删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

玉米秸秆生物炭对沉积物中BDE-47生态毒性的影响

本站小编 Free考研考试/2021-12-30

婵炴垶鎸撮崑鎾绘煛婢舵ê鐏犻柕鍫濈埣閹崇娀宕滄担鍦殸闂備浇妫勫畷顒€顫濋妸鈺佺煑妞ゆ牗鐟ょ花鏉库槈閺冣偓濠㈡﹢宕哄畝鍕殌闁告劦浜為崺鈥斥槈閹惧瓨灏紒妤冨枔閹风娀骞戦幇顔哄亽闂佸搫鍊归悷杈╂閿燂拷
2婵炴垶鎸稿ú銊╋綖閹烘鍤€闁告劦浜為崺锟犳煟閵忋倖娑ч柣鈩冪懄缁嬪﹪鏁傞懖鈺冾槱婵☆偆澧楅敋缂併劑浜舵俊瀛樻媴缁涘缍婃俊顐ゅ閸垶鍩€椤戣法顦﹂柛娆忕箲缁鸿棄螖閸曨厹鍋掗梺鍝勫€归悷杈╂濮樿泛鐭楀┑鐘插€搁崸濠冾殽閻愬樊鍤熸繝鈧埄鍐跨矗婵鐗忕粈澶嬬箾閹寸姵鏆╂繛璇ф嫹547闂佸湱顣介崑鎾绘⒒閸曗晛鐏柣妤嬫嫹4婵炴垶鎸稿ú锝囩礊閹寸偟鈻旀い蹇撴礌閸嬫捇宕橀鍡楃厸闂佸吋婢橀崯顐㈢暦閵夛妇鈻旈柟鎹愬皺閻熷湱绱掓径瀣仼婵炶弓鍗虫俊瀛樻媴鐟欙絽浜鹃柛鎰典簽閸╋繝鏌涜箛锝呭闁告瑱绱曢幏鐘诲箻閸涱垳顦╅梺琛″亾闁圭ǹ绨肩粭澶愭煠閺勫繒绨挎い鏇樺灲瀵偊寮跺▎鎯уΤ闂佹寧绋戦ˇ顓㈠焵椤掑﹥瀚�40缂備礁顦粔宕囩箔閹惧鈻旀慨姗€纭搁弫瀣熆鐠団€充壕缂佽鲸鐟╅弻宀勫箣閿濆洠鍋撻搹瑙勫厹闁哄洨鍎戠槐婊堟煏閸℃洖绨籅A闂侀潧妫旂粈浣该瑰Δ鍛挃闁告侗鍘藉▍宀勬煕閺冩挾纾挎い銏$缁旂喖顢曢悩顐壕濞达綀顫夐悡鈧梻鍌氬€介濠勬閸洖绠绘い鎾跺閺佸顭跨拠鈥充簴闁逞屽厸閼冲爼濡甸悙鏉戭嚤婵﹩鍏涚槐锝吤归敐鍡欑煂妞ゃ垺纰嶇粩鐔碱敃閵堝洦鎯i梺鎸庣☉椤︻參鍩€椤掑﹥瀚�28缂備緡鍋夐褔骞冮幘鍓侀┏濠㈣泛饪撮崝鍛存煕閺冣偓缁嬫捇寮悽鍨厹闁哄洦姘ㄩ悷鈺佲槈閹炬潙鎼搁柍褜鍓ㄩ幏锟�1130缂備礁顦粔鍓佸垝閿熺姴绀傞柛娑橈攻濞堝矂鏌℃径瀣闁逞屽墾閹凤拷
向静,
米盈,
田斌,
龚双姣,
马陶武
吉首大学生物资源与环境科学学院, 吉首 416000
作者简介: 向静(1995-),女,硕士研究生,研究方向为生态毒理学,E-mail:2939728032@qq.com.
基金项目: 国家自然科学基金资助项目(41661096);湖南省研究生科研创新项目(CX20190864)


中图分类号: X171.5


Impacts of Biochar Derived from Corn Straw on the Ecotoxicity of BDE-47 in the Sediments

Xiang Jing,
Mi Ying,
Tian Bin,
Gong Shuangjiao,
Ma Taowu
College of Biology and Environmental Sciences, Jishou University, Jishou 416000, China

CLC number: X171.5

-->

摘要
HTML全文
(0)(0)
参考文献(36)
相关文章
施引文献
资源附件(0)
访问统计

摘要:生物炭对于污染沉积物的原位修复具有很大的潜力,但关于生物炭对沉积物中有机污染物生态毒性影响的研究则较少报道。为评价生物炭对沉积物中BDE-47生态毒性的影响,以底栖动物铜锈环棱螺为测试生物,采用28 d慢性沉积物生物测试研究了不同添加比例的玉米秸秆生物炭(CSB)与BDE-47联合作用对BDE-47生物积累、肝胰脏细胞DNA损伤以及氧化胁迫生物标志物的影响。结果表明,在慢性暴露情况下,CSB对铜锈环棱螺不具有毒性;CSB通过显著降低沉积物间隙水中BDE-47的浓度而降低其在铜锈环棱螺体内的生物积累。在实验浓度范围内(1%~7%),CSB添加比例越高,降低BDE-47生物积累的效果越显著。不同添加比例的CSB均可以显著降低BDE-47对铜锈环棱螺DNA损伤的毒性,较高比例(4%和7%)CSB的效果更为显著,但BDE-47的氧化胁迫毒性不随CSB添加比例的升高而下降。因此,从降低BDE-47生态毒性的角度考虑,沉积物中CSB的合适添加比例为4%左右。
关键词: BDE-47/
铜锈环棱螺/
生态毒性/
玉米秸秆/
生物炭/
沉积物

Abstract:Biochar has great potential for in-situ remediation of contaminated sediments. However, little is known regarding the impacts of biochar on the ecotoxicity of organic pollutants in sediments. To evaluate the impacts of biochar on the ecotoxicity of BDE-47 in sediments, BDE-47 bioaccumulation, DNA damage, and oxidative stress related biomarkers in the hepatopancreas of Bellamya aeruginosa following a 28-d exposure to sediments spiked with single or combined corn straw biochar (CSB) and BDE-47 were investigated. The results showed that, under chronic exposure, CSB was nontoxic to B. aeruginosa. CSB could reduce BDE-47 bioaccumulation by significantly reducing BDE-47 concentration in the sediment interstitial water. Within the experimental concentration range (1%~7%), the higher the proportion of CSB in the sediment, the more significant the effectiveness of its reducing BDE-47 bioaccumulation. CSB with different proportions in the sediment could significantly reduce the toxicity of BDE-47 to DNA of B. aeruginosa, and CSB with relatively high proportions (4% and 7%) showed better effectiveness. However, the oxidative stress toxicity of BDE-47 did not further decrease with the increase of CSB addition. Therefore, in terms of reducing the ecotoxicity of BDE-47, the appropriate CSB proportion in sediments is about 4%.
Key words:BDE-47/
Bellamya aeruginosa/
ecotoxicity/
corn straw/
biochar/
sediment.

加载中
Larsson P. Contaminated sediments of lakes and oceans act as sources of chlorinated hydrocarbons for release to water and atmosphere[J]. Nature, 1985, 317:347-349
Jonker M T O, Hoenderboom A M, Koelmans A A. Effects of sedimentary sootlike materials on bioaccumulation and sorption of polychlorinated biphenyls[J]. Environmental Toxicology and Chemistry, 2004, 23(11):2563-2570
Sun X L, Ghosh U. The effect of activated carbon on partitioning, desorption, and biouptake of native polychlorinated biphenyls in four freshwater sediments[J]. Environmental Toxicology and Chemistry, 2008, 27(11):2287-2295
Ahmad M, Rajapaksha A U, Lim J E, et al. Biochar as a sorbent for contaminant management in soil and water:A review[J]. Chemosphere, 2014, 99:19-33
Shen M, Xia X, Wang F, et al. Influences of multiwalled carbon nanotubes and plant residue chars on bioaccumulation of polycyclic aromatic hydrocarbons by Chironomus plumosus larvae in sediment[J]. Environmental Toxicology and Chemistry, 2012, 31(1):202-209
Xia X, Chen X, Zhao X, et al. Effects of carbon nanotubes, chars, and ash on bioaccumulation of perfluorochemicals by Chironomus plumosus larvae in sediment[J]. Environmental Science & Technology, 2012, 46(22):12467-12475
Rakowska M I, Kupryianchyk D, Harmsen J, et al. In situ remediation of contaminated sediments using carbonaceous materials[J]. Environmental Toxicology and Chemistry, 2012, 31(4):693-704
Sun K, Gao B, Ro K S, et al. Assessment of herbicide sorption by biochars and organic matter associated with soil and sediment[J]. Environmental Pollution, 2012, 163:167-173
Jia F, Gan J. Comparing black carbon types in sequestering polybrominated diphenyl ethers (PBDEs) in sediments[J]. Environmental Pollution, 2014, 184:131-137
Cao X, Ma L, Gao B, et al. Dairy-manure derived biochar effectively sorbs lead and atrazine[J]. Environmental Science & Technology, 2009, 43(9):3285-3291
Wang Y, Wang L, Fang G, et al. Enhanced PCBs sorption on biochars as affected by environmental factors:Humic acid and metal cations[J]. Environmental Pollution, 2013, 172:86-93
Bielská L, Škulcová L, Neuwirthová N, et al. Sorption, bioavailability and ecotoxic effects of hydrophobic organic compounds in biochar amended soils[J]. Science of The Total Environment, 2018, 624:78-86
田斌,王萌,陈环宇,等.活性污泥生物炭对沉积物中镉生态毒性的影响[J].生态与农村环境学报, 2018, 34(2):161-168Tian B, Wang M, Chen H Y, et al. Impacts of biochar derived from activated sludge on ecotoxicity of Cd in the sediment[J]. Journal of Ecology and Rural Environment, 2018, 34(2):161-168(in Chinese)
Ma T W, Gong S J, Zhou K, et al. Laboratory culture of the freshwater benthic gastropod Bellamya aeruginosa (Reeve) and its utility as a test species for sediment toxicity[J]. Journal of Environmental Sciences, 2010, 22(2):304-313
周科,马陶武,朱程,等. 2,2',4,4'-四溴联苯醚(BDE-47)污染沉积物对铜锈环棱螺肝胰脏的SOD、CAT和EROD活性的影响[J].环境科学学报, 2010, 30(8):1666-1673Zhou K, Ma T W, Zhu C, et al. Effects of 2,2',4,4'-tetrabromodiphenylether (BDE-7)-contaminated sediments on SOD, CAT, and EROD activities in the hepatopancreas of Bellamya aeruginosa[J]. Acta Scientiae Circumstantiae, 2010, 30(8):1666-1673(in Chinese)
龚双姣,王萌,龙奕,等.沉积物中人工纳米颗粒对BDE-47生态毒性的影响[J].农业环境科学学报, 2015, 34(11):2089-2096Gong S J, Wang M, Long Y, et al. Impact of engineered nanoparticles on ecotoxicity of BDE-47 in sediments[J]. Journal of Agro-Environment Science, 2015, 34(11):2089-2096(in Chinese)
陈社军,麦碧娴,曾永平,等.珠江三角洲及南海北部海域表层沉积物中多溴联苯醚的分布特征[J].环境科学学报, 2005, 25(9):1265-1271Chen S J, Mai B X, Zeng S P, et al. Polybrominated diphenyl ethers (PBDEs) in surficial sediments of the Pearl River Delta and adjacent South China Sea[J]. Acta Scientiae Circumstantiae, 2005, 25(9):1265-1271(in Chinese)
王萌,刘珊珊,龙奕,等.沉积物中不同浓度多壁碳纳米管对Cd和BDE-47生态毒性的影响[J].环境科学学报, 2015, 35(12):4150-4158Wang M, Liu S S, Long Y, et al. Impacts of multi-walled carbon nanotubes on ecotoxicity of Cd and BDE-47 in sediments[J]. Acta Scientiae Circumstantiae, 2015, 35(12):4150-4158(in Chinese)
Simpson S L, Angel B M, Jolley D F. Metal equilibration in laboratory-contaminated (spiked) sediments used for the development of whole-sediment toxicity tests[J]. Chemosphere, 2004, 54(5):597-609
Tice R R, Agurell E, Anderson D. Single cell gel/comet assay:Guidelines for in vitro and in vivo genetic toxicology testing[J]. Environmental and Molecular Mutagenesis, 2000, 35(3):206-221
Ma T W, Wang M, Gong S J, et al. Impacts of sediment organic matter content and pH on ecotoxicity of coexposure of TiO 2 nanoparticles and cadmium to freshwater snails Bellamya aeruginosa[J]. Archives of Environmental Contamination and Toxicology, 2017, 72(1):153-165
龙奕,刘珊珊,王萌,等.纳米Al2O3和Cd联合暴露对铜锈环棱螺体内Cd的生物积累和抗氧化酶活性的影响[J].生态毒理学报, 2015, 10(2):216-223Long Y, Liu S S, Wang M, et al. Effects of Cd and Al2O3-NPs co-exposure on bioaccumulation of Cd and antioxidase enzyme activities in Bellamya aeroginosa[J]. Asian Journal of Ecotoxicology, 2015, 10(2):216-223(in Chinese)
刘佳,彭巾英,马陶武,等.沉积物中2,2',4,4'-四溴联苯醚(BDE-47)在铜锈环棱螺体内的毒代动力学及其繁殖毒性[J].生态毒理学报, 2012, 7(3):259-267Liu J, Peng J Y, Ma T W, et al. Toxicokinetics and reproductive effects of sediment-associated 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) in Bellamya aeruginosa[J]. Asian Journal of Ecotoxicology, 2012, 7(3):259-267(in Chinese)
Freddo A, Cai C, Reid B J. Environmental contextualisation of potential toxic elements and polycyclic aromatic hydrocarbons in biochar[J]. Environmental Pollution, 2012, 171:18-24
Campisi T, Samorì C, Torri C, et al. Chemical and ecotoxicological properties of three bio-oils from pyrolysis of biomasses[J]. Ecotoxicology and Environmental Safety, 2016, 132:87-93
Busch D, Kammann C, Grunhage L, et al. Simple biotoxicity tests for evaluation of carbonaceous soil additives:Establishment and reproducibility of four test procedures[J]. Journal of Environmental Quality, 2012, 41(4):1023-1032
Busch D, Stark A, Kammann C I, et al. Genotoxic and phytotoxic risk assessment of fresh and treated hydrochar from hydrothermal carbonization compared to biochar from pyrolysis[J]. Ecotoxicology and Environmental Safety, 2013, 97:59-66
韩杰,孟军,杜宛璘,等.生物炭对小鼠的毒性作用研究[J].沈阳农业大学学报, 2017(4):451-455 Han J, Meng J, Du W L, et al. Study on sub-acute toxicity test in mice of rice straw biochar[J]. Journal of Shenyang Agricultural University, 2017(4):451-455(in Chinese)
Devi P, Saroha A.K. Risk analysis of pyrolyzed biochar made from paper mill effluent treatment plant sludge for bioavailability and eco-toxicity of heavy metals[J]. Bioresource Technology, 2014, 162:308-315
Domene X, Enders A, Hanley K, et al. Ecotoxicological characterization of biochars:Role of feedstock and pyrolysis temperature[J]. Science of the Total Environment, 2015, 512-513:552-561
Lyu H, He Y, Tang J, et al. Effect of pyrolysis temperature on potential toxicity of biochar if applied to the environment[J]. Environmental Pollution, 2016, 218:1-7
Huang H, Yao W, Li R, et al. Effect of pyrolysis temperature on chemical form, behavior and environmental risk of Zn, Pb and Cd in biochar produced from phytoremediation residue[J]. Bioresource Technology, 2018, 249(Supplement C):487-493
Fornes F, Belda R M. Acidification with nitric acid improves chemical characteristics and reduces phytotoxicity of alkaline chars[J]. Journal of Environmental Management, 2017, 191:237-243
Oleszczuk P, Jośko I, Kuśmierz M. Biochar properties regarding to contaminants content and ecotoxicological assessment[J]. Journal of Hazardous Materials, 2013, 260:375-382
Wang F, Ji R, Jiang Z, et al. Species-dependent effects of biochar amendment on bioaccumulation of atrazine in earthworms[J]. Environmental Pollution, 2014, 186:241-247
Bielská L, Kah M, Sigmund G, et al. Bioavailability and toxicity of pyrene in soils upon biochar and compost addition[J]. Science of the Total Environment, 2017, 595:132-140

闂佺懓鐡ㄩ崝鎺旀嫻閻旂儤瀚氶柛娆嶅劚閺佲晠鎮跺☉杈╁帨缂佽鲸绻堝畷姘跺幢閺囥垻鍙愰柣鐘叉搐婢т粙鍩㈤懖鈺傚皫闁告洦鍓氶悘鎰版⒑閸撗冧壕閻㈩垰顕禍鍛婃綇椤愩垹骞嬮梺鍏煎劤閸㈣尪銇愰敓锟�40%闂佸湱绮崝鏍垂濮樿鲸灏庢慨妯垮煐鐏忣亪鏌ㄥ☉铏
闂佽浜介崝宀€绮诲鍥ㄥ皫婵ǹ鍩栫亸顏堟煛婢跺﹤鏆熸繛澶樺弮婵℃挳宕掑┑鎰婵炲濯寸紞鈧柕鍡楀暣瀹曪綁顢涢悙鈺佷壕婵ê纾粻鏍瑰⿰鍕濞寸姴鐗忕槐鏃堝箣閻樺灚鎯i梻渚囧亝閺屻劎娆㈤悙瀵糕枖闁绘垶蓱閹疯京绱掗弮鈧悷锔炬暜瑜版帞宓侀柛顭戝櫘閸氬懎霉閼测晛袥闁逞屽墯闁芥墳P婵炴潙鍚嬮懝楣冨箟閹惰棄鐏虫繝鍨尵缁€澶愭煟閳ь剙濡介柛鈺傜洴閺屽懎顫濆畷鍥╃暫闁荤姴娲よぐ鐐哄船椤掑倹鍋橀柕濞у嫮鏆犻梺鍛婂笒濡棃妫呴埡鍛叄闁绘劦鍓欐径宥夋煙鐎涙ḿ澧柟鐧哥秮楠炲酣濡烽妸銉︾亷婵炴垶姊瑰姗€骞冨Δ鍛櫖鐎光偓閸愭儳娈炬繛瀵稿缂嶁偓闁靛棗鍟撮幊銏犵暋閺夎法鎮�40%闂佸湱绮崝鏍垂濮樿泛违闁稿本绻嶉崵锕€霉閻欏懐绉柕鍡楀暟閹峰綊顢樺┑鍥ь伆闂佸搫鐗滈崜娑㈡偟椤栨稓顩烽悹浣哥-缁夊灝霉濠х姴鍟幆鍌炴煥濞戞ǹ瀚版繛鐓庡缁傚秹顢曢姀鐘电К9闂佺鍩栬彠闁逞屽墮閸婃悂鎯冮姀銈呯闁糕剝娲熼悡鈺呮⒑閸撗冧壕閻㈩垱鎸虫俊瀛樻媴鐟欏嫬闂梺纭呯堪閸庡崬霉濮椻偓閹囧炊閳哄啯鎯i梺鎸庣☉閼活垵銇愰崒鐐茬闁哄顑欓崝鍛存煛瀹撴哎鍊ら崯鍫ユ煕瑜庣粙蹇涘焵椤戣儻鍏屾繛鍛妽閹棃鏁冩担绋跨仭闂佸憡鐨滄担鎻掍壕濞达綁鏅茬花鎶芥煕濡や礁鎼搁柍褜鍏涚粈浣圭閺囩喓鈹嶉幒鎶藉焵椤戝灝鍊昋缂備礁鏈钘壩涢崸妤€违濞达綀娅i崣鈧繛鎴炴煥缁ㄦ椽鍩€椤戞寧绁伴柣顏呮尦閹椽鏁愰崶鈺傛儯闂佸憡鑹剧€氼剟濡甸崶顒傚祦闁告劖褰冮柊閬嶆煏閸☆厽瀚�
相关话题/生物 生态 比例 环境科学 污染