孙霄1,2,3,
赖雨薇1,2,3,
喻兆4
1. 中国石油大学(北京)化学工程与环境学院, 北京 102249;
2. 重质油国家重点实验室, 北京 102249;
3. 北京市油气污染防治重点实验室, 北京 102249;
4. 北京第二十中学, 北京 100085
作者简介: 曾勇(1974-),男,博士,副教授,研究方向为水生态效应与模拟,E-mail:yongzeng1974@163.com.
通讯作者: 曾勇,yongzeng1974@163.com ;
基金项目: “十三五”国家油气重大专项“页岩气等非常规油气开发环境影响评估与环境效益综合评价技术”(2016ZX05040-001)中图分类号: X171.5
Aquatic Ecosystem Risk Assessment of Polycyclic Aromatic Hydrocarbons Based on Species Sensitivity Distribution
Zeng Yong1,2,3,,,Sun Xiao1,2,3,
Lai Yuwei1,2,3,
Yu Zhao4
1. School of Chemical Engineering and Environment, China University of Petroleum(Beijing), Beijing 102249, China;
2. State Key Laboratory of Heavy Oil Processing, Beijing 102249, China;
3. Beijing Key Laboratory of Oil & Gas Pollution Control, Beijing 102249, China;
4. Beijing No. 20 Middle School, Beijing 100085, China
Corresponding author: Zeng Yong,yongzeng1974@163.com ;
CLC number: X171.5
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:多环芳烃(PAHs)是一种典型的持久性有机物,当前对PAHs的水生态风险评价中,主要集中在个体与种群水平,难以反映生态系统各级物种对PAHs毒性的综合响应。基于美国生态毒理数据库(ECOTOX),根据水生态系统各营养级功能组分类筛选,获得可靠的物种急、慢性毒性数据,以Burr Ⅲ型分布拟合曲线,构建萘、芴、蒽、苊、芘、菲、苯并芘和荧蒽这8种常见PAHs的物种敏感性分布(SSD)曲线,结合急慢性比率系数法,外推出基于生态系统水平的慢性水质基准值,分别为10.25、6.75、0.06、1.95、0.03、3.50、0.05和0.50 μg·L-1;并将计算结果与国内外已有基准/标准进行了对比,偏差不超过一个数量级,验证了计算结果的可靠性和准确性;运用所建方法对松花江、辽河、海河、黄河、长江、淮河和珠江这七大流域进行PAHs生态风险评价,发现海河和长江流域的PAHs生态风险较低,黄河、淮河和珠江流域的PAHs生态风险中等,松花江和辽河流域的PAHs生态风险最高。所建方法具原理易懂、计算简便和应用方便的特点,为相似污染物水质基准的建立和生态风险评价提供了参考。
关键词: 多环芳烃/
生态系统/
慢性毒性/
生态风险/
环境基准/
物种敏感性
Abstract:Polycyclic aromatic hydrocarbons (PAHs) are a type of typical persistent organic matters, which are widely distributed in China's water body. Ecological risk assessment of PAHs is now a hot issue and is of great significance to the management and protection of aquatic ecosystems. At present, the aquatic ecological risk assessment of PAHs is mainly focused on individual and population level, and there is still a lack of ecosystem level studies. Based on the Ecotoxicology Database of United States Environmental Protection Agency (ECOTOX), this paper obtains reliable acute and chronic toxicity data of species according to the trophic functional group classification of aquatic ecosystems, and develops the species sensitivity distribution (SSD) curves of eight common PAHs such as naphthalene, aenaphthene, fluorene, anthracene, pyrene, phenanthrene, fluoranthene and benzopyrene, using Burr Ⅲ distribution fitting curve. Combined with the acute and chronic data ratio method, the baseline values of chronic toxicological water quality based on ecosystem level are derived, which are 10.25, 6.75, 0.06, 1.95, 0.03, 3.50, 0.05, 0.50 μg·L-1 respectively. These results are close to the values of existing standards at home and abroad, which verifies the reliability and accuracy of the results. The developed method is applied for the ecological risk assessment of PAHs in the seven major river basins of Songhua River, Liaohe River, Haihe River, Yellow River, Yangtze River, Huaihe River and Pearl River. It is found that the risk of the Haihe River and the Yangtze River is low; the risk of the Yellow River, the Huaihe River and the Pearl River is moderate; the risk of the Songhua River and the Liaohe River is the highest. The method developed in this paper provides a reference for the establishment of water quality benchmarks for PAHs and similar pollutants, as well as for ecological risk assessment at the ecosystem level.
Key words:polycyclic aromatic hydrocarbons (PAHs)/
ecosystem/
chronic toxicity/
ecological risk/
environmental benchmarks/
species sensitive distribution (SSD).
秦宁, 何伟, 孔祥臻, 等. 中国水生生态系统中多环芳烃的生态毒性与生态风险研究进展[J]. 中国科技论文, 2013, 8(12):1209-1218Qin N, He W, Kong X Z, et al. Research progress in ecotoxicity and eco-risk assessment of polycyclic aromatic hydrocarbons in China's aquatic ecosystems[J]. China Science Paper, 2013, 8(12):1209-1218(in Chinese) |
程家丽, 黄启飞, 魏世强, 等. 我国环境介质中多环芳烃的分布及其生态风险[J]. 环境工程学报, 2007, 1(4):138-144Cheng J L, Huang Q F, Wei S Q, et al. A review on distribution and risks of pollution from polycyclic aromatic hydrocarbons (PAHs) in China[J]. Chinese Journal of Environmental Engineering, 2007, 1(4):138-144(in Chinese) |
黄健, 刘向东, 唐学玺. 蒽与苯并芘对海洋微藻致毒影响的比较研究[J]. 青岛海洋大学学报, 2000, 30(3):499-502Huang J, Liu X D, Tang X X. Study of the anthracene and benzopyrene toxicity effect on marine microalgae[J]. Journal of Ocean University of Qingdao, 2000, 30(3):499-502(in Chinese) |
徐东晖, 刘光兴. 多环芳烃(萘)对火腿许水蚤(Schmackeria poplesia)急性和慢性毒性效应的研究[J]. 生态毒理学报, 2010, 5(4):543-548Xu D H, Liu G X. A study on the acute and chronic effects of NAPH on Schmackeria poplesia[J]. Asian Journal of Ecotoxicology, 2010, 5(4):543-548(in Chinese) |
陈辉辉, 覃剑晖, 刘海超, 等. 典型重金属、多环芳烃及菊酯类农药对唐鱼的急性毒性效应[J]. 华中农业大学学报, 2011, 30(4):511-515Chen H H, Qin J H, Liu H C, et al. Acute toxicity of representative heavy metals, polycyclic aromatic hydrocarbons (PAHs) and pyrethroid pesticide to Tanichthys albonubes[J]. Journal of Huazhong Agricultural University, 2011, 30(4):511-515(in Chinese) |
杨涛, 陈海刚, 蔡文贵, 等. 菲胁迫对红鳍笛鲷急、慢性毒性效应的研究[J]. 水产学报, 2011, 35(2):298-304Yang T, Chen H G, Cai W G, et al. Acute and chronic toxicity effects of phenanthrene in seawater on crimson snapper (Lutjanus erythropterus)[J]. Journal of Fisheries of China, 2011, 35(2):298-304(in Chinese) |
许文武, 侯梅芳, 潘栋宇, 等. 多环芳烃(芘)对斜生栅藻的毒性研究[J]. 生态环境学报, 2015, 24(8):1361-1365Xu W W, Hou M F, Pan D Y, et al. Study on the toxicity of PAHs (pyrene) to Scenedesmus obliquus[J]. Ecology and Environmental Sciences, 2015, 24(8):1361-1365(in Chinese) |
刘翔宇, 孙力平, 陈旭, 等. 芴对斑马鱼不同发育阶段毒性效应的比较研究[J]. 生态毒理学报, 2014, 9(2):284-290Liu X Y, Sun L P, Chen X, et al. Comparison of toxic effect of fluorene on zebrafish at different developmental stages[J]. Asian Journal of Ecotoxicology, 2014, 9(2):284-290(in Chinese) |
张翼飞, 曲梦杰, 丁家玮, 等. 多环芳烃对海洋贝类多生物水平毒性效应的研究进展[J]. 生态毒理学报, 2019, 14(1):18-29Zhang Y F, Qu M J, Ding J W, et al. Ecotoxicology:A review of multi-toxicity in marine bivalve induced by polycyclic aromatic hydrocarbons[J]. Asian Journal of Ecotoxicology, 2019, 14(1):18-29(in Chinese) |
Xu F L, Li Y L, Wang Y, et al. Key issues for the development and application of the species sensitivity distribution (SSD) model for ecological risk assessment[J]. Ecological Indicators, 2015, 54:227-237 |
He J, He H Q, Yan Z G, et al. Comparative analysis of freshwater species sensitivity distributions and ecotoxicity for priority pesticides:Implications for water quality criteria[J]. Ecotoxicology and Environmental Safety, 2019, 176:119-124 |
Andrea G, Alberto B, Laura G, et al. Deriving predicted no-effect concentrations (PNECs) for emerging contaminants in the River Po, Italy, using three approaches:Assessment factor, species sensitivity distribution and AQUATOX ecosystem modelling[J]. Environment International, 2018, 119:66-78 |
Van den Brink P J, de Gelderb D M B, Brock T C M, et al. Exposure pattern-specific species sensitivity distributions for the ecological risk assessments of insecticides[J]. Ecotoxicology and Environmental Safety, 2019, 180:252-258 |
穆景利, 靳非, 王菊英, 等. 基于物种敏感性分布的保护海水水生生物的石油烃急性毒性基准研究[J]. 生态毒理学报, 2015, 10(1):169-181Mu J L, Jin F, Wang J Y, et al. Development of acute aquatic toxicity criteria for total petroleum hydrocarbon in oil spill based on species sensitivity distributions[J]. Asian Journal of Ecotoxicology, 2015, 10(1):169-181(in Chinese) |
刘良, 颜小品, 王印, 等. 应用物种敏感性分布评估多环芳烃对淡水生物的生态风险[J]. 生态毒理学报, 2009, 4(5):647-654Liu L, Yan X P, Wang Y, et al. Assessing ecological risks of polycyclic aromatic hydrocarbons (PAHs) to freshwater organisms by species sensitivity distributions[J]. Asian Journal of Ecotoxicology, 2009, 4(5):647-654(in Chinese) |
李斌, 解启来, 刘昕宇, 等. 流溪河水体多环芳烃的污染特征及其对淡水生物的生态风险[J]. 农业环境科学学报, 2014, 33(2):367-374Li B, Xie Q L, Liu X Y, et al. Pollution and ecological risk assessment of polycyclic aromatic hydrocarbons by species sensitivity distributions in the Liuxi River, South China[J]. Journal of Agro-Environment Science, 2014, 33(2):367-374(in Chinese) |
蒋丹烈, 胡霞林, 尹大强. 应用物种敏感性分布法对太湖沉积物中多环芳烃的生态风险分析[J]. 生态毒理学报, 2011, 6(1):60-66Jiang D L, Hu X L, Yin D Q. Ecological risk assessment on polycyclic aromatic hydrocarbons of sediment in Taihu Lake using species sensitivity distributions[J]. Asian Journal of Ecotoxicology, 2011, 6(1):60-66(in Chinese) |
张怡婷, 王蕾, 刘济宁, 等. 应用不同毒理学终点评估酚类物质的生态危害和风险[J]. 生态与农村环境学报, 2016, 32(2):326-331Zhang Y T, Wang L, Liu J N, et al. Using different toxicological end points to evaluate phenolic compounds for ecological hazard and risk[J]. Journal of Ecology and Rural Environment, 2016, 32(2):326-331(in Chinese) |
张瑞卿, 吴丰昌, 李会仙, 等. 应用物种敏感度分布法研究中国无机汞的水生生物水质基准[J]. 环境科学学报, 2012, 32(2):440-449Zhang R Q, Wu F C, Li H X, et al. Deriving aquatic water quality criteria for inorganic mercury in China by species sensitivity distributions[J]. Acta Scientiae Circumstantiae, 2012, 32(2):440-449(in Chinese) |
张亚辉, 曹莹, 周腾耀, 等. 我国环境中PFOS的预测无效应浓度[J]. 中国环境科学, 2013, 33(9):1670-1677Zhang Y H, Cao Y, Zhou T Y, et al. Predicted non-effect concentrations for PFOS of environment in China[J]. China Environmental Science, 2013, 33(9):1670-1677(in Chinese) |
范博, 王晓南, 黄云, 等. 我国七大流域水体多环芳烃的分布特征及风险评价[J]. 环境科学, 2019, 40(5):2101-2114Fan B, Wang X N, Huang Y, et al. Distribution and risk assessment of polycyclic aromatic hydrocarbons in water bodies in Seven Basins of China[J]. Environmental Science, 2019, 40(5):2101-2114(in Chinese) |
中研网. 石油化工行业市场产量分析及行业重点区域产量分布. (2019-03-28). http://www.chinairn.com/news/20190328/153538613.shtml. |