黄沛力1,,
1. 首都医科大学公共卫生学院, 北京 100069;
2. 包头医学院公共卫生学院, 包头 014040
作者简介: 张凌燕(1986-),女,博士研究生,研究方向为分析毒理学,E-mail:zhanglingyan680@139.com.
通讯作者: 黄沛力,huangpl@ccmu.edu.cn
基金项目: 国家自然科学基金资助项目(81573201,81872667)中图分类号: X171.5
Capillary Electrophoresis: Application and Progress for Toxicity Research of Nanomaterials
Zhang Lingyan1,2,Huang Peili1,,
1. School of Public Health, Capital Medical University, Beijing 100069, China;
2. School of Public Health, Baotou Medical College, Baotou 014040, China
Corresponding author: Huang Peili,huangpl@ccmu.edu.cn
CLC number: X171.5
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:纳米材料(nanomaterials,NMs)在各个领域的广泛应用导致其不可避免地通过环境暴露、职业暴露和医源性暴露进入人体。当NMs进入人体后,生理环境中复杂的生物分子都可能与NMs发生相互作用,不仅使NMs获得全新的生物学特性而影响其潜在毒性,还可能改变生物分子的结构和生物学功能而引发疾病。随着对NMs毒性效应研究的不断深入,能够详细描述NMs、生物分子以及NMs和生物分子相互作用形成的复合物的分析技术受到广泛关注。毛细管电泳技术(capillary electrophoresis,CE)以其高灵敏、高分辨、高通量、条件温和以及低消耗的优势在NMs与生物分子相互作用研究领域展现出巨大潜力。本文阐述了2010—2019年间CE技术研究NMs与蛋白质相互作用的动态行为表征、结合平衡分析、蛋白冠的形成和转换监测,以及NMs与其他生物分子相互作用的新进展。
关键词: 纳米材料/
生物分子/
相互作用/
毛细管电泳
Abstract:Nanomaterials (NMs) would enter human body through environmental, occupational and iatrogenic exposures due to their wide application. NMs would interact with the biomolecules in physiological environment after internalization. Consequently, NMs acquire novel biological characters that would affect their potential toxicity, and the structure and biological function of biomolecules might also be altered that would cause disease. With the study on the toxic effects of NMs going on deeply, the analysis techniques that can describe NMs, biomolecules and the complexes formed by their interaction are given more concern. Capillary electrophoresis (CE), with its advantages of high sensitivity, high resolution, high throughput, mild conditions and low consumption, has shown great potential in the research field of interaction between NMs and biomolecules. This review focuses on the application and progress of CE in exploring the interaction between NMs and proteins from 2010 to 2019, including characterizing the dynamic behavior, analyzing the binding balance, monitoring the formation and transformation of protein corona, as well as the interaction of NMs with other biomolecules.
Key words:nanomaterial/
biomolecules/
interaction/
capillary electrophoresis.
Zaccariello G, Back M, Zanello M, et al. Formation and controlled growth of bismuth titanate phases into mesoporous silica nanoparticles:An efficient self-sealing nanosystem for UV filtering in cosmetic formulation[J]. ACS Applied Materials & Interfaces, 2017, 9(2):1913-1921 |
Vera P, Echegoyen Y, Canellas E, et al. Nano selenium as antioxidant agent in a multilayer food packaging material[J]. Analytical and Bioanalytical Chemistry, 2016, 408(24):6659-6670 |
Lowry G V, Avellan A, Gilbertson L M. Opportunities and challenges for nanotechnology in the agri-tech revolution[J]. Nature Nanotechnology, 2019, 14(6):517-522 |
Arumugam V, Sriram P, Yen T J, et al. Nano-material as an excellent catalyst for reducing a series of nitroanilines and dyes:Triphosphonated ionic liquid- CuFe2O4-modified boron nitride[J]. Applied Catalysis B:Environmental, 2018, 222:99-114 |
Marrez D A, Abdelhamid A E, Darwesh O M. Eco-friendly cellulose acetate green synthesized silver nano-composite as antibacterial packaging system for food safety[J]. Food Packaging and Shelf Life, 2019, 20:100302 |
Zhang S Y, Xu X Y, Lin T S, et al. Recent advances in nano-materials for packaging of electronic devices[J]. Journal of Materials Science:Materials in Electronics, 2019, 30(15):13855-13868 |
Ibrahim M M, Mezni A, El-Sheshtawy H S, et al. Direct Z-scheme of Cu2O/TiO2 enhanced self-cleaning, antibacterial activity, and UV protection of cotton fiber under sunlight[J]. Applied Surface Science, 2019, 479:953-962 |
Jiao M X, Zhang P S, Meng J L, et al. Recent advancements in biocompatible inorganic nanoparticles towards biomedical applications[J]. Biomaterials Science, 2018, 6(4):726-745 |
Nierenberg D, Khaled A R, Flores O. Formation of a protein corona influences the biological identity of nanomaterials[J]. Reports of Practical Oncology & Radiotherapy, 2018, 23(4):300-308 |
Ho Y T, Azman N, Loh F W Y, et al. Protein corona formed from different blood plasma proteins affects the colloidal stability of nanoparticles differently[J]. Bioconjugate Chemistry, 2018, 29(11):3923-3934 |
Pareek V, Bhargava A, Bhanot V, et al. Formation and characterization of protein corona around nanoparticles:A review[J]. Journal of Nanoscience and Nanotechnology, 2018, 18(10):6653-6670 |
Carrillo-Carrion C, Bocanegra A I, Arnaiz B, et al. Triple-labeling of polymer-coated quantum dots and adsorbed proteins for tracing their fate in cell cultures[J]. ACS Nano, 2019, 13(4):4631-4639 |
Zhang H J, Wu T M, Yu W Q, et al. Ligand size and conformation affect the behavior of nanoparticles coated with in vitro and in vivo protein corona[J]. ACS Applied Materials & Interfaces, 2018, 10(10):9094-9103 |
Nienhaus K, Nienhaus G U. Towards a molecular-level understanding of the protein corona around nanoparticles-Recent advances and persisting challenges[J]. Current Opinion in Biomedical Engineering, 2019, 10:11-22 |
Vaishanav S K, Korram J, Nagwanshi R, et al. Adsorption kinetics and binding studies of protein quantum dots interaction:A spectroscopic approach[J]. Journal of Fluorescence, 2016, 26(3):855-865 |
Canoa P, Simón-Vázquez R, Popplewell J, et al. A quantitative binding study of fibrinogen and human serum albumin to metal oxide nanoparticles by surface plasmon resonance[J]. Biosensors & Bioelectronics, 2015, 74:376-383 |
Klapper Y, Maffre P, Shang L, et al. Low affinity binding of plasma proteins to lipid-coated quantum dots as observed by in situ fluorescence correlation spectroscopy[J]. Nanoscale, 2015, 7(22):9980-9984 |
Lacerda S H, Park J J, Meuse C, et al. Interaction of gold nanoparticles with common human blood proteins[J]. ACS Nano, 2010, 4(1):365-379 |
Aleksenko S S, Matczuk M, Timerbaev A R. Characterization of interactions of metal-containing nanoparticles with biomolecules by CE:An update (2012-2016)[J]. Electrophoresis, 2017, 38(13-14):1661-1668 |
Chetwynd A J, Guggenheim E J, Briffa S M, et al. Current application of capillary electrophoresis in nanomaterial characterisation and its potential to characterise the protein and small molecule corona[J]. Nanomaterials, 2018, 8(2):E99 |
Adam V, Vaculovicova M. Capillary electrophoresis and nanomaterials-Part I:Capillary electrophoresis of nanomaterials[J]. Electrophoresis, 2017, 38(19):2389-2404 |
Legat J, Matczuk M, Timerbaev A, et al. CE separation and ICP-MS detection of gold nanoparticles and their protein conjugates[J]. Chromatographia, 2017, 80(11):1695-1700 |
Gomes F P, Yates J R 3rd. Recent trends of capillary electrophoresis-mass spectrometry in proteomics research[J]. Mass Spectrometry Reviews, 2019, 38(6):445-460 |
Faserl K, Chetwynd A J, Lynch I, et al. Corona isolation method matters:Capillary electrophoresis mass spectrometry based comparison of protein corona compositions following on-particle versus in-solution or in-gel digestion[J]. Nanomaterials, 2019, 9(6):898 |
Lin Y J, Yang J Y, Shu T Y, et al. Detection of C-reactive protein based on magnetic nanoparticles and capillary zone electrophoresis with laser-induced fluorescence detection[J]. Journal of Chromatography A, 2013, 1315:188-194 |
Hadjidemetriou M, Kostarelos K. Nanomedicine:Evolution of the nanoparticle corona[J]. Nature Nanotechnology, 2017, 12(4):288-290 |
Fleischer C C, Payne C K. Nanoparticle-cell interactions:Molecular structure of the protein corona and cellular outcomes[J]. Accounts of Chemical Research, 2014, 47(8):2651-2659 |
Li N, Zeng S, He L, et al. Probing nanoparticle-Protein interaction by capillary electrophoresis[J]. Analytical Chemistry, 2010, 82(17):7460-7466 |
Matczuk M, Anecka K, Scaletti F, et al. Speciation of metal-based nanomaterials in human serum characterized by capillary electrophoresis coupled to ICP-MS:A case study of gold nanoparticles[J]. Metallomics:Integrated Biometal Science, 2015, 7(9):1364-1370 |
Matczuk M, Legat J, Timerbaev A R, et al. A sensitive and versatile method for characterization of protein-mediated transformations of quantum dots[J]. The Analyst, 2016, 141(8):2574-2580 |
Wang J H, Li J Y, Teng Y W, et al. Studies on multivalent interactions of quantum dots-protein self-assemble using fluorescence coupled capillary electrophoresis[J]. Journal of Nanoparticle Research, 2014, 16(7):1-7 |
Matczuk M, Legat J, Shtykov S N, et al. Characterization of the protein corona of gold nanoparticles by an advanced treatment of CE-ICP-MS data[J]. Electrophoresis, 2016, 37(15-16):2257-2259 |
Boulos S P, Davis T A, Yang J A, et al. Nanoparticle-protein interactions:A thermodynamic and kinetic study of the adsorption of bovine serum albumin to gold nanoparticle surfaces[J]. Langmuir:The ACS Journal of Surfaces and Colloids, 2013, 29(48):14984-14996 |
Wang J H, Li J Y, Li J C, et al. In-capillary self-assembly study of quantum dots and protein using fluorescence coupled capillary electrophoresis[J]. Electrophoresis, 2015, 36(14):1523-1528 |
Wang J H, Li J Y, Li J C, et al. In-capillary self-assembly and proteolytic cleavage of polyhistidine peptide capped quantum dots[J]. Analytica Chimica Acta, 2015, 895:112-117 |
Wang J H, Yang L, Liu L, et al. Investigation of multivalent interactions between conjugate of quantum dots with c-Myc peptide tag and the anti-c-Myc antibody by capillary electrophoresis with fluorescence detection[J]. Journal of Separation Science, 2016, 39(23):4653-4659 |
Ramírez-García G, d'Orlyé F, Gutiérrez-Granados S, et al. Electrokinetic Hummel-Dreyer characterization of nanoparticle-plasma protein corona:The non-specific interactions between PEG-modified persistent luminescence nanoparticles and albumin[J]. Colloids and Surfaces B, Biointerfaces, 2017, 159:437-444 |
Matczuk M, Legat J, Scaletti F, et al. The fate of differently functionalized gold nanorods in human serum:A response from capillary electrophoresis-inductively coupled plasma mass spectrometry[J]. Journal of Chromatography A, 2017, 1499:222-225 |
Wang J H, Fan J, Li J C, et al. In-capillary probing of quantum dots and fluorescent protein self-assembly and displacement using Förster resonance energy transfer[J]. Journal of Separation Science, 2017, 40(4):933-939 |
Alsudir S, Lai E P C. Electrosteric stabilization of colloidal TiO2 nanoparticles with DNA and polyethylene glycol for selective enhancement of UV detection sensitivity in capillary electrophoresis analysis[J]. Analytical and Bioanalytical Chemistry, 2017, 409(7):1857-1868 |
Stanisavljevic M, Janu L, Smerkova K, et al. Study of streptavidin-modified quantum dots by capillary electrophoresis[J]. Chromatographia, 2013, 76(7-8):335-343 |
Stanisavljevic M, Chomoucka J, Dostalova S, et al. Interactions between CdTe quantum dots and DNA revealed by capillary electrophoresis with laser-induced fluorescence detection[J]. Electrophoresis, 2014, 35(18):2587-2592 |
Girardot M, d'Orlyé F, Descroix S, et al. Aptamer-conjugated nanoparticles:Preservation of targeting functionality demonstrated by microchip electrophoresis in frontal mode[J]. Analytical Biochemistry, 2013, 435(2):150-152 |
Grela D A, Zannoni V, Vizioli N M. Studying the interaction between peptides and polymeric nanoparticles used as pseudostationary phase in capillary electrochromatography[J]. Microchemical Journal, 2017, 130:153-156 |
Wang J H, Xia J. Preferential binding of a novel polyhistidine peptide dendrimer ligand on quantum dots probed by capillary electrophoresis[J]. Analytical Chemistry, 2011, 83(16):6323-6329 |
Brambilla D, Verpillot R, Le Droumaguet B, et al. PEGylated nanoparticles bind to and alter amyloid-beta peptide conformation:Toward engineering of functional nanomedicines for Alzheimer's disease[J]. ACS Nano, 2012, 6(7):5897-5908 |
Brambilla D, Verpillot R, Taverna M, et al. New method based on capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) to monitor interaction between nanoparticles and the amyloid-β peptide[J]. Analytical Chemistry, 2010, 82(24):10083-10089 |
Ty'čová A, Ledvina V, Klepárník K. Recent advances in CE-MS coupling:Instrumentation, methodology, and applications[J]. Electrophoresis, 2017, 38(1):115-134 |
Liu R, Zhang S X, Wei C, et al. Metal stable isotope tagging:Renaissance of radioimmunoassay for multiplex and absolute quantification of biomolecules[J]. Accounts of Chemical Research, 2016, 49(5):775-783 |
Wang X L, Li L J, Li Z Y, et al. Determination of ascorbic acid in individual liver cancer cells by capillary electrophoresis with a platinum nanoparticles modified electrode[J]. Journal of Electroanalytical Chemistry, 2014, 712:139-145 |
You J, Zhao L G, Wang G W, et al. Quaternized cellulose-supported gold nanoparticles as capillary coatings to enhance protein separation by capillary electrophoresis[J]. Journal of Chromatography A, 2014, 1343:160-166 |