方舟1,2,3,4,5,,,
陈新军1,2,3,4,5,
王丛丛1,2,3,4,5
1. 上海海洋大学海洋科学学院, 上海 201306;
2. 大洋渔业资源可持续开发教育部重点实验室, 上海 201306;
3. 国家远洋渔业工程技术研究中心, 上海 201306;
4. 农业农村部大洋渔业开发重点实验室, 上海 201306;
5. 农业农村部大洋渔业资源环境科学观测实验站, 上海 201306
作者简介: 张柏豪(1996-),男,硕士研究生,研究方向为海洋生物重金属富集,E-mail:18438615236@163.com.
通讯作者: 方舟,zfang@shou.edu.cn ;
基金项目: 国家自然科学基金面上项目(NSFC41876141);上海市科技创新行动计划(19DZ1207502);农业部外海渔业开发重点实验室开放课题(LOF 2018-02)中图分类号: X171.5
Research Progress of Heavy Metal Bioaccumulation in Marine Invertebrates
Zhang Baihao1,Fang Zhou1,2,3,4,5,,,
Chen Xinjun1,2,3,4,5,
Wang Congcong1,2,3,4,5
1. College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China;
2. The Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai 201306, China;
3. National Engineering Research Center for Oceanic Fisheries, Shanghai 201306, China;
4. Key Laboratory of Oceanic Fisheries Exploration, Ministry of Agriculture and Rural Affairs, Shanghai 201306, China;
5. Scientific Observing and Experimental Station of Oceanic Fishery Resources, Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
Corresponding author: Fang Zhou,zfang@shou.edu.cn ;
CLC number: X171.5
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:污染物通过多途径进入海洋,以多种方式在海水和海洋沉积物中积累,成为海洋生物尤其是底栖生物体内污染物的主要来源。海洋无脊椎动物作为海洋食物链中的低营养级生物,多数种类均为底栖生活,具有较强的污染物富集能力。通过食物链的生物放大作用,其体内富集的污染物会传递到高营养级生物和人类体内,最终对海洋生物和人类产生危害,甚至引发公害事件。重金属(heavy metal)作为主要的污染物之一,具有毒性大、持续性长、耐还原性和耐降解性的特点,长久以来得到广泛的关注和研究。本文以海洋无脊椎动物为代表,从机体暴露途径、机体组织分布情况及过程、污染物在组织间的转移规律和变化因素4个方面入手,全面归纳和总结了重金属污染物在海洋生物体内富集的相关研究进展,并对目前的研究热点、存在的问题进行分析总结,对今后的研究方向进行展望,以期为国内外****进一步开展海洋无脊椎动物重金属富集相关的研究提供有效参考。
关键词: 重金属/
头足类/
贝类/
甲壳类/
生物富集
Abstract:Pollutants enter the ocean through multiple ways and accumulate in seawater and marine sediments in various ways, and become the main source of pollutants in marine organisms, especially benthos. Marine invertebrates, as low trophic organisms in the marine food chain, are mostly benthos and have strong pollutant enrichment capacity. Due to the biological amplification of the food chain, the pollutants accumulated in the body will eventually be transferred to high trophic organisms and human beings, causing harm to marine organisms and human beings, and even causing pollution incidents. Heavy metal, as a kind of pollutant with high toxicity, long duration, reduction resistance and degradation resistance, has been widely concerned and studied for a long time. Due to the differences of living environment, physiological conditions and feeding habits among marine invertebrates, as well as the chemical properties of different heavy metals, the enrichment degree of heavy metal pollutants in different marine invertebrates are different, which is mainly reflected in the pollutant distribution in tissues, the pollutant transfer characteristics and variability in tissues. In this paper, using marine invertebrates as a representative, the body exposure pathway, heavy metal distribution and process in body tissue, pollutant transfer law between tissues, and the influencing factors are comprehensively summarized. This paper summarizes the current research hotspots, existing problems, and future research. The research direction is prospected in order to provide an effective reference for domestic and foreign scholars to carry out further research on heavy metal enrichment in marine invertebrates.
Key words:heavy metal/
cephalopods/
shellfish/
crustaceans/
bioaccumulation.
Jiang Y X, Zeng X C, Fan X T, et al. Levels of arsenic pollution in daily foodstuffs and soils and its associated human health risk in a town in Jiangsu Province, China[J]. Ecotoxicology and Environmental Safety, 2015, 122:198-204 |
Cao L, Liu J H, Dou S Z, et al. Biomagnification of methylmercury in a marine food web in Laizhou Bay (North China) and associated potential risks to public health[J]. Marine Pollution Bulletin, 2020, 150:110762 |
韦丽丽, 周琼, 谢从新, 等. 三峡库区重金属的生物富集、生物放大及其生物因子的影响[J]. 环境科学, 2016, 37(1):325-334Wei L L, Zhou Q, Xie C X, et al. Bioaccumulation and biomagnification of heavy metals in Three Gorges Reservoir and effect of biological factors[J]. Environmental Science, 2016, 37(1):325-334(in Chinese) |
毕宝帅, 余宏昌, 张亚, 等. 上海东风西沙水库表层沉积物重金属含量及生态风险评价[J]. 上海海洋大学学报, 2020, 29(5):709-719Bi B S, Yu H C, Zhang Y, et al. Content characteristics and ecological risk assessment of heavy metals in surface sediment of Dongfeng Xisha Reservoir, Shanghai, China[J]. Journal of Shanghai Ocean University, 2020, 29(5):709-719(in Chinese) |
Aoshima K. Itai-itai disease:Lessons from the investigations of environmental epidemiology conducted in the 1970's, with special reference to the studies of the Toyama Institute of Health[J]. Japanese Journal of Hygiene, 2017, 72(3):149-158 |
陈亮. 我国海洋污染问题、防治现状及对策建议[J]. 环境保护, 2016, 44(5):65-68Chen L. Marine pollution, preventing and treating status and its countermeasures in China[J]. Environmental Protection, 2016, 44(5):65-68(in Chinese) |
张伟, 孙健, 聂红涛, 等. 珠江口及毗邻海域营养盐对浮游植物生长的影响[J]. 生态学报, 2015, 35(12):4034-4044Zhang W, Sun J, Nie H T, et al. Seasonal and spatial variations of nutrient and the response of phytoplankton in PRE and Adjacent Sea Areas[J]. Acta Ecologica Sinica, 2015, 35(12):4034-4044(in Chinese) |
陈水土, 阮五崎, 张立平. 九龙江口诸营养要素的化学特性及其入海通量估算[J]. 热带海洋, 1985, 4(4):16-24Chen S T, Ruan W Q, Zhang L P. Chemical characteristics of nutrient elements in the Jiulong estuary and the calculation of its flux[J]. Tropic Oceanology, 1985, 4(4):16-24(in Chinese) |
潘宇迪, 杨红, 吴建辉, 等. 长江口口门海域水体重金属时间变化趋势及预测[J]. 上海海洋大学学报, 2020, 29(5):685-698Pan Y D, Yang H, Wu J H, et al. Research on the temporal variation trend and prediction of heavy metals in the Yangtze River Estuary[J]. Journal of Shanghai Ocean University, 2020, 29(5):685-698(in Chinese) |
Järup L. Hazards of heavy metal contamination[J]. British Medical Bulletin, 2003, 68:167-182 |
Clemens S, Ma J F. Toxic heavy metal and metalloid accumulation in crop plants and foods[J]. Annual Review of Plant Biology, 2016, 67:489-512 |
中华人民共和国农业部. 无公害食品水产品中有毒有害物质限量:NY 5073-2006[S]. 北京:农业出版社, 2006 |
Potapov A M, Brose U, Scheu S, et al. Trophic position of consumers and size structure of food webs across aquatic and terrestrial ecosystems[J]. The American Naturalist, 2019, 194(6):823-839 |
于潇, 刘晓收. 青岛汇泉湾排污口附近大型底栖动物的群落结构和多样性[J]. 应用与环境生物学报, 2017, 23(1):15-20Yu X, Liu X S. Macrofaunal community structure and diversity near a sewage outlet in Huiquan Bay, Qingdao[J]. Chinese Journal of Applied and Environmental Biology, 2017, 23(1):15-20(in Chinese) |
蔡立哲. 海洋底栖生物生态学和生物多样性研究进展[J]. 厦门大学学报:自然科学版, 2006, 45(S2):83-89Cai L Z. Progress on marine benthic ecology and biodiversity[J]. Journal of Xiamen University:Natural Science, 2006, 45(S2):83-89(in Chinese) |
Bosch A C, O'Neill B, Sigge G O, et al. Heavy metals in marine fish meat and consumer health:A review[J]. Journal of the Science of Food and Agriculture, 2016, 96(1):32-48 |
Saher N U, Siddiqui A S. Occurrence of heavy metals in sediment and their bioaccumulation in sentinel crab (Macrophthalmus depressus) from highly impacted coastal zone[J]. Chemosphere, 2019, 221:89-98 |
杜睿贤, 贾雪峰, 林艺佳, 等. 海洋贝类重金属富集特征及影响因素研究进展[J]. 中国农学通报, 2019, 35(11):155-159Du R X, Jia X F, Lin Y J, et al. Heavy metal enrichment characteristics and influencing factors of marine shellfish:Research progress[J]. Chinese Agricultural Science Bulletin, 2019, 35(11):155-159(in Chinese) |
姚萍, 李坤伟, 张一帆. 知识图谱构建技术综述[J]. 信息系统工程, 2020(5):121, 123 |
曹树金, 吴育冰, 韦景竹, 等. 知识图谱研究的脉络、流派与趋势——基于SSCI与CSSCI期刊论文的计量与可视化[J]. 中国图书馆学报, 2015, 41(5):16-34Cao S J, Wu Y B, Wei J Z, et al. History, schools and trend in knowledge map:Investigation and visualization based on SSCI and CSSCI[J]. Journal of Library Science in China, 2015, 41(5):16-34(in Chinese) |
Kleinberg J. Bursty and hierarchical structure in streams[C]//Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM Press, 2002:91-101 |
Chen C M. Science mapping:A systematic review of the literature[J]. Journal of Data and Information Science, 2017, 2(2):1-40 |
Penicaud V, Lacoue-Labarthe T, Bustamante P. Metal bioaccumulation and detoxification processes in cephalopods:A review[J]. Environmental Research, 2017, 155:123-133 |
Raimundo J, Vale C, Rosa R. Trace element concentrations in the top predator jumbo squid (Dosidicus gigas) from the Gulf of California[J]. Ecotoxicology and Environmental Safety, 2014, 102:179-186 |
Bustamante P, Teyssié J L, Danis B, et al. Uptake, transfer and distribution of silver and cobalt in tissues of the common cuttlefish Sepia officinalis at different stages of its life cycle[J]. Marine Ecology Progress Series, 2004, 269:185-195 |
Liu X M, Zhang L, Zhang L. Concentration, risk assessment, and source identification of heavy metals in surface sediments in Yinghai:A shellfish cultivation zone in Jiaozhou Bay, China[J]. Marine Pollution Bulletin, 2017, 121(1-2):216-221 |
Alkan N, Alkan A, Demirak A, et al. Metals/metalloid in marine sediments, bioaccumulating in macroalgae and a mussel[J]. Soil and Sediment Contamination:An International Journal, 2020, 29(5):569-594 |
Ju Y R, Chen C F, Chuang X Y, et al. Biometry-dependent metal bioaccumulation in aquaculture shellfishes in southwest Taiwan and consumption risk[J]. Chemosphere, 2020, 253:126685 |
蔡艳, 周亦君, 吴晓艺, 等. 3种海洋贝类重金属污染及食用风险评价研究[J]. 核农学报, 2016, 30(6):1126-1134Cai Y, Zhou Y J, Wu X Y, et al. Situation of heavy metal pollution and food risk assessment of 3 kinds of marine shellfish[J]. Journal of Nuclear Agricultural Sciences, 2016, 30(6):1126-1134(in Chinese) |
Harris J M, Vinobaba P, Kularatne R K A, et al. Heavy metal bioaccumulation and Fulton's K condition indices in Scylla serrata (Forskål) in relation to sex[J]. International Journal of Environmental Science and Technology, 2019, 16(1):201-210 |
Gu Y G, Ning J J, Ke C L, et al. Bioaccessibility and human health implications of heavy metals in different trophic level marine organisms:A case study of the South China Sea[J]. Ecotoxicology and Environmental Safety, 2018, 163:551-557 |
Lacoue-Labarthe T, Warnau M, Oberhänsli F, et al. Bioaccumulation of inorganic Hg by the juvenile cuttlefish Sepia officinalis exposed to 203Hg radiolabelled seawater and food[J]. Aquatic Biology, 2009, 6:91-98 |
龚倩. 海水滩涂贝类中重金属镉的检测及富集规律的研究[D]. 青岛:中国海洋大学, 2011:11-20 Gong Q. The study of detection and accumulation of the heavy metal cadmium in marine intertidal shellfish[D]. Qingdao:Ocean University of China, 2011:11-20(in Chinese) |
陈文龙. 滩涂贝类养殖及加工实用技术(七)——泥蚶的生活习性及苗种繁育技术[J]. 中国水产, 1985(10):27-28, 26 |
王维德. 滩涂贝类养殖和加工实用技术(三)——文蛤的生活习性及苗种繁殖技术[J]. 中国水产, 1985(5):19 |
陈元璋. 滩涂贝类养殖及加工实用缢蛏的生活习性及苗种繁育技术(一)——缢蛏的生活习性及苗各繁育[J]. 中国水产, 1985(2):18-19 |
Lischka A, Lacoue-Labarthe T, Hoving H J T, et al. High cadmium and mercury concentrations in the tissues of the orange-back flying squid, Sthenoteuthis pteropus, from the tropical Eastern Atlantic[J]. Ecotoxicology and Environmental Safety, 2018, 163:323-330 |
Miller T W, Bosley K L, Shibata J, et al. Use of mixing models for Humboldt squid diet analysis:Reply to Field et al. (2014)[J]. Marine Ecology Progress Series, 2014, 500:287-290 |
Auger P A, Machu E, Gorgues T, et al. Comparative study of potential transfer of natural and anthropogenic cadmium to plankton communities in the North-West African upwelling[J]. Science of the Total Environment, 2015, 505:870-888 |
Ridame C, Le Moal M, Guieu C, et al. Nutrient control of N2 fixation in the oligotrophic Mediterranean Sea and the impact of Saharan dust events[J]. Biogeosciences, 2011, 8(9):2773-2783 |
Merten V, Christiansen B, Javidpour J, et al. Diet and stable isotope analyses reveal the feeding ecology of the orangeback squid Sthenoteuthis pteropus (Steenstrup 1855) (Mollusca, Ommastrephidae) in the eastern tropical Atlantic[J]. PLoS One, 2017, 12(12):e0189691 |
Giannakopoulou L, Neofitou C. Heavy metal concentrations in Mullus barbatus and Pagellus erythrinus in relation to body size, gender, and seasonality[J]. Environmental Science and Pollution Research International, 2014, 21(11):7140-7153 |
李来好, 杨贤庆, 郝淑贤, 等. 罗非鱼、南美白对虾对重金属富集的研究[J]. 热带海洋学报, 2006, 25(4):61-65Li L H, Yang X Q, Hao S X, et al. A study of heavy metal enrichment in Oreochromis niloticus and Litopeneaus vannamei[J]. Journal of Tropical Oceanography, 2006, 25(4):61-65(in Chinese) |
Seco J, Xavier J C, Brierley A S, et al. Mercury levels in Southern Ocean squid:Variability over the last decade[J]. Chemosphere, 2020, 239:124785 |
Lischka A, Lacoue-Labarthe T, Bustamante P, et al. Trace element analysis reveals bioaccumulation in the squid Gonatus fabricii from polar regions of the Atlantic Ocean[J]. Environmental Pollution, 2020, 256:113389 |
Bustamante P, González A F, Rocha F, et al. Metal and metalloid concentrations in the giant squid Architeuthis dux from Iberian waters[J]. Marine Environmental Research, 2008, 66(2):278-287 |
Ju Y R, Chen C F, Chuang X Y, et al. Biometry-dependent metal bioaccumulation in aquaculture shellfishes in southwest Taiwan and consumption risk[J]. Chemosphere, 2020, 253:126685 |
崔正国, 苑旭洲, 崔毅, 等. 虾夷扇贝(Patinopecten yessoensis)对铅和镉的生物富集与释放规律[J]. 渔业科学进展, 2015, 36(3):116-124Cui Z G, Yuan X Z, Cui Y, et al. Study on the accumulation and elimination of Pb and Cd in Patinopecten yessoensis[J]. Progress in Fishery Sciences, 2015, 36(3):116-124(in Chinese) |
聂齐. 重金属导致细胞损伤的研究[D]. 北京:北京工业大学, 2015:1-65 Nie Q. The research on cell damage induced by heavy metals[D]. Beijing:Beijing University of Technology, 2015:1-65(in Chinese) |
王军, 翟毓秀, 宁劲松, 等. 养殖虾夷扇贝不同组织中重金属含量的分布[J]. 海洋科学, 2009, 33(8):44-47Wang J, Zhai Y X, Ning J S, et al. Heavy metal distribution in different tissues of Patinopecten yesoensis[J]. Marine Sciences, 2009, 33(8):44-47(in Chinese) |
Bustamante P, Teyssié J L, Danis B, et al. Uptake, transfer and distribution of silver and cobalt in tissues of the common cuttlefish Sepia officinalis at different stages of its life cycle[J]. Marine Ecology Progress Series, 2004, 269:185-195 |
Kim G B, Kang M R, Kim J W. Specific accumulation of heavy metals in squid collected from offshore Korean waters:Preliminary results for offshore biomonitoring and food safety assessment[J]. Fisheries Science, 2008, 74(4):882-888 |
Pierce G J, Stowasser G, Hastie L C, et al. Geographic, seasonal and ontogenetic variation in cadmium and mercury concentrations in squid (Cephalopoda:Teuthoidea) from UK waters[J]. Ecotoxicology and Environmental Safety, 2008, 70(3):422-432 |
Bordon I C, Sarkis J E, Tomás A R, et al. A preliminary assessment of metal bioaccumulation in the blue crab, Callinectes danae from the Sao Vicente Channel, Sao Paulo State, Brazil[J]. Bulletin of Environmental Contamination and Toxicology, 2012, 88(4):577-581 |
Tanaka M, Yamaguchi Y, Harada Y, et al. As, Cd and Hg in the organs of Todarodes pacificus, Sepia longipes and Sepia madokai in the east China sea[J]. Ecotoxicology and Environmental Safety, 2017, 145:103-110 |
Reichmuth J M, Weis P, Weis J S. Bioaccumulation and depuration of metals in blue crabs (Callinectes sapidus Rathbun) from a contaminated and clean estuary[J]. Environmental Pollution, 2010, 158(2):361-368 |
Raimundo J, Vale C, Rosa R. Trace element concentrations in the top predator jumbo squid (Dosidicus gigas) from the Gulf of California[J]. Ecotoxicology and Environmental Safety, 2014, 102:179-186 |
Banerjee R, Ragsdale S W. The many faces of vitamin B12:Catalysis by cobalamin-dependent enzymes[J]. Annual Review of Biochemistry, 2003, 72:209-247 |
Francesconi K A. Arsenic species in seafood:Origin and human health implications[J]. Pure and Applied Chemistry, 2010, 82(2):373-381 |
Hoffmann T, Warmbold B, Smits S H J, et al. Arsenobetaine:An ecophysiologically important organoarsenical confers cytoprotection against osmotic stress and growth temperature extremes[J]. Environmental Microbiology, 2018, 20(1):305-323 |
杜森, 张黎. 砷在海洋食物链中的生物放大潜力及发生机制探讨[J]. 生态毒理学报, 2019, 14(1):54-66Du S, Zhang L. Biomagnification potential and the mechanisms of arsenic in marine food chains[J]. Asian Journal of Ecotoxicology, 2019, 14(1):54-66(in Chinese) |
Luvonga C, Rimmer C A, Yu L L, et al. Organoarsenicals in seafood:Occurrence, dietary exposure, toxicity, and risk assessment considerations-A review[J]. Journal of Agricultural and Food Chemistry, 2020, 68(4):943-960 |
张丽岩, 宋欣, 高玮玮, 等. Cd2+对青蛤(Cyclina sinensis)的毒性及蓄积过程研究[J]. 海洋与湖沼, 2010, 41(3):418-421Zhang L Y, Song X, Gao W W, et al. Acute toxity test and analysis on accumulation of cadmium (Cd2+) to the clam Cyclina sinensis[J]. Oceanologia et Limnologia Sinica, 2010, 41(3):418-421(in Chinese) |
Bloom N S. On the chemical form of mercury in edible fish and marine invertebrate tissue[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1992, 49(5):1010-1017 |
Bustamante P, Lahaye V, Durnez C, et al. Total and organic Hg concentrations in cephalopods from the North Eastern Atlantic waters:Influence of geographical origin and feeding ecology[J]. Science of the Total Environment, 2006, 368(2-3):585-596 |
原田葉乃. 東シナ海に生息するイカ類の器官別金属濃度の定量と環境指標としての評価[D]. 東京:東京海洋大学大学院, 2016:25-43 Harada Y. Determination of heavy metal concentrations in squid organs of the East China Sea and evaluation as environmental indicators[D]. Tokyo:Tokyo Ocean University, 2016:25-43(in Japanese) |
Wang W X, Rainbow P S. Significance of metallothioneins in metal accumulation kinetics in marine animals[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2010, 152(1):1-8 |
Yu H T, Zhen J, Leng J Y, et al. Zinc as a countermeasure for cadmium toxicity[J]. Acta Pharmacologica Sinica, 2021, 42(3):340-346 |
陈细香, 吴文杰, 林玲玲. 重金属Cd、Zn对文蛤的急性毒性和联合毒性[J]. 江苏农业科学, 2014, 42(7):241-244 |
Liu F J, Wang W X. Facilitated bioaccumulation of cadmium and copper in the oyster Crassostrea hongkongensis solely exposed to zinc[J]. Environmental Science & Technology, 2013, 47(3):1670-1677 |
Beckers F, Rinklebe J. Cycling of mercury in the environment:Sources, fate, and human health implications:A review[J]. Critical Reviews in Environmental Science and Technology, 2017, 47(9):693-794 |
Lailson-Brito J, Cruz R, Dorneles P R, et al. Mercury-selenium relationships in liver of Guiana dolphin:The possible role of Kupffer cells in the detoxification process by tiemannite formation[J]. PLoS One, 2012, 7(7):e42162 |
张启华. 海湾扇贝软体组织中汞与硒的形态分析及硒对汞的拮抗作用研究[D]. 青岛:中国海洋大学, 2014:36-58 Zhang Q H. Studies on the speciation of mercury and selenium in the soft tissues of bay scallops and the antagonism of selenium species to mercury species[D]. Qingdao:Ocean University of China, 2014:36-58(in Chinese) |
Hansen A M, Bryan C E, West K, et al. Trace element concentrations in liver of 16 species of cetaceans stranded on Pacific Islands from 1997 through 2013[J]. Archives of Environmental Contamination and Toxicology, 2016, 70(1):75-95 |
Bendell L I, Feng C. Spatial and temporal variations in cadmium concentrations and burdens in the Pacific oyster (Crassostrea gigas) sampled from the Pacific north-west[J]. Marine Pollution Bulletin, 2009, 58(8):1137-1143 |
Lekhi P, Cassis D, Pearce C M, et al. Role of dissolved and particulate cadmium in the accumulation of cadmium in cultured oysters (Crassostrea gigas)[J]. Science of the Total Environment, 2008, 393(2-3):309-325 |
Li X B, Jia L Z, Zhao Y L, et al. Seasonal bioconcentration of heavy metals in Onchidium struma (Gastropoda:Pulmonata) from Chongming Island, the Yangtze Estuary, China[J]. Journal of Environmental Sciences, 2009, 21(2):255-262 |
Maar M, Larsen M M, Tørring D, et al. Bioaccumulation of metals (Cd, Cu, Ni, Pb and Zn) in suspended cultures of blue mussels exposed to different environmental conditions[J]. Estuarine, Coastal and Shelf Science, 2018, 201:185-197 |
Dupont S, Thorndyke M C. Impact of CO2-driven ocean acidification on invertebrates early life-history-What we know, what we need to know and what we can do[J]. Biogeosciences Discussions, 2009, 6(2):3109-3131 |
Lacoue-Labarthe T, Martin S, Oberhänsli F, et al. Effects of increased pCO2 and temperature on trace element (Ag, Cd and Zn) bioaccumulation in the eggs of the common cuttlefish, Sepia officinalis[J]. Biogeosciences, 2009, 6(11):2561-2573 |
Shi W, Zhao X G, Han Y, et al. Ocean acidification increases cadmium accumulation in marine bivalves:A potential threat to seafood safety[J]. Scientific Reports, 2016, 6:20197 |