曾洁,
阮锋凯,
左正宏,
何承勇,
厦门大学生命科学学院, 细胞应激生物学国家重点实验室, 厦门 361102
作者简介: 向思靓(1999-),女,学士,研究方向为纳米毒理学,E-mail:xslyz1106@163.com.
通讯作者: 何承勇,hecy@xmu.edu.cn
基金项目: 国家自然科学基金面上项目(32071301);厦门大学校长基金资助项目(20720180045)中图分类号: X171.5
Advances in Application and Biotoxicity of Black Phosphorus Nanosheet
Xiang Siliang,Zeng Jie,
Ruan Fengkai,
Zuo Zhenghong,
He Chengyong,
State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
Corresponding author: He Chengyong,hecy@xmu.edu.cn
CLC number: X171.5
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:黑磷纳米片(black phosphorus nanosheet,BPNS)是一种新型纳米材料,它拥有可调节的带隙宽度、高度各向异性、高载流子迁移率、广谱光吸收性和良好生物相容性等诸多特性,在电子、光电、电化学、环保和生物医学等领域表现出巨大的应用潜力。近年来,随着对BPNS研究的深入,其生物安全性问题备受关注。本文简要介绍了BPNS的应用现状和前景,着重综述了其环境危害、健康危害以及毒性机制研究进展,为生产生物安全性更高、环境更友好的黑磷纳米材料提供科学依据。
关键词: 黑磷纳米片/
毒性/
毒性机制
Abstract:Black phosphorus nanosheet (BPNS) is a type of novel nanomaterial with tunable bandgap width, high anisotropy, high carrier mobility, broad optical absorption, excellent biocompatibility and many other features, showing great potential for application in the fields of electronics, optoelectronics, electrochemistry, environmental protection and biomedicine. Following further study on BPNS in recent years, its biosafety issue has drawn much attention. This paper briefly summarizes the current status of application and prospect of BPNS, and highlights the research progress on its environmental hazard, health risks and mechanisms of toxicity, which will provide a scientific basis to manufacture safer and more environment-friendly black phosphorus nanomaterials.
Key words:black phosphorus nanosheet/
toxicity/
mechanism of toxicity.
Li L K, Yu Y J, Ye G J, et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 2014, 9(5):372-377 |
陈万松, 刘又年. 黑磷纳米材料及其在生物医药中的应用[J]. 科学, 2017, 69(6):18-21, 4 Chen W S, Liu Y N. Black phosphorus nanomaterials and their biomedical applications[J]. Science, 2017, 69(6):18-21, 4(in Chinese) |
Chen Y, Jiang G B, Chen S Q, et al. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation[J]. Optics Express, 2015, 23(10):12823-12833 |
Kang J, Wood J D, Wells S A, et al. Solvent exfoliation of electronic-grade, two-dimensional black phosphorus[J]. ACS Nano, 2015, 9(4):3596-3604 |
Ambrosi A, Sofer Z, Pumera M. Electrochemical exfoliation of layered black phosphorus into phosphorene[J]. Angewandte Chemie, 2017, 56(35):10443-10445 |
Qu G B, Xia T, Zhou W H, et al. Property-activity relationship of black phosphorus at the nano-bio interface:From molecules to organisms[J]. Chemical Reviews, 2020, 120(4):2288-2346 |
Keyes R W. The electrical properties of black phosphorus[J]. Physical Review, 1953, 92(3):580-584 |
Ling X, Wang H, Huang S X, et al. The renaissance of black phosphorus[J]. PNAS, 2015, 112(15):4523-4530 |
Kou L Z, Chen C F, Smith S C. Phosphorene:Fabrication, properties, and applications[J]. The Journal of Physical Chemistry Letters, 2015, 6(14):2794-2805 |
Wang X. Graphene nanoribbons:Chemical stitching[J]. Nature Nanotechnology, 2014, 9(11):875-876 |
Kim J, Baik S S, Ryu S H, et al. Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus[J]. Science, 2015, 349(6249):723-726 |
Choi J R, Yong K W, Choi J Y, et al. Black phosphorus and its biomedical applications[J]. Theranostics, 2018, 8(4):1005-1026 |
Liu H, Neal A T, Zhu Z, et al. Phosphorene:An unexplored 2D semiconductor with a high hole mobility[J]. ACS Nano, 2014, 8(4):4033-4041 |
Perera M M, Lin M W, Chuang H J, et al. Improved carrier mobility in few-layer MoS2 field-effect transistors with ionic-liquid gating[J]. ACS Nano, 2013, 7(5):4449-4458 |
Buscema M, Groenendijk D J, Blanter S I, et al. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors[J]. Nano Letters, 2014, 14(6):3347-3352 |
Viti L, Politano A, Zhang K, et al. Thermoelectric terahertz photodetectors based on selenium-doped black phosphorus flakes[J]. Nanoscale, 2019, 11(4):1995-2002 |
Abbas A N, Liu B L, Chen L, et al. Black phosphorus gas sensors[J]. ACS Nano, 2015, 9(5):5618-5624 |
Liu Y, Wang Y, Ikram M, et al. Facile synthesis of highly dispersed Co3O4 nanoparticles on expanded, thin black phosphorus for a ppb-Level NOx gas sensor[J]. ACS Sensors, 2018, 3(8):1576-1583 |
Wu J, Koon G K W, Xiang D, et al. Colossal ultraviolet photoresponsivity of few-layer black phosphorus[J]. ACS Nano, 2015, 9(8):8070-8077 |
Zheng J L, Yang Z H, Si C, et al. Black phosphorus based all-optical-signal-processing:Toward high performances and enhanced stability[J]. ACS Photonics, 2017, 4(6):1466-1476 |
Hao C X, Yang B C, Wen F S, et al. Flexible all-solid-state supercapacitors based on liquid-exfoliated black-phosphorus nanoflakes[J]. Advanced Materials, 2016, 28(16):3194-3201 |
Zhang Y P, Wang L L, Xu H, et al. 3D chemical cross-linking structure of black Phosphorus@CNTs hybrid as a promising anode material for lithium ion batteries[J]. Advanced Functional Materials, 2020, 30(12):1909372 |
Wang H M, Zhong L, Liu Y, et al. A black phosphorus nanosheet-based siRNA delivery system for synergistic photothermal and gene therapy[J]. Chemical Communications, 2018, 54(25):3142-3145 |
Xing C Y, Chen S Y, Qiu M, et al. Conceptually novel black phosphorus/cellulose hydrogels as promising photothermal agents for effective cancer therapy[J]. Advanced Healthcare Materials, 2018, 7(7):e1701510 |
Zhang D, Lin X, Lan S Y, et al. Localized surface plasmon resonance enhanced singlet oxygen generation and light absorption based on black Phosphorus@AuNPs nanosheet for tumor photodynamic/thermal therapy[J]. Particle & Particle Systems Characterization, 2018, 35(4):1800010 |
Wang H, Yang X Z, Shao W, et al. Ultrathin black phosphorus nanosheets for efficient singlet oxygen generation[J]. Journal of the American Chemical Society, 2015, 137(35):11376-11382 |
Yang B W, Ding L, Chen Y, et al. Augmenting tumor-starvation therapy by cancer cell autophagy inhibition[J]. Advanced Science, 2020, 7(6):1902847 |
Chen W S, Ouyang J, Liu H, et al. Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer[J]. Advanced Materials, 2017, 29(5):1603864 |
Fojtu° M, Chia X Y, Sofer Z, et al. Black phosphorus nanoparticles potentiate the anticancer effect of oxaliplatin in ovarian cancer cell line[J]. Advanced Functional Materials, 2017, 27(36):1701955 |
Zong S F, Wang L L, Yang Z Y, et al. Black phosphorus-based drug nanocarrier for targeted and synergetic chemophotothermal therapy of acute lymphoblastic leukemia[J]. ACS Applied Materials & Interfaces, 2019, 11(6):5896-5902 |
Chen W S, Ouyang J, Yi X Y, et al. Black phosphorus nanosheets as a neuroprotective nanomedicine for neurodegenerative disorder therapy[J]. Advanced Materials, 2018, 30(3):1703458 |
Qian Y, Yuan W E, Cheng Y, et al. Concentrically integrative bioassembly of a three-dimensional black phosphorus nanoscaffold for restoring neurogenesis, angiogenesis, and immune homeostasis[J]. Nano Letters, 2019, 19(12):8990-9001 |
Yang B W, Yin J H, Chen Y, et al. 2D-black-phosphorus-reinforced 3D-printed scaffolds:A stepwise countermeasure for osteosarcoma[J]. Advanced Materials, 2018, 30(10):1705611 |
Huang X W, Wei J J, Zhang M Y, et al. Water-based black phosphorus hybrid nanosheets as a moldable platform for wound healing applications[J]. ACS Applied Materials & Interfaces, 2018, 10(41):35495-35502 |
Yan J Q, Verma P, Kuwahara Y, et al. Recent progress on black phosphorus-based materials for photocatalytic water splitting[J]. Small Methods, 2018, 2(12):1800212 |
Zhu X J, Zhang T M, Sun Z J, et al. Black phosphorus revisited:A missing metal-free elemental photocatalyst for visible light hydrogen evolution[J]. Advanced Materials, 2017, 29(17):1605776 |
Zhu M S, Osakada Y, Kim S, et al. Black phosphorus:A promising two dimensional visible and near-infrared-activated photocatalyst for hydrogen evolution[J]. Applied Catalysis B:Environmental, 2017, 217:285-292 |
Lee H U, Lee S C, Won J, et al. Stable semiconductor black phosphorus (BP)@titanium dioxide (TiO2) hybrid photocatalysts[J]. Scientific Reports, 2015, 5:8691 |
Wang X, Zhou B Q, Zhang Y M, et al. In-situ reduction and deposition of Ag nanoparticles on black phosphorus nanosheets co-loaded with graphene oxide as a broad spectrum photocatalyst for enhanced photocatalytic performance[J]. Journal of Alloys and Compounds, 2018, 769:316-324 |
Hu J D, Chen D Y, Mo Z, et al. Z-scheme 2D/2D heterojunction of black phosphorus/monolayer Bi2WO6 nanosheets with enhanced photocatalytic activities[J]. Angewandte Chemie, 2019, 58(7):2073-2077 |
Xiong Z Q, Zhang X J, Zhang S Y, et al. Bacterial toxicity of exfoliated black phosphorus nanosheets[J]. Ecotoxicology and Environmental Safety, 2018, 161:507-514 |
Ouyang J, Liu R Y, Chen W S, et al. A black phosphorus based synergistic antibacterial platform against drug resistant bacteria[J]. Journal of Materials Chemistry B, 2018, 6(39):6302-6310 |
Wu Q, Yao L L, Zhao X C, et al. Cellular uptake of few-layered black phosphorus and the toxicity to an aquatic unicellular organism[J]. Environmental Science & Technology, 2020, 54(3):1583-1592 |
Li P, Zeng L, Gao J, et al. Perturbation of normal algal growth by black phosphorus nanosheets:The role of degradation[J]. Environmental Science & Technology Letters, 2020, 7(1):35-41 |
Guiney L M, Wang X, Xia T, et al. Assessing and mitigating the hazard potential of two-dimensional materials[J]. ACS Nano, 2018, 12(7):6360-6377 |
Qiu M, Wang D, Liang W Y, et al. Novel concept of the smart NIR-light-controlled drug release of black phosphorus nanostructure for cancer therapy[J]. PNAS, 2018, 115(3):501-506 |
Latiff N M, Teo W Z, Sofer Z, et al. The cytotoxicity of layered black phosphorus[J]. Chemistry, 2015, 21(40):13991-13995 |
Mohamad Latiff N, Mayorga-Martinez C C, Sofer Z, et al. Cytotoxicity of phosphorus allotropes (black, violet, red)[J]. Applied Materials Today, 2018, 13:310-319 |
Zhang X J, Zhang Z M, Zhang S Y, et al. 2D materials:Size effect on the cytotoxicity of layered black phosphorus and underlying mechanisms (small 32/2017)[J]. Small, 2017, 13(32):201770171 |
Song S J, Shin Y, Lee H, et al. Dose- and time-dependent cytotoxicity of layered black phosphorus in fibroblastic cells[J]. Nanomaterials, 2018, 8(6):408 |
Sun Y R, Fan S H, Fan S H, et al. In vitro and in vivo toxicity of black phosphorus nanosheets[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(2):659-667 |
Fojtu° M, Balvan J, Raudenská M, et al. Black phosphorus cytotoxicity assessments pitfalls:Advantages and disadvantages of metabolic and morphological assays[J]. Chemistry, 2019, 25(1):349-360 |
Mo J B, Xie Q Y, Wei W, et al. Revealing the immune perturbation of black phosphorus nanomaterials to macrophages by understanding the protein corona[J]. Nature Communications, 2018, 9:2480 |
Zhang H M, Han Q Q, Yin X L, et al. Insights into the binding mechanism of two-dimensional black phosphorus nanosheets-protein associations[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2020, 227:117662 |
Tao W, Zhu X B, Yu X H, et al. Black phosphorus nanosheets as a robust delivery platform for cancer theranostics[J]. Advanced Materials, 2017, 29(1):1603276 |
Zhao Y T, Wang H Y, Huang H, et al. Surface coordination of black phosphorus for robust air and water stability[J]. Angewandte Chemie, 2016, 55(16):5003-5007 |
Zhou Q H, Chen Q, Tong Y L, et al. Light-induced ambient degradation of few-layer black phosphorus:Mechanism and protection[J]. Angewandte Chemie, 2016, 55(38):11437-11441 |
Zhao W C, Xue Z M, Wang J F, et al. Large-scale, highly efficient, and green liquid-exfoliation of black phosphorus in ionic liquids[J]. ACS Applied Materials & Interfaces, 2015, 7(50):27608-27612 |
Qu G B, Liu W, Zhao Y T, et al. Improved biocompatibility of black phosphorus nanosheets by chemical modification[J]. Angewandte Chemie, 2017, 56(46):14488-14493 |
Zeng X W, Luo M M, Liu G, et al. Polydopamine-modified black phosphorous nanocapsule with enhanced stability and photothermal performance for tumor multimodal treatments[J]. Advanced Science, 2018, 5(10):1800510 |
Zhao Y T, Tong L P, Li Z B, et al. Stable and multifunctional dye-modified black phosphorus nanosheets for near-infrared imaging-guided photothermal therapy[J]. Chemistry of Materials, 2017, 29(17):7131-7139 |
He C Y, Jiang S W, Jin H J, et al. Mitochondrial electron transport chain identified as a novel molecular target of SPIO nanoparticles mediated cancer-specific cytotoxicity[J]. Biomaterials, 2016, 83:102-114 |
Klingberg H, Oddershede L B, Loeschner K, et al. Uptake of gold nanoparticles in primary human endothelial cells[J]. Toxicology Research, 2015, 4(3):655-666 |
Zhu L, Chang D W, Dai L M, et al. DNA damage induced by multiwalled carbon nanotubes in mouse embryonic stem cells[J]. Nano Letters, 2007, 7(12):3592-3597 |
Tiong H Y, Huang P, Xiong S J, et al. Drug-induced nephrotoxicity:Clinical impact and preclinical in vitro models[J]. Molecular Pharmaceutics, 2014, 11(7):1933-1948 |
Fatehullah A, Tan S H, Barker N. Organoids as an in vitro model of human development and disease[J]. Nature Cell Biology, 2016, 18(3):246-254 |
He C Y, Ruan F K, Jiang S W, et al. Black phosphorus quantum dots cause nephrotoxicity in organoids, mice, and human cells[J]. Small, 2020, 16(22):e2001371 |
Shao J D, Ruan C S, Xie H H, et al. Black-phosphorus-incorporated hydrogel as a sprayable and biodegradable photothermal platform for postsurgical treatment of cancer[J]. Advanced Science, 2018, 5(5):1700848 |
Jin L G, Hu P, Wang Y Y, et al. Fast-acting black-phosphorus-assisted depression therapy with low toxicity[J]. Advanced Materials, 2020, 32(2):e1906050 |
Hou J J, Wang H, Ge Z L, et al. Treating acute kidney injury with antioxidative black phosphorus nanosheets[J]. Nano Letters, 2020, 20(2):1447-1454 |
Sun C X, Wen L, Zeng J F, et al. One-pot solventless preparation of PEGylated black phosphorus nanoparticles for photoacoustic imaging and photothermal therapy of cancer[J]. Biomaterials, 2016, 91:81-89 |
Kong N, Ji X Y, Wang J Q, et al. ROS-mediated selective killing effect of black phosphorus:Mechanistic understanding and its guidance for safe biomedical applications[J]. Nano Letters, 2020, 20(5):3943-3955 |
Mu X Y, Wang J Y, Bai X T, et al. Black phosphorus quantum dot induced oxidative stress and toxicity in living cells and mice[J]. ACS Applied Materials & Interfaces, 2017, 9(24):20399-20409 |
Böhmert L, Niemann B, Lichtenstein D, et al. Molecular mechanism of silver nanoparticles in human intestinal cells[J]. Nanotoxicology, 2015, 9(7):852-860 |
Yao M F, He L L, McClements D J, et al. Uptake of gold nanoparticles by intestinal epithelial cells:Impact of particle size on their absorption, accumulation, and toxicity[J]. Journal of Agricultural and Food Chemistry, 2015, 63(36):8044-8049 |
Wang B, Feng W Y, Wang M, et al. Acute toxicological impact of nano- and submicro-scaled zinc oxide powder on healthy adult mice[J]. Journal of Nanoparticle Research, 2008, 10(2):263-276 |
Heller A, Jarvis K, Coffman S S. Association of type 2 diabetes with submicron titanium dioxide crystals in the pancreas[J]. Chemical Research in Toxicology, 2018, 31(6):506-509 |
Lin S J, Yu T, Yu Z Y, et al. Nanomaterials safer-by-design:An environmental safety perspective[J]. Advanced Materials, 2018, 30(17):e1705691 |
Peng G T, He Y, Wang X X, et al. Redox activity and nano-bio interactions determine the skin injury potential of Co3O4-based metal oxide nanoparticles toward zebrafish[J]. ACS Nano, 2020, 14(4):4166-4177 |
Lin S J, Wang H T, Yu T. A promising trend for nano-EHS research-Integrating fate and transport analysis with safety assessment using model organisms[J]. NanoImpact, 2017, 7:1-6 |