李丹1,2,
罗艺璇1,2,
杨纪琛1,2,
刘洪宋1,2,
雷浩俊1,2,
陈红星1,2,,,
谢凌天1,2
1. 华南师范大学环境研究院, 广东省化学品污染与环境安全重点实验室, 环境理论化学教育部重点实验室, 广州 510006;
2. 华南师范大学环境学院, 广州 510006
作者简介: 李潇(1993-),男,博士研究生,研究方向为水生毒理学,E-mail:xiaolee@m.scnu.edu.cn.
通讯作者: 陈红星,hongxing.chen@m.scnu.edu.cn ;
基金项目: 国家自然科学基金资助项目(41807352,41877366);科技部重点专项子任务(2018YFC1801200);广东省自然科学基金资助项目(2020A1515010508)中图分类号: X171.5
Biological Effects of Inorganic Selenium in Sediments on Limnodrilus hoffmeisteri
Li Xiao1,2,Li Dan1,2,
Luo Yixuan1,2,
Yang Jichen1,2,
Liu Hongsong1,2,
Lei Haojun1,2,
Chen Hongxing1,2,,,
Xie Lingtian1,2
1. Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, Key Laboratory of Theoretical Chemistry of Environment of Ministry of Education, South China Normal University, Guangzhou 510006, China;
2. School of Environment, South China Normal University, Guangzhou 510006, China
Corresponding author: Chen Hongxing,hongxing.chen@m.scnu.edu.cn ;
CLC number: X171.5
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:硒是动物体必需微量元素之一,水体沉积物中无机硒主要以Se (Ⅳ)和Se (Ⅵ)形态存在,而目前有关无机硒对底栖动物的生物效应研究较为匮乏。本实验以典型底栖动物霍甫水丝蚓(Limnodrilus hoffmeisteri)为研究对象,通过测定抗氧化、神经和消化系统中生化指标的变化,分析了暴露浓度(2~40 μg·g-1)、暴露时间(2周和2个月)和硒价态(Se (Ⅳ)和Se (Ⅵ))对其生物效应的影响。结果显示,脂质过氧化水平(以TBARS含量表示)在暴露2周和2个月后,均未受到硒价态的影响,但是暴露2周后,在5 μg·g-1组有一升高峰值,而暴露2个月后,在5 μg·g-1组有一降低峰值。抗氧化酶活性在暴露2周后,受到硒价态显著影响,Se (Ⅳ)导致3种抗氧化酶活性逐渐升高并在20 μg·g-1达到平衡,而Se (Ⅵ)在5 μg·g-1即造成抗氧化酶活性升高,并随浓度的升高恢复到对照组水平;暴露2个月后,抗氧化酶未受到硒价态影响,过氧化氢酶(CAT)活性在5 μg·g-1浓度附近有一降低峰值,超氧化物歧化酶(SOD)活性在5 μg·g-1浓度附近有一升高峰值,而谷胱甘肽硫转移酶(GST)活性没有变化。乙酰胆碱酯酶(AChE)活性受到硒价态影响较小,暴露2周后只有5 μg·g-1 Se (Ⅳ)导致AChE酶活性升高,而暴露2个月后,随着浓度升高Se (Ⅳ)和Se (Ⅵ)均导致AChE酶活性降低。α-葡糖苷酶(α-Glu)活性仅在5 μg·g-1暴露组升高,且受到暴露时间和价态差异的影响。研究表明,硒的暴露浓度、时间和硒价态显著影响硒的生物效应,这为阐明沉积物中无机硒对底栖无脊椎动物生物效应及机制提供了基础数据。
关键词: 无机硒/
底栖生物/
氧化损伤/
神经系统/
消化系统
Abstract:Selenium (Se) is an essential micro-nutrient for animals. Selenite (Se(Ⅳ)) and selenate (Se(Ⅵ)) are the dominant inorganic Se species in aquatic environments. However, the biological effects of inorganic Se on benthic animals are relatively understudied. In the present study, the ubiquitous oligochaete Limnodrilus hoffmeisteri was used as test subject. The influences of Se exposure concentrations (2~40 μg·g-1), exposure duration (2 weeks and 2 months), and Se species (Se(Ⅳ) and Se(Ⅵ)) on L. hoffmeisteri were assessed via the evaluation of the biochemical alterations in antioxidant, nervous, and digestive systems. The results showed that the level of lipid peroxidation (TBARS content) was not affected by both Se species after exposures for 2 weeks and 2 months. However, a high and low peak level of TBARS existed at 5 μg·g-1 Se concentration after exposures for 2 weeks and 2 months, respectively. After exposure to Se for 2 weeks, the activities of antioxidant enzymes were significantly influenced by both Se species. Se(Ⅳ) induced the activities of 3 antioxidant enzymes, but gradually leveled off at 20 μg·g-1, while Se(Ⅵ) led to the induction of these enzymes at relatively lower level (i.e., 5 μg·g-1) and recovered to control levels at higher exposure concentrations. After exposure to Se for 2 months, the activities of antioxidant enzymes were not affected by both Se species. The activity of catalase (CAT) had a high peak at 5 μg·g-1, while the activity of superoxide dismutase (SOD) had a low peak at 5 μg·g-1, but the activity of glutathione S-transferase (GST) was not influenced by Se concentrations and Se species. The influence of Se species on the activities of acetylcholinesterase (AChE) was relatively minor. After exposure to Se for 2 weeks, the activity of AChE was increased only at 5 μg·g-1. After exposure for 2 months, the activity of AChE was gradually decreased with increased concentrations of both Se species. For the digestive enzyme α-glucosidase (α-Glu), its activity was increased at 5 μg·g-1 and was affected by both exposure duration and Se species. The present study has demonstrated that the biological effects of inorganic Se are significantly influenced by exposure concentrations, exposure duration, and Se species. The results of this study provide fundamental data for the elucidation of the biological effects and potential mechanisms of these effects of inorganic Se in benthic animals.
Key words:inorganic selenium/
benthos/
oxidative stress/
nervous system/
digestive system.
杜娟, 庞俊晓, 游静. 广东清远电子垃圾处理地沉积物对伸展摇蚊的慢性毒性效应[J]. 生态毒理学报, 2016, 11(2):209-215Du J, Pang J X, You J. Chronic toxicity of sediment collected from an E-waste recycling site in Qingyuan, Guangdong to Chironomus dilutes[J]. Asian Journal of Ecotoxicology, 2016, 11(2):209-215(in Chinese) |
沈兆爽, 张彦峰, 祝凌燕. 沉积物中芘对泥鳅和霍甫水丝蚓的毒性效应研究[J]. 生态毒理学报, 2016, 11(2):672-679Shen Z S, Zhang Y F, Zhu L Y. The toxic effects of pyrene in sediments to Misgurnus anguillicaudatus and Limnodrilus hoffmeisteri[J]. Asian Journal of Ecotoxicology, 2016, 11(2):672-679(in Chinese) |
Xie L T, Wu X, Chen H X, et al. The bioaccumulation and effects of selenium in the oligochaete Lumbriculus variegatus via dissolved and dietary exposure routes[J]. Aquatic Toxicology, 2016, 178:1-7 |
谢凌天, 应光国, 陈红星, 等. 硒对水生生物双重生物效应的研究进展[J]. 华南师范大学学报:自然科学版, 2018, 50(5):52-59Xie L T, Ying G G, Chen H X, et al. Dual effects of selenium in aquatic organisms:A review[J]. Journal of South China Normal University:Natural Science Edition, 2018, 50(5):52-59(in Chinese) |
Xie L T, Wu X, Chen H X, et al. A low level of dietary selenium has both beneficial and toxic effects and is protective against Cd-toxicity in the least killifish Heterandria formosa[J]. Chemosphere, 2016, 161:358-364 |
穆磊, 吴星, 陈红星, 等. 硒预暴露对夹杂带丝蚓铜累积及毒性的影响[J]. 生态学杂志, 2017, 36(8):2282-2288Mu L, Wu X, Chen H X, et al. Effects of pre-exposure to selenium on the accumulation and toxicity of copper in Lumbriculus variegatus[J]. Chinese Journal of Ecology, 2017, 36(8):2282-2288(in Chinese) |
Hamilton S J. Review of selenium toxicity in the aquatic food chain[J]. Science of the Total Environment, 2004, 326(1-3):1-31 |
孙振兴, 王慧恩, 王晶, 等. 汞、镉、硒对刺参(Apostichopus japonicus)幼参的单一毒性与联合毒性[J]. 海洋与湖沼, 2009, 40(2):228-234Sun Z X, Wang H E, Wang J, et al. Single and joint toxicity of mercury, cadmium and selenium on juvenile sea cucumber Apostichopus japonicas[J]. Oceanologia et Limnologia Sinica, 2009, 40(2):228-234(in Chinese) |
姚庆祯, 张经, 简慧敏. 珠江口硒的形态分布特征[J]. 海洋学报(中文版), 2006, 28(1):152-157 Yao Q Z, Zhang J, Jian H M. The speciation and distribution of selenium in the Zhujiang Estuary[J]. Acta Oceanologica Sinica, 2006, 28(1):152-157(in Chinese) |
樊海峰, 温汉捷, 凌宏文, 等. 表生环境中硒形态研究现状[J]. 地球与环境, 2006, 34(2):19-26Fan H F, Wen H J, Ling H W, et al. Recent progress in research on selenium speciation in the supergene environment[J]. Earth and Environment, 2006, 34(2):19-26(in Chinese) |
王子健. 中国低硒带生态环境中硒的环境行为研究进展[J]. 环境化学, 1993, 12(3):237-243Wang Z J. Some biogeochemical aspects of selenium in Chinese low-selenium belt[J]. Environmental Chemistry, 1993, 12(3):237-243(in Chinese) |
Wang Z J, Gao Y X. Biogeochemical cycling of selenium in Chinese environments[J]. Applied Geochemistry, 2001, 16(11-12):1345-1351 |
May T W, Fairchild J F, Petty J D, et al. An evaluation of selenium concentrations in water, sediment, invertebrates, and fish from the Solomon River Basin[J]. Environmental Monitoring and Assessment, 2008, 137(1-3):213-232 |
Zhang Y F, Han Y W, Yang J X, et al. Toxicities and risk assessment of heavy metals in sediments of Taihu Lake, China, based on sediment quality guidelines[J]. Journal of Environmental Sciences, 2017, 62:31-38 |
王伟莉, 闫振广, 何丽, 等. 五种底栖动物对优控污染物的敏感性评价[J]. 中国环境科学, 2013, 33(10):1856-1862Wang W L, Yan Z G, He L, et al. Sensitivity evaluation of five zoobenthos to priority pollutants[J]. China Environmental Science, 2013, 33(10):1856-1862(in Chinese) |
Chen H X, Yan L, Zhao J L, et al. The role of the freshwater oligochaete Limnodrilus hoffmeisteri in the distribution of Se in a water/sediment microcosm[J]. Science of the Total Environment, 2019, 687:1098-1106 |
Peters G M, Maher W A, Krikowa F, et al. Selenium in sediments, pore waters and benthic infauna of Lake Macquarie, New South Wales, Australia[J]. Marine Environmental Research, 1999, 47(5):491-508 |
Peng F J, Ying G G, Pan C G, et al. Bioaccumulation and biotransformation of triclosan and galaxolide in the freshwater oligochaete Limnodrilus hoffmeisteri in a water/sediment microcosm[J]. Environmental Science & Technology, 2018, 52(15):8390-8398 |
Chen H X, Mu L, Cao J L, et al. Accumulation and effects of Cr(Ⅵ) in Japanese medaka (Oryzias latipes) during chronic dissolved and dietary exposures[J]. Aquatic Toxicology, 2016, 176:208-216 |
Li D, Chen H X, Bi R, et al. Individual and binary mixture effects of bisphenol A and lignin-derived bisphenol in Daphnia magna under chronic exposure[J]. Chemosphere, 2018, 191:779-786 |
Xie L T, Flippin J L, Deighton N, et al. Mercury(Ⅱ) bioaccumulation and antioxidant physiology in four aquatic insects[J]. Environmental Science & Technology, 2009, 43(3):934-940 |
Ma S S, Zhou Y, Chen H X, et al. Selenium accumulation and the effects on the liver of topmouth gudgeon Pseudorasbora parva exposed to dissolved inorganic selenium[J]. Ecotoxicology and Environmental Safety, 2018, 160:240-248 |
张津源. 富硒海参硒源的选择性研究[D]. 大连:大连海洋大学, 2014:14-19 Zhang J Y. Study on selectivity of selenium sources of the selenium-enriched Stichopus japonicas[D]. Dalian:Dalian Ocean University, 2014:14-19(in Chinese) |
Xiao K C, Song M, Liu J, et al. Differences in the bioaccumulation of selenium by two earthworm species (Pheretima guillemi and Eisenia fetida)[J]. Chemosphere, 2018, 202:560-566 |
Ečimović S, Velki M, Vuković R, et al. Acute toxicity of selenate and selenite and their impacts on oxidative status, efflux pump activity, cellular and genetic parameters in earthworm Eisenia andrei[J]. Chemosphere, 2018, 212:307-318 |
Graves S D, Liber K, Palace V, et al. Effects of selenium on benthic macroinvertebrates and fathead minnow (Pimephales promelas) in a boreal lake ecosystem[J]. Ecotoxicology and Environmental Safety, 2019, 182:109354 |
Roman M, Jitaru P, Barbante C. Selenium biochemistry and its role for human health[J]. Metallomics:Integrated Biometal Science, 2014, 6(1):25-54 |
刘民. 亚硒酸盐对泥鳅毒性作用的研究[D]. 济南:山东师范大学, 2007:1-34 Liu M. The toxic effects of sodium selenite anhydrous on loach (Misgurnus anguillicadatus)[D]. Jinan:Shandong Normal University, 2007:1-34(in Chinese) |
赵璐, 张弛. 不同形态硒对甲基汞的生物累积及沙蚕毒性效应的影响[J]. 广东化工, 2018, 45(10):1-4Zhao L, Zhang C. The bioaccumulation and toxicity of mercury to the polycheate Nereis diversicolor due to the different selenium species[J]. Guangdong Chemical Industry, 2018, 45(10):1-4(in Chinese) |
Bentea M, Marghitas L A, Sara A, et al. The effect of selenium and zinc supplementation on growth and reproduction of the mulberry silkworm (Bombyx mori L.)[J]. ProEnvironment/ProMediu, 2011, 4:302-307 |
梁淑轩, 王凯, 耿梦娇, 等. Se(Ⅳ)对赤子爱胜蚓Sb(Ⅲ)中毒的拮抗作用[J]. 河北大学学报:自然科学版, 2013, 33(3):264-269Liang S X, Wang K, Geng M J, et al. Antagonistic effect of Se(Ⅳ) on the Eisenia foetida against Sb(Ⅲ)[J]. Journal of Hebei University:Natural Science Edition, 2013, 33(3):264-269(in Chinese) |
Nuutinen S, Kukkonen J V K. The effect of selenium and organic material in lake sediments on the bioaccumulation of methylmercury by Lumbriculus variegatus (Oligochaeta)[J]. Biogeochemistry, 1998, 40(2-3):267-278 |
李秀梅. 刺参体内硒的分离测定及外源硒对其生物学指标的影响[D]. 上海:上海海洋大学, 2015:1-10 Li X M. A method for extracting inorganic selenium and organic selenium and effect of exogenous selenium on biological indices in sea cucumber (Apostichopus japonicas)[D]. Shanghai:Shanghai Ocean University, 2015:1-10(in Chinese) |
Štolfa I, Velki M, Vuković R, et al. Effect of different forms of selenium on the plant-soil-earthworm system[J]. Journal of Plant Nutrition and Soil Science, 2017, 180(2):231-240 |
刘向辉, 戈峰, 徐张红, 等. 亚硒酸钠对蚯蚓的毒性及蚓体富硒作用的研究[J]. 应用与环境生物学报, 2001, 7(5):457-460Liu X H, Ge F, Xu Z H, et al. The toxicity of sodium selenite to earthworm and selenium-accumulating effect of earthworm[J]. Chinese Journal of Applied and Environmental Biology, 2001, 7(5):457-460(in Chinese) |
Kuperman R G, Checkai R T, Simini M, et al. Determination of selenium toxicity for survival and reproduction of Enchytraeid worms in a sandy loam soil[R]. Washington DC:US Army Research Development and Engineering Command, 2016 |
Li W H, Ju Y R, Liao C M, et al. Assessment of selenium toxicity on the life cycle of Caenorhabditis elegans[J]. Ecotoxicology, 2014, 23(7):1245-1253 |
Zhu Z, Chen Y L, Shi G Q, et al. Selenium delays tomato fruit ripening by inhibiting ethylene biosynthesis and enhancing the antioxidant defense system[J]. Food Chemistry, 2017, 219:179-184 |
Rao S Y, Lin Y P, Du Y X, et al. Designing multifunctionalized selenium nanoparticles to reverse oxidative stress-induced spinal cord injury by attenuating ROS overproduction and mitochondria dysfunction[J]. Journal of Materials Chemistry B, 2019, 7(16):2648-2656 |
李秀梅, 徐涛, 孙国华, 等. 外源硒对仿刺参(Apostichopus japonicus)重要生理相关酶活性及体内硒含量的影响[J]. 渔业科学进展, 2017, 38(4):154-163Li X M, Xu T, Sun G H, et al. Effects of dietary selenium-enriched yeast levels on important physiological enzymes and enrichment of selenium in sea cucumber (Apostichopus japonicus)[J]. Progress in Fishery Sciences, 2017, 38(4):154-163(in Chinese) |
王吉桥, 王志香, 于红艳, 等. 饲料中不同类型的硒对仿刺参幼参生长和免疫指标的影响[J]. 大连海洋大学学报, 2011, 26(4):306-311Wang J Q, Wang Z X, Yu H Y, et al. Effects of dietary selenium sources on growth and immune indices in juvenile sea cucumber Apostichopus japonicas[J]. Journal of Dalian Ocean University, 2011, 26(4):306-311(in Chinese) |