删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

蚯蚓肠道细菌生态功能及毒理学研究进展

本站小编 Free考研考试/2021-12-30

晁会珍1,
孙明明1,,,
朱国繁2,
叶茂3,
张胜田4,
刘满强1,
胡锋1
1. 南京农业大学资源与环境科学学院, 土壤生态学实验室, 南京 210095;
2. 合肥工业大学资源与环境工程学院, 地下水实验室, 合肥 230009;
3. 中国科学院南京土壤研究所, 土壤环境与污染修复重点实验室, 南京 210008;
4. 生态环境部南京环境科学研究所, 国家环境保护土壤环境管理与污染控制重点实验室, 南京 210042
作者简介: 晁会珍(1995-),女,硕士研究生,研究方向为污染土壤生态学,E-mail:2017103073@njau.edu.cn.
通讯作者: 孙明明,sunmingming@njau.edu.cn ;
基金项目: 国家重点研发计划项目(2018FYC1803100);中国科协青年人才托举项目(2018QNRC001);国家自然科学基金面上项目(41771350)


中图分类号: X171.5


Ecological Functioning of the Earthworm Intestinal Bacteria and Their Role in Toxicology Research

Chao Huizhen1,
Sun Mingming1,,,
Zhu Guofan2,
Ye Mao3,
Zhang Shengtian4,
Liu Manqiang1,
Hu Feng1
1. Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China;
2. Groundwater Lab, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China;
3. Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China;
4. State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
Corresponding author: Sun Mingming,sunmingming@njau.edu.cn ;

CLC number: X171.5

-->

摘要
HTML全文
(0)(0)
参考文献(80)
相关文章
施引文献
资源附件(0)
访问统计

摘要:蚯蚓肠道是接近于厌氧状态的微环境,肠道中富含大量的厌氧或兼性厌氧菌,它们对蚯蚓自身机能的稳定和土壤养分元素循环及污染物降解转化等均具有重要作用。因此,探明蚯蚓肠道细菌群落结构组成和功能多样性,挖掘蚯蚓肠道细菌环境功能潜力,对于促进农业生产及污染土壤可持续修复治理具有重要的理论和现实意义。本文主要从蚯蚓肠道细菌群落的组成、肠道菌群对土壤中污染物的解毒机制、肠道菌群对土壤中养分元素循环转化的影响及肠道菌群功能基因多样性的角度,对近年来蚯蚓肠道细菌生态功能及毒理学研究进展进行了综述,并对现有研究不足进行了总结,提出了未来研究的发展方向。
关键词: 环境污染物/
蚯蚓肠道细菌/
生态毒理/
土壤

Abstract:The earthworm intestine is an anaerobic microzone, mainly colonized by (facultative) bacteria. It plays an important role in maintaining the earthworm metabolism, nutrient cycling, and pollutant degradation in soil. To improve the agricultural production and soil quality, it is of great significance to explore the bacterial composition and diversity in the earthworm gut, and the potential environmental functioning of the earthworm intestinal bacteria. Here we review the bacterial composition in the earthworm gut, their detoxification mechanism of the soil pollutants, and the close involvement in the soil nutrient transformation. This review provides important information concerning the status quo and the future prospective of the earthworm intestinal bacteria in the ecological functioning and the toxicology research.
Key words:environmental pollutants/
earthworm intestinal bacteria/
ecotoxicology/
soil.

加载中
Dvořák J, Roubalová R, Procházková P, et al. Sensing microorganisms in the gut triggers the immune response in Eisenia andrei earthworms[J]. Developmental and Comparative Immunology, 2016, 57:67-74
Hu L, Xia M, Lin X, et al. Earthworm gut bacteria increase silicon bioavailability and acquisition by maize[J]. Soil Biology and Biochemistry, 2018, 125:215-221
Pass D A, Morgan A J, Read D, et al. The effect of anthropogenic arsenic contamination on the earthworm microbiome[J]. Environmental Microbiology, 2015, 17(6):1884-1896
Drake H L, Horn M A. As the worm turns:The earthworm gut as a transient habitat for soil microbial biomes[J]. Annual Review of Microbiology, 2007, 61(1):169-189
Koubová A, Chroňáková A, Pižl V, et al. The effects of earthworms Eisenia spp. on microbial community are habitat dependent[J]. European Journal of Soil Biology, 2015, 68:42-55
Bhat S A, Singh S, Singh J, et al. Bioremediation and detoxification of industrial wastes by earthworms:Vermicompost as powerful crop nutrient in sustainable agriculture[J]. Bioresource Technology, 2018, 252:172-179
Horn M A, Schramm A, Drake H L. The earthworm gut:An ideal habitat for ingested N2O-producing microorganisms[J]. Applied and Environmental Microbiology, 2003, 69(3):1662-1669
Chao H Z, Kong L Y, Zhang H X, et al. Metaphire guillelmi gut as hospitable micro-environment for the potential transmission of antibiotic resistance genes[J]. Science of the Total Environment, 2019, 669:353-361
Knapp B A, Podmirseg S M, Seeber J, et al. Diet-related composition of the gut microbiota of Lumbricus rubellus as revealed by a molecular fingerprinting technique and cloning[J]. Soil Biology and Biochemistry, 2009, 41(11):2299-2307
Meier A B, Hunger S, Drake H L. Differential engagement of fermentative taxa in gut contents of the earthworm Lumbricus terrestris[J]. Applied and Environmental Microbiology, 2018, 84(5):e01851-17
Wang Y, Han W, Wang X, et al. Speciation of heavy metals and bacteria in cow dung after vermicomposting by the earthworm, Eisenia fetida[J]. Bioresource Technology, 2017, 245:411-418
Singh A, Singh D P, Tiwari R, et al. Taxonomic and functional annotation of gut bacterial communities of Eisenia foetida and Perionyx excavates[J]. Microbiological Research, 2015, 175:48-56
周艳玲, 王一丁, 宋清姿, 等. 峨眉山大蚯蚓肠道可培养细菌多样性研究[J]. 生命科学研究, 2017, 21(3):220-227Zhou Y L, Wang Y D, Song Q Z, et al. Diversity research on culturable bacteria in the intestinal tract of earthworms in mount Emei[J]. Life Science Research, 2017, 21(3):220-227(in Chinese)
Moir A, Cooper G. Spore germination[J]. Microbiology Spectrum, 2014, 3(6):doi:10.1128/microbiolspec. TBS-0014-2012
Hong S W, Lee J S, Chung K S. Effect of enzyme producing microorganisms on the biomass of epigeic earthworms (Eisenia fetida) in vermicompost[J]. Bioresource Technology, 2011, 102(10):6344-6347
Montagna M, Berruti A, Bianciotto V, et al. Differential biodiversity responses between kingdoms (plants, fungi, bacteria and metazoa) along an Alpine succession gradient[J]. Molecular Ecology, 2018, 27(18):3671-3685
Liu D F, Lian B, Wang B, et al. Degradation of potassium rock by earthworms and responses of bacterial communities in its gut and surrounding substrates after being fed with mineral[J]. PloS One, 2011, 6(12):e28803
Navrátilová D, Tláskalová P, Kohout P, et al. Diversity of fungi and bacteria in species-rich grasslands increases with plant diversity in shoots but not in roots and soil[J]. FEMS Microbiology Ecology, 2018, 95(1):1-10
Naether A, Foesel B U, Naegele V, et al. Environmental factors affect acidobacterial communities below the subgroup level in grassland and forest soils[J]. Applied and Environmental Microbiology, 2012, 78(20):7398-7406
Huang K, Li F, Wei Y, et al. Changes of bacterial and fungal community compositions during vermicomposting of vegetable wastes by Eisenia foetida[J]. Bioresource Technology, 2013, 150:235-241
Villar I, Alves D, Pérez-Díaz D, et al. Changes in microbial dynamics during vermicomposting of fresh and composted sewage sludge[J]. Waste Management, 2016, 48:409-417
Aira M, Olcina J, Pérez-Losada M, et al. Characterization of the bacterial communities of casts from Eisenia andrei fed with different substrates[J]. Applied Soil Ecology, 2016, 98:103-111
Rillig M C. Microplastic in terrestrial ecosystems and the soil?[J]. Environmental Science and Technology, 2012, 46(12):6453-6454
林曼霞, 邹勇, 孙永学. 室内粪土模型中土霉素对主要反硝化基因转录水平和菌群结构特征的影响[J].生态毒理学报, 2018, 13(5):182-189Lin M X, Zou Y, Sun Y X. Effects of oxytetracycline on the transcriptional characteristics of dominant denitrification genes and flora structure characteristics in indoor manure soil model[J]. Asian Journal of Ecotoxicology, 2018, 13(5):182-189(in Chinese)
薛建芳, 史雅娟, 王尘辰, 等. 持久性有机污染物的作物吸收及迁移模型研究进展[J]. 生态毒理学报, 2018, 13(1):75-88Xue J F, Shi Y J, Wang C C, et al. Assessment of POPs absorption in agriculture crops using migration models-A review[J]. Asian Journal of Ecotoxicology, 2018, 13(1):75-88(in Chinese)
Biswas J K, Banerjee A, Rai M K, et al. Exploring potential applications of a novel extracellular polymeric substance synthesizing bacterium (Bacillus licheniformis) isolated from gut contents of earthworm (Metaphire posthuma) in environmental remediat[J]. Biodegradation, 2018, 29(4):323-337
Verma A, Ali D, Farooq M, et al. Expression and inducibility of endosulfan metabolizing gene in Rhodococcus strain isolated from earthworm gut microflora for its application in bioremediation[J]. Bioresource Technology, 2011, 102(3):2979-2984
Lwanga E H, Thapa B, Yang X, et al. Decay of low-density polyethylene by bacteria extracted from earthworm's guts:A potential for soil restoration[J]. Science of the Total Environment, 2018, 624:753-757
Cao J, Wang C, Dou Z X, et al. Hyphospheric impacts of earthworms and arbuscular mycorrhizal fungus on soil bacterial community to promote oxytetracycline degradation[J]. Journal of Hazardous Materials, 2018, 341:346-354
Biswas J K, Banerjee A, Rai M, et al. Potential application of selected metal resistant phosphate solubilizing bacteria isolated from the gut of earthworm (Metaphire posthuma) in plant growth promotion[J]. Geoderma, 2018, 330:117-124
Teng Z, Shao W, Zhang K Y, et al. Characterization of phosphate solubilizing bacteria isolated from heavy metal contaminated soils and their potential for lead immobilization[J]. Journal of Environmental Management, 2019, 231:189-197
Goswami L, Sarkar S, Mukherjee S, et al. Vermicomposting of tea factory coal ash:Metal accumulation and metallothionein response in Eisenia fetida (Savigny) and Lampito mauritii (Kinberg)[J]. Bioresource Technology, 2014, 166:96-102
代金君, 张池, 周波, 等. 蚯蚓肠道对重金属污染土壤微生物群落结构的影响[J]. 中国农业大学学报, 2015, 20(5):95-102Dai J J, Zhang C, Zhou B, et al. Effects of earthworm gut on microbial community structure in heavy metal contaminated soils[J]. Journal of China Agricultural University, 2015, 20(5):95-102(in Chinese)
Cornu J, Huguenot D, Jézéquel K, et al. Bioremediation of copper-contaminated soils by bacteria[J]. World Journal of Microbiology and Biotechnology, 2017, 33:26
Mohamed H M, Almaroai Y A. Effect of phosphate solubilizing bacteria on the uptake of heavy metals by corn plants in a long-term sewage wastewater treated soil[J]. International Journal of Environmental Science and Development, 2017, 8(5):366-371
Zampieri B D B, Pinto A B, Schulta L, et al. Diversity and distribution of heavy metal-resistant bacteria in polluted sediments of the Araça Bay, São Sebastião (SP), and the relationship between heavy metals and organic matter concentrations[J]. Environmental Microbiology, 2016, 72:582-594
滕菲, 杨雪莲, 李凤梅, 等. 微生物对环境中难降解有机污染物共代谢作用[J]. 微生物学杂志, 2016, 36(3):80-85Teng F, Yang X L, Li F M, et al. Microbial co-metabolism of persistent organic pollutants in environment[J]. Journal of Microbiology, 2016, 36(3):80-85(in Chinese)
Mudziwapasi R, Mlambo S S, Chigu N L, et al. Isolation and molecular characterization of bacteria from the gut of Eisenia fetida for biodegradation of 4,4 DDT[J]. Journal of Applied Biology and Biotechnology, 2016, 4(5):41-47
Fu L, Bai Y Z, Lu Y Z, et al. Degradation of organic pollutants by anaerobic methane-oxidizing microorganisms using methyl orange as example[J]. Journal of Hazardous Materials, 2019, 364:264-271
任新伟, 唐景春, 于宸, 等. 土壤微塑料污染及生态效应研究进展[J]. 农业环境科学学报, 2018, 37(6):1045-1058Ren X W, Tang J C, Yu C, et al. Advances in research on the ecological effects of microplastic pollution on soil ecosystems[J]. Journal of Agro-Environment Science, 2018, 37(6):1045-1058(in Chinese)
Law K L, Thompson R C. Microplastics in the seas[J]. Science, 2014, 345(6193):144-145
Hadad D, Geresh S, Sivan A. Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis[J]. Journal of Applied Microbiology, 2005, 98(5):1093-1100
Auta H S, Emenike C U, Fauziah S H. Screening of Bacillus strains isolated from mangrove ecosystems in Peninsular Malaysia for microplastic degradation[J]. Environmental Pollution, 2017, 231:1552-1559
Auta H S, Emenike C U, Jayanthi B, et al. Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment[J]. Marine Pollution Bulletin, 2018, 127:15-21
Wang H T, Ding J, Xiong C, et al. Exposure to microplastics lowers arsenic accumulation and alters gut bacterial communities of earthworm Metaphire californica[J]. Environmental Pollution, 2019, 251:110-116
Lwanga E H, Gertsen H, Gooren H, et al. Microplastics in the terrestrial ecosystem:Implications for Lumbricus terrestris (Oligochaeta, Lumbricidae)[J]. Environmental Science and Technology, 2016, 50(5):2685-2691
Zhu B, Fang Y, Zhu D, et al. Exposure to nanoplastics disturbs the gut microbiome in the soil oligochaete Enchytraeus crypticus[J]. Environmental Pollution, 2018, 239:408-415
Chen Q W, Dong J W, Zhang T, et al. A method to study antibiotic emission and fate for data-scarce rural catchments[J]. Environment International, 2019, 127:514-521
曾巧云, 丁丹, 檀笑. 中国农业土壤中四环素类抗生素污染现状及来源研究进展[J]. 生态环境学报, 2018, 27(9):1774-1782Zeng Q Y, Ding D, Tan X. Pollution status and sources of tetracycline antibiotics in agricultural soil in China:A review[J]. Ecology and Environmental Sciences, 2018, 27(9):1774-1782(in Chinese)
秦丽婷, 童蕾, 刘慧, 等. 环境中磺胺类抗生素的生物降解及其抗性基因污染现状[J].环境化学, 2016, 35(5):875-883Qin L T, Tong L, Liu H, et al. Biodegradation of sulfonamides and the pollution characteristics of sulfonamide resistance genes in the environment[J]. Environmental Chemistry, 2016, 35(5):875-883(in Chinese)
Zhou G W, Yang X R, Sun A Q, et al. Mobile incubator for iron(Ⅲ) reduction in the gut of the soil-feeding earthworm Pheretima guillelmi and interaction with denitrification[J]. Environmental Science and Technology, 2019, 53(8):4215-4223
Lin B, Lyu J L, Lyu X J, et al. Characterization of cefalexin degradation capabilities of two Pseudomonas strains isolated from activated sludge[J]. Journal of Hazardous Materials, 2015, 282:158-164
Herzog B, Lemmer H, Horn H, et al. Characterization of pure cultures isolated from sulfamethoxazole-acclimated activated sludge with respect to taxonomic identification and sulfamethoxazole biodegradation potential[J]. BMC Microbiology, 2013, 13(1):1-10
苏静静, 蒋亚梅, 温洪宇. 细菌对四类土壤常见抗生素的降解机制[J]. 黑龙江农业科学, 2016(12):52-54 Su J J, Jiang Y M, Wen H Y. Degradation mechanism of bacteria for four kinds of common antibiotic in soil[J]. Heilongjiang Agricultural Sciences, 2016(12):52-54(in Chinese)
李科, 张德纯. 细菌耐药机制及耐药性消除的研究进展[J]. 中国微生态学杂志, 2014, 26(8):984-986Li K, Zhang D C. The mechanism and removal of bacterial drug resistance:Research progress[J]. Chinese Journal of Microecology, 2014, 26(8):984-986(in Chinese)
Ma J, Zhu D, Sheng G D, et al. Soil oxytetracycline exposure alters the microbial community and enhances the abundance of antibiotic resistance genes in the gut of Enchytraeus crypticus[J]. Science of The Total Environment, 2019, 673:357-366
Wang C R, Rong H, Liu H T, et al. Detoxification mechanisms, defense responses, and toxicity threshold in the earthworm Eisenia foetida exposed to ciprofloxacin-polluted soils[J]. Science of the Total Environment, 2018, 612:442-449
Li Y S, Hu Y X, Ai X J, et al. Acute and sub-acute effects of enrofloxacin on the earthworm species Eisenia fetida in an artificial soil substrate[J]. European Journal of Soil Biology, 2015, 66:19-23
Hussain N, Singh A, Saha S, et al. Excellent N-fixing and P-solubilizing traits in earthworm gut-isolated bacteria:A vermicompost based assessment with vegetable market waste and rice straw feed mixtures[J]. Bioresource Technology, 2016, 222:165-174
Schulz K, Hunger S, Brown G G, et al. Methanogenic food web in gut contents of the methane-emitting earthworm Eudrilus eugeniae from Brazil[J]. ISME Journal, 2015, 9(8):1778-1792
Wüst P K, Horn M A, Henderson G, et al. Gut-associated denitrification and in vivo emission of nitrous oxide by the earthworm families Megascolecidae and Lumbricidae in New Zealand[J]. Applied and Environmental Microbiology, 2009, 75(11):3430-3436
Wüst P K, Horn M A, Drake H L. In situ hydrogen and nitrous oxide as indicators of concomitant fermentation and denitrification in the alimentary canal of the earthworm Lumbricus terrestris[J]. Applied and Environmental Microbiology, 2009, 75(7):1852-1859
Depkat-Jakob P S, Brown G G, Tsai S M, et al. Emission of nitrous oxide and dinitrogen by diverse earthworm families from Brazil and resolution of associated denitrifying and nitrate-dissimilating taxa[J]. FEMS Microbiology Ecology, 2013, 83(2):375-391
侯海军, 秦红灵, 陈春兰, 等. 土壤氮循环微生物过程的分子生态学研究进展[J]. 农业现代化研究, 2014, 35(5):588-594Hou H J, Qin H L, Chen C L, et al. Research progress of the molecular ecology on microbiological processes in soil nitrogen cycling[J]. Research of Agricultural Modernization, 2014, 35(5):588-594(in Chinese)
Depkat-Jakob P S, Hunger S, Schulz K, et al. Emission of methane by Eudrilus eugeniae and other earthworms from Brazil[J]. Applied and Environmental Microbiology, 2012, 78(8):3014-3019
姜炳棋, 马旖旎, 单军, 等. 威廉腔环蚓(Metaphire guillelmi)对14C-土壤有机质转化的研究[J]. 生态环境学报, 2011, 20(6-7):1011-1017 Jiang B Q, Ma Y N, Shan J, et al. Transformation of 14C-labelled soil organic matter by the geophagous earthworm Metaphire guillelmi[J]. Ecology and Environmental Sciences, 2011, 20(6-7):1011-1017(in Chinese)
Koch M, Kruse J, Eichler-Löbermann B, et al. Phosphorus stocks and speciation in soil profiles of a long-term fertilizer experiment:Evidence from sequential fractionation, P K-edge XANES, and 31 PNMR spectroscopy[J]. Geoderma, 2018, 316:115-126
Sahariah B, Goswami L, Kim K, et al. Metal remediation and biodegradation potential of earthworm species on municipal solid waste:A parallel analysis between Metaphire posthuma and Eisenia fetida[J]. Bioresource Technology, 2015, 180:230-236
Kotzerke A, Klemer S, Kleineidam K, et al. Manure contaminated with the antibiotic sulfadiazine impairs the abundance of nirK- and nirS-type denitrifiers in the gut of the earthworm Eisenia fetida[J]. Biology and Fertility of Soils, 2010, 46(4):415-418
Depkat-Jakob P S, Hilgarth M, Horn M A, et al. Effect of earthworm feeding guilds on ingested dissimilatory nitrate reducers and denitrifiers in the alimentary canal of the earthworm[J]. Applied and Environmental Microbiology, 2010, 76(18):6205-6214
Schmidt O, Wüst P K, Hellmuth S, et al. Novel- and -hydrogenase gene transcripts indicative of active facultative aerobes and obligate anaerobes in earthworm gut contents[J]. Applied and Environmental Microbiology, 2011, 77(17):5842-5850
Wang H T, Zhu D, Li G, et al. Effects of arsenic on gut microbiota and its biotransformation genes in earthworm Metaphire sieboldin[J]. Environmental Science and Technology, 2019, 53(7):3841-3849
Hu S Q, Zhang W, Li J, et al. Antioxidant and gene expression responses of Eisenia fetida following repeated exposure to BDE209 and Pb in a soil-earthworm system[J]. Science of the Total Environment, 2016, 556:163-168
Shi Y, Xu X, Chen J, et al. Antioxidant gene expression and metabolic responses of earthworms (Eisenia fetida) after exposure to various concentrations of hexabromocyclododecane[J]. Environmental Pollution, 2018, 232:245-251
Li Y S, Zhao C, Lu X X, et al. Identification of a cytochrome P450 gene in the earthworm Eisenia fetida and its mRNA expression under enrofloxacin stress[J]. Ecotoxicology and Environmental Safety, 2018, 150:70-75
Zeibich L, Schmidt O, Drake H L. Protein-and RNA-enhanced fermentation by gut microbiota of the earthworm Lumbricus terrestris[J]. Applied and Environmental Microbiology, 2018, 84(11):e00657-18
Gopal M, Bhute S S, Gupta A, et al. Changes in structure and function of bacterial communities during coconut leaf vermicomposting[J]. Antonie van Leeuwenhoek, 2017, 110(10):1339-1355
Hong S W, Kim I S, Lee J S, et al. Culture-based and denaturing gradient gel electrophoresis analysis of the bacterial community structure from the intestinal tracts of earthworms (Eisenia fetida)[J]. Journal of Microbiology and Biotechnology, 2011, 21(9):885-892
Yausheva Е, Sizova Е, Lebedev S, et al. Influence of zinc nanoparticles on survival of worms Eisenia fetida and taxonomic diversity of the gut microflora[J]. Environmental Science and Pollution Research, 2016, 23(13):13245-13254
Ma L L, Xie Y W, Han Z H, et al. Responses of earthworms and microbial communities in their guts to triclosan[J]. Chemosphere, 2017, 168:1194-1202

相关话题/土壤 环境 污染 生态 生态学