基化合物(PFASs)是一类应用广泛的有机物,传统PFASs的代表性化合物包括全氟辛烷磺酸(PFOS)和全氟辛酸(PFOA)等。PFOS和PFOA因环境持久性、生物累积性和多种潜在毒性已被《斯德哥尔摩国际公约》列入禁用和限用名录,从而催生了全氟和多氟烷醚类化合物(PFPEs)等替代品的研发应用。近年来,多种PFPEs替代品在人体及饮用水中被频繁检出,引起环境科学界对其安全性的关注。笔者综述了PFPEs的主要类型、环境介质分布和生物毒性等的最新研究进展,并展望了其安全性研究中有待解决的问题。
关键词: 全氟和多氟烷醚类化合物/
全氟醚羧酸/
全氟醚磺酸/
生物蓄积性/
毒性效应
Abstract:Per- and polyfluoroalkyl substances (PFASs) are widely used organic compounds. Representative legacy PFASs include perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA). Due to its persistence, bioaccumulation potential, and potential toxic effects, PFOS and PFOA usage is banned or restricted by the Stockholm International Convention. This has led to the invention and application of PFAS alternatives, such as perfluoroether carboxylic and sulfonic acids (PFECAs and PFESAs). In recent years, a variety of PFECAs and PFESAs have been frequently detected in human serum and drinking water. The safety of PFECAs and PFESAs has been of increasing environmental concern. In this paper, we summarized research progress on main types of PFECAs and PFESAs, including their environmental matrix distribution and toxicity studies on laboratory animals. We also issued perspective views on the research of PFAS alternatives.
Key words:per- and polyfluoroalkyl ether substances/
PFECAs/
PFESAs/
bioaccumulation/
toxicity.
Lau C, Anitole K, Hodes C, et al. Perfluoroalkyl acids:A review of monitoring and toxicological findings[J]. Toxicological Sciences, 2007, 99(2):366-394 |
Giesy J P, Kannan K. Perfluorochemical surfactants in the environment[J]. Environmental Science & Technology, 2002, 36(7):146A-152A |
Wang Z, DeWitt J C, Higgins C P, et al. A never-ending story of per- and polyfluoroalkyl substances (PFASs)[J]. Environmental Science & Technology, 2017, 51(5):2508-2518 |
Buck R C, Franklin J, Berger U, et al. Perfluoroalkyl and polyfluoroalkyl substances in the environment:Terminology, classification, and origins[J]. Integrated Environmental Assessment and Management, 2011, 7(4):513-541 |
盛南, 潘奕陶, 戴家银. 新型全氟及多氟烷基化合物生态毒理研究进展[J]. 安徽大学学报:自然科学版, 2018, 42(6):3-13Sheng N, Pan Y T, Dai J Y, et al. Current research status of several emerging per- and polyfluoroalkyl substances (PFASs)[J]. Journal of Anhui University:Natural Science Edition, 2018, 42(6):3-13(in Chinese) |
周秀鹃, 盛南, 王建设. 全氟和多氟化合物替代品的研究进展[J]. 生态毒理学报, 2017, 12(3):3-12Zhou X J, Sheng N, Wang J S, et al. The current research status of several kinds of fluorinated alternatives[J]. Asian Journal of Ecotoxicology, 2017, 12(3):3-12(in Chinese) |
DeWitt J C. Toxicological Effects of Perfluoroalkyl and Polyfluoroalkyl Substances[M]. New York:Humana Press, 2015:451-477 |
Gordon S C. Toxicological evaluation of ammonium 4,8-dioxa-3H-per-fluorononanoate, a new emulsifier to replace ammonium perfluorooctanoate in fluoropolymer manufacturing[J]. Regulatory Toxicology and Pharmacology, 2011, 59(1):64-80 |
江桂斌, 宋茂勇. 典型污染物的环境暴露与健康效应[M]. 北京:科学出版社, 2020:348-364 Jiang G B, Song M Y. Environmental Exposure and Health Effects[M]. Beijing:Science Press, 2020:348-364(in Chinese) |
Munoz G, Liu J, Vo Duy S, et al. Analysis of F-53B, Gen-X, ADONA, and emerging fluoroalkylether substances in environmental and biomonitoring samples:A review[J]. Trends in Environmental Analytical Chemistry, 2019, 23:e00066 |
Xiao F. Emerging poly- and perfluoroalkyl substances in the aquatic environment:A review of current literature[J]. Water Research, 2017, 124:482-495 |
张美, 楼巧婷, 邵倩文, 等. 全氟化合物污染现状及风险评估的研究进展[J]. 生态毒理学报, 2019, 14(3):30-53Zhang M, Lou Q T, Shao Q W, et al. Research progress of perfluorinated compounds pollution status and risk assessment[J]. Asian Journal of Ecotoxicology, 2019, 14(3):30-53(in Chinese) |
Strynar M, Dagnino S, McMahen R, et al. Identification of novel perfluoroalkyl ether carboxylic acids (PFECAs) and sulfonic acids (PFESAs) in natural waters using accurate mass time-of-flight mass spectrometry (TOFMS)[J]. Environmental Science & Technology, 2015, 49(19):11622-11630 |
Heydebreck F, Tang J, Xie Z, et al. Alternative and legacy perfluoroalkyl substances:Differences between European and Chinese river/estuary systems[J]. Environmental Science & Technology, 2015, 49(14):8386-8395 |
Pan Y, Zhang H, Cui Q, et al. Worldwide distribution of novel perfluoroether carboxylic and sulfonic acids in surface water[J]. Environmental Science & Technology, 2018, 52(14):7621-7629 |
Pan Y T, Zhang H X, Cui Q Q, et al. First report on the occurrence and bioaccumulation of hexafluoropropylene oxide trimer acid:An emerging concern[J]. Environmental Science & Technology, 2017, 51(17):9553-9560 |
Song X, Vestergren R, Shi Y, et al. Emissions, transport, and fate of emerging per- and polyfluoroalkyl substances from one of the major fluoropolymer manufacturing facilities in China[J]. Environmental Science & Technology, 2018, 52(17):9694-9703 |
Wang S, Huang J, Yang Y, et al. First report of a Chinese PFOS alternative overlooked for 30 years:Its toxicity, persistence, and presence in the environment[J]. Environmental Science & Technology, 2013, 47(18):10163-10170 |
Wang T, Vestergren R, Herzke D, et al. Levels, isomer profiles, and estimated riverine mass discharges of perfluoroalkyl acids and fluorinated alternatives at the mouths of Chinese rivers[J]. Environmental Science & Technology, 2016, 50(21):11584-11592 |
Ruan T, Lin Y, Wang T, et al. Identification of novel polyfluorinated ether sulfonates as PFOS alternatives in municipal sewage sludge in China[J]. Environmental Science & Technology, 2015, 49(11):6519-6527 |
Wang W, Maimaiti A, Shi H, et al. Adsorption behavior and mechanism of emerging perfluoro-2-propoxypropanoic acid (GenX) on activated carbons and resins[J]. Chemical Engineering Journal, 2019, 364(1):132-138 |
Huang P J, Hwangbo M, Chen Z, et al. Reusable functionalized hydrogel sorbents for removing long- and short-chain perfluoroalkyl acids (PFAAs) and GenX from aqueous solution[J]. ACS Omega, 2018, 3(12):17447-17455 |
Sun M, Arevalo E, Strynar M, et al. Legacy and emerging perfluoroalkyl substances are important drinking water contaminants in the Cape Fear River watershed of North Carolina[J]. Environmental Science & Technology Letters, 2016, 3(12):415-419 |
Cui Q, Pan Y, Zhang H, et al. Occurrence and tissue distribution of novel perfluoroether carboxylic and sulfonic acids and legacy per/polyfluoroalkyl substances in black-spotted frog (Pelophylax nigromaculatus)[J]. Environmental Science & Technology, 2018, 52(3):982-990 |
Gebbink W A, Bossi R, Rigét F F, et al. Observation of emerging per- and polyfluoroalkyl substances (PFASs) in Greenland marine mammals[J]. Chemosphere, 2016, 144:2384-2391 |
Thompson C M, Fitch S E, Ring C, et al. Development of an oral reference dose for the perfluorinated compound GenX[J]. Journal of Applied Toxicology, 2019, 39(9):1-16 |
Hogue C. The hunt is on for GenX chemicals in people:Analysis of North Carolina residents' blood for Chemours PFAS yields surprises. Chemical & Engineering News, 2019, 97 |
Pan Y, Zhu Y, Zheng T, et al. Novel chlorinated polyfluorinated ether sulfonates and legacy per-/polyfluoroalkyl substances:Placental transfer and relationship with serum albumin and glomerular filtration rate[J]. Environmental Science & Technology, 2017, 51(1):634-644 |
Shi Y, Vestergren R, Xu L, et al. Human exposure and elimination kinetics of chlorinated polyfluoroalkyl ether sulfonic acids (Cl-PFESAs)[J]. Environmental Science & Technology, 2016, 50(5):2396-2404 |
Sheng N, Cui R N, Wang J H, et al. Cytotoxicity of novel fluorinated alternatives to long-chain perfluoroalkyl substances to human liver cell line and their binding capacity to human liver fatty acid binding protein[J]. Archives of Toxicology, 2018, 92(1):359-369 |
Gannon S A, Fasano W J, Mawn M P, et al. Absorption,distribution, metabolism, excretion, and kinetics of 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)propanoic acid ammonium salt following a single dose in rat, mouse, and cynomolgus monkey[J]. Toxicology, 2016, 340:1-9 |
Rushing B R, Hu Q, Franklin J N, et al. Evaluation of the immunomodulatory effects of 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)-propanoate in C57BL/6 mice[J]. Toxicological Sciences, 2017, 156(1):179-189 |
Haas M C. A 28-day oral (gavage) toxicity study of H-28397 in rats with a 28-day recovery (DuPont)[R]. Ashland, OH:WIL Research Laboratories, 2008 |
Haas M C. A 28-day oral (gavage) toxicity study of H-28397 in mice with a 28-day recovery (DuPont)[R]. Ashland, OH:WIL Research Laboratories, 2008 |
MacKenzie S A. H-28548:Subchronic toxicity 90-day gavage study in mice[R]. Newark, DE:E.I. du Pont de Nemours and Company, Dupont Haskell Global Centers for Health & Environmental Sciences, 2010 |
Haas M C. A 90-day oral (gavage) toxicity study of H-28548 in rats with a 28-day recovery (DuPont)[R]. Ashland, OH:WIL Research Laboratories, 2009 |
Guo H, Wang J, Yao J, et al. Comparative hepatotoxicity of novel PFOA alternatives (perfluoropolyether carboxylic acids) on male mice[J]. Environmental Science & Technology, 2019,53(7):3929-3937 |
Sheng N, Pan Y, Guo Y, et al. Hepatotoxic effects of hexafluoropropylene oxide trimer acid (HFPO-TA), a novel perfluorooctanoic acid (PFOA) alternative, on mice[J]. Environmental Science & Technology, 2018, 52(14):8005-8015 |
Edwards T L. An oral (gavage) reproduction/developmental toxicity screening study of H-28548 in mice (DuPont)[R]. Ashland, OH:WIL Research Laboratories, 2010 |
Edwards T L. An oral (gavage) prenatal developmental toxicity study of H-28548 in rats (DuPont)[R]. Ashland, OH:WIL Research Laboratories, 2010 |
Shi G, Cui Q, Pan Y, et al. 6:2 chlorinated polyfluorinated ether sulfonate, a PFOS alternative, induces embryotoxicity and disrupts cardiac development in zebrafish embryos[J]. Aquatic Toxicology, 2017, 185:67-75 |
Wang J, Shi G, Yao J, et al. Perfluoropolyether carboxylic acids (novel alternatives to PFOA) impair zebrafish posterior swim bladder development via thyroid hormone disruption[J]. Environment International, 2020, 134:105317 |