周童1,2,
王娟1,2,
刘颖1,2,
许平3,
许安1,2,,
1. 中国科学院合肥物质科学研究院, 环境毒理与污染控制技术安徽省重点实验室, 合肥 230031;
2. 中国科学技术大学, 合肥 230026;
3. 合肥市第一人民医院, 合肥 230061
作者简介: 丁晗(1992-),女,硕士研究生,研究方向为环境毒理学,E-mail:1907026150@qq.com.
通讯作者: 许安,anxu@ipp.ac.cn
基金项目: 国家自然科学基金重大研究计划培育项目(91743106)中图分类号: X171.5
Research Progress on the Effects of Typical Environmental Pollutants on Gut Microbiota and Their Underlying Mechanisms
Ding Han1,2,Zhou Tong1,2,
Wang Juan1,2,
Liu Ying1,2,
Xu Ping3,
Xu An1,2,,
1. Hefei Institutes of Physical Science, Chinese Academy of Sciences, Environmental Toxicology and Pollution Control Technology Key Laboratory of Anhui Province, Hefei 230031, China;
2. University of Science and Technology of China, Hefei 230026, China;
3. Hefei First People's Hospital, Hefei 230061, China
Corresponding author: Xu An,anxu@ipp.ac.cn
CLC number: X171.5
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:随着环境污染日益严重,国内外有关环境污染物导致健康风险的毒性机制研究已引起广泛关注。然而,环境污染物对机体肠道菌群结构、功能的改变及其对毒性效应的调控作用研究尚处起步阶段。本综述在归纳近年来国内外人体及模式生物的肠道菌群研究进展的基础上,重点阐述了以重金属污染物、微纳米颗粒污染物、持久性有机污染物以及抗生素为代表的典型环境污染物对肠道菌群结构、组成、数量以及代谢等的影响,总结了肠道菌群在机体毒性效应中潜在调控作用,为后续肠道菌群在环境污染物毒理学效应及人类健康风险方面的系统研究提供理论参考。
关键词: 环境污染物/
肠道菌群/
毒性效应/
机制
Abstract:With the increasingly serious environmental pollution, studies on the toxicological mechanisms of environmental pollutants leading to health risks has caused great concerns. However, the investigation on how environmental pollutants affect the structure and function of the gut microbiota and its regulation of toxic effects is still largely unknown. Based on the characteristics of gut microbiota in the human and animal models, this paper focused on the structure, diversity and composition of gut microbiota altered by typical environmental pollutants including heavy metals, micro-nano particle, persistent organic pollutants and antibiotics. In addition, the potential regulatory role of gut microbiota in the toxicological effects of organisms were summarized. It provided a theoretical basis for subsequent systematic studies on gut microbiota regulated toxicological effects of environmental pollutants and human health risks.
Key words:environmental pollutants/
gut microbiota/
toxicological effects/
mechanism.
Clemente J C, Ursell L K, Parfrey L W, et al. The impact of the gut microbiota on human health:An integrative view[J]. Cell, 2012, 148(6):1258-1270 |
谢玲林. 肠道菌群与疾病关系的研究进展[J]. 基因组学与应用生物学, 2017, 36(11):4570-4573Xie L L. Research progress on the relation between intestinal flora and disease[J]. Genomics and Applied Biology, 2017, 36(11):4570-4573(in Chinese) |
许爱梅, 张方华, 商永芳. 肠道菌群与代谢疾病关系的研究进展[J]. 齐鲁医学杂志, 2017, 32(2):235-237 |
Zhuang M, Shang W, Ma Q, et al. Abundance of probiotics and butyrate-production microbiome manages constipation via short-chain fatty acids production and hormones secretion[J]. Molecular Nutrition & Food Research, 2019, 63(23):e1801187 |
Simpson C A, Mu A, Haslam N, et al. Feeling down? A systematic review of the gut microbiota in anxiety/depression and irritable bowel syndrome[J]. Journal of Affective Disorders, 2020, 266:429-446 |
Liu Y, Hou Y, Wang G, et al. Gutmicrobial metabolites of aromatic amino acids as signals in host-microbe interplay[J]. Trends in Endocrinology and Metabolism, 2020, 31(11):818-834 |
Yu C, Liu S, Chen L, et al. Effect of exercise and butyrate supplementation on microbiota composition and lipid metabolism[J]. Journal of Endocrinology, 2019, 243(2):125-135 |
Zhou B, Yuan Y, Zhang S, et al. Intestinal flora and disease mutually shape the regional immune system in the intestinal tract[J]. Frontiers in Immunology, 2020, 11:575 |
Goodrich J K, Davenport E R, Waters J L, et al. Cross-species comparisons of host genetic associations with the microbiome[J]. Science, 2016, 352(6285):532-535 |
de Muinck E J, Trosvik P. Individuality and convergence of the infant gut microbiota during the first year of life[J]. Nature Communications, 2018, 9(1):2233 |
Rothschild D, Weissbrod O, Barkan E, et al. Environment dominates over host genetics in shaping human gut microbiota[J]. Nature, 2018, 555(7695):210-215 |
Huttenhower C, Gevers D, Knight R, et al. Structure, function and diversity of the healthy human microbiome[J]. Nature, 2012, 486(7402):207-214 |
Rup L. The human microbiome project[J]. Indian Journal of Microbiology, 2012, 52(3):315 |
Qin J J, Li R Q, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature, 2010, 464(7285):59-65 |
Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome[J]. Nature, 2011, 473(7346):174-180 |
Li J H, Jia H J, Cai X H, et al. An integrated catalog of reference genes in the human gut microbiome[J]. Nature Biotechnology, 2014, 32(8):834-841 |
Jin C Y, Zeng Z Y, Fu Z W, et al. Oral imazalil exposure induces gut microbiota dysbiosis and colonic inflammation in mice[J]. Chemosphere, 2016, 160:349-358 |
Meng C T, Bai C M, Brown T D, et al. Human gut microbiota and gastrointestinal cancer[J]. Genomics, Proteomics & Bioinformatics, 2018, 16(1):33-49 |
Hooi J K Y, Lai W Y, Ng W K, et al. Global prevalence of Helicobacter pylori infection:Systematic review and meta-analysis[J]. Gastroenterology, 2017, 153(2):420-429 |
Karpiński T M. The microbiota and pancreatic cancer[J]. Gastroenterology Clinics of North America, 2019, 48(3):447-464 |
Ley R E, Turnbaugh P J, Klein S, et al. Microbial ecology-Human gut microbes associated with obesity[J]. Nature, 2006, 444(7122):1022-1023 |
Amar J, Chabo C, Waget A, et al. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes:Molecular mechanisms and probiotic treatment[J]. EMBO Molecular Medicine, 2011, 3(9):559-572 |
焦禹豪, 陈蓓迪, 张烜. 肠道菌群在天然免疫系统中的作用[J]. 协和医学杂志, 2019, 10(3):257-262Jiao Y H, Chen B D, Zhang X. Interplay between the gut microbiota and the innate immune system[J]. Medical Journal of Peking Union Medical College Hospital, 2019, 10(3):257-262(in Chinese) |
Koppel N, Maini Rekdal V M, Balskus E P. Chemical transformation of xenobiotics by the human gut microbiota[J]. Science, 2017, 356(6344):eaag2770 |
Hoffman J B, Hennig B. Protective influence of healthful nutrition on mechanisms of environmental pollutant toxicity and disease risks[J]. Annals of the New York Academy of Sciences, 2017, 1398(1):99-107 |
Jin Y X, Zeng Z Y, Wu Y, et al. Oral exposure of mice to carbendazim induces hepatic lipid metabolism disorder and gut microbiota dysbiosis[J]. Toxicological Sciences, 2015, 147(1):116-126 |
Wu S S, Jin C Y, Wang Y Y, et al. Exposure to the fungicide propamocarb causes gut microbiota dysbiosis and metabolic disorder in mice[J]. Environmental Pollution, 2018, 237:775-783 |
Palmer C, Bik E M, DiGiulio D B, et al. Development of the human infant intestinal microbiota[J]. PLoS Biology, 2007, 5(7):e177 |
Eckburg P B, Bik E M, Bernstein C N, et al. Diversity of the human intestinal microbial flora[J]. Science, 2005, 308(5728):1635-1638 |
Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature, 2010, 464(7285):59-65 |
Ley R E, Peterson D A, Gordon J I. Ecological and evolutionary forces shaping microbial diversity in the human intestine[J]. Cell, 2006, 124(4):837-848 |
Fallani M, Amarri S, Uusijarvi A, et al. Determinants of the human infant intestinal microbiota after the introduction of first complementary foods in infant samples from five European centres[J]. Microbiology, 2011, 157(Pt5):1385-1392 |
Bercik P, Denou E, Collins J, et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice[J]. Gastroenterology, 2011, 141(2):599-609 |
Chu C, Murdock M H, Jing D, et al. The microbiota regulate neuronal function and fear extinction learning[J]. Nature, 2019, 574(7779):543-548 |
Golubeva A V, Joyce S A, Moloney G, et al. Microbiota-related changes in bile acid & tryptophan metabolism are associated with gastrointestinal dysfunction in a mouse model of autism[J]. Ebiomedicine, 2017, 24:166-178 |
Kameyama K, Itoh K. Intestinal colonization by a Lachnospiraceae bacterium contributes to the development of diabetes in obese mice[J]. Microbes and Environments, 2014, 29(4):427-430 |
Gore A V, Pillay L M, Venero Galanternik M, et al. The zebrafish:A fintastic model for hematopoietic development and disease[J]. Wiley Interdisciplinary Reviews-Developmental Biology, 2018, 7(3):e312 |
Davis D J, Bryda E C, Gillespie C H, et al. 16S rRNA amplicon sequencing dataset for conventionalized and conventionally raised zebrafish larvae[J]. Data in Brief, 2016, 8:938-943 |
Sun Y, Tang L, Liu Y, et al. Activation of aryl hydrocarbon receptor by dioxin directly shifts gut microbiota in zebrafish[J]. Environmental Pollution, 2019, 255:113357 |
Jin Y, Xia J, Pan Z, et al. Polystyrene microplastics induce microbiota dysbiosis and inflammation in the gut of adult zebrafish[J]. Environmental Pollution, 2018, 235:322-329 |
Kwong W K, Moran N A. Gut microbial communities of social bees[J]. Nature Reviews Microbiology, 2016, 14(6):374-384 |
Zhang S W, Lehrer M, Srinivasan M V. Honeybee memory:Navigation by associative grouping and recall of visual stimuli[J]. Neurobiology of Learning and Memory, 1999, 72(3):180-201 |
Barron A B, Plath J A. The evolution of honey bee dance communication:A mechanistic perspective[J]. Journal of Experimental Biology, 2017, 220(23):4339-4346 |
Motta E V S, Raymann K, Moran N A. Glyphosate perturbs the gut microbiota of honey bees[J] Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(41):10305-10310 |
Broderick N A, Lemaitre B. Gut-associated microbes of Drosophila melanogaster[J]. Gut Microbes, 2012, 3(4):307-321 |
Apidianakis Y, Rahme L G. Drosophila melanogaster as a model for human intestinal infection and pathology[J]. Disease Models & Mechanisms, 2011, 4(1):21-30 |
Wong A C N, Wang Q P, Morimoto J, et al. Gut microbiota modifies olfactory-guided microbial preferences and foraging decisions in Drosophila[J]. Current Biology, 2017, 27(15):2397-2404 |
Buchon N, Broderick N A, Poidevin M, et al. Drosophila intestinal response to bacterial infection:Activation of host defense and stem cell proliferation[J]. Cell Host & Microbe, 2009, 5(2):200-211 |
Nehme N T, Liégeois S, Kele B, et al. A model of bacterial intestinal infections in Drosophila melanogaster[J]. PLoS Pathogens, 2007, 3(11):1694-1709 |
刘倩, 范誉川, 刘重慧, 等. 模式生物秀丽隐杆线虫在肠道菌群研究中的应用[J]. 生命科学, 2019, 31(1):78-83Liu Q, Fan Y C, Liu C H, et al. Caenorhabditis elegans as a model to study the host-gut microbiota metabolic interactions[J]. Chinese Bulletin of Life Sciences, 2019, 31(1):78-83(in Chinese) |
于周龙, 高艳, 张成岗. 研究肠道菌群的模式生物——秀丽隐杆线虫[J]. 军事医学, 2015, 39(10):794-796, 801 Yu Z L, Gao Y, Zhang C G. Caenorhabditis elegans:An model organism for gut flora-host interactions research[J]. Military Medical Sciences, 2015, 39(10):794-796, 801(in Chinese) |
赵晴, 蒋湉湉. 秀丽隐杆线虫研究综述[J]. 安徽农业科学, 2010, 38(19):10092-10093, 10095 Zhao Q, Jiang T T. Overview of the nematode Caenorhabditis elegans[J]. Journal of Anhui Agricultural Sciences, 2010, 38(19):10092-10093, 10095(in Chinese) |
Leung B, Hermann G J, Priess J R. Organogenesis of the Caenorhabditis elegans intestine[J]. Developmental Biology, 1999, 216(1):114-134 |
Lee S, Kim Y, Choi J. Effect of soil microbial feeding on gut microbiome and cadmium toxicity in Caenorhabditis elegans[J]. Ecotoxicology and Environmental Safety, 2020, 187:109777 |
Aballay A, Yorgey P, Ausubel F M. Salmonella typhimurium proliferates and establishes a persistent infection in the intestine of Caenorhabditis elegans[J]. Current Biology, 2000, 10(23):1539-1542 |
Irazoqui J E, Troemel E R, Feinbaum R L, et al. Distinct pathogenesis and host responses during infection of C. elegans by P. aeruginosa and S. aureus[J]. PLoS Pathogens, 2010, 6(7):e1000982 |
陈能场, 郑煜基, 何晓峰, 等. 全国土壤污染状况调查公报探析[J]. 中国环保产业, 2014, 36(5):1689-1692Chen N C, Zheng Y J, He X F, et al. Analysis of the report on the national general survey of soil contamination[J]. China Environmental Protecti on Industry, 2014, 36(5):1689-1692(in Chinese) |
Inaba T, Kobayashi E, Suwazono Y, et al. Estimation of cumulative cadmium intake causing Itai-itai Disease[J]. Toxicology Letters, 2005, 159(2):192-201 |
Round J L, Mazmanian S K. The gut microbiota shapes intestinal immune responses during health and disease[J]. Nature Reviews Immunology, 2009, 9(5):313-323 |
Wilk A, Wiszniewska B. Arsenic and selenium profile in erythrocytes of renal transplant recipients[J]. Biological Trace Element Research, 2020, 197(2):421-430 |
Martinez V D, Vucic E A, Adonis M, et al. Arsenic biotransformation as a cancer promoting factor by inducing DNA damage and disruption of repair mechanisms[J]. Molecular Biology International, 2011, 2011:718974 |
Dheer R, Patterson J, Dudash M, et al. Arsenic induces structural and compositional colonic microbiome change and promotes host nitrogen and amino acid metabolism[J]. Toxicology and Applied Pharmacology, 2015, 289(3):397-408 |
Chi L, Bian X M, Gao B, et al. The effects of an environmentally relevant level of arsenic on the gut microbiome and its functional metagenome[J]. Toxicological Sciences, 2017, 160(2):193-204 |
Wang J T, Hu W, Yang H L, et al. Arsenic concentrations, diversity and co-occurrence patterns of bacterial and fungal communities in the feces of mice under sub-chronic arsenic exposure through food[J]. Environment International, 2020, 138:105600 |
Papanikolaou N C, Hatzidaki E G, Belivanis S, et al. Lead toxicity update. A brief review[J]. Medical Science Monitor, 2005, 11(10):RA329-RA336 |
连灵君, 徐立红. 氧化损伤与铅毒性研究进展[J]. 环境与职业医学, 2007, 24(4):435-439Lian L J, Xu L H. A review of studies on oxidative damage and lead toxicity[J]. Journal of Environmental & Occupational Medicine, 2007, 24(4):435-439(in Chinese) |
Xia J, Jin C, Pan Z, et al. Chronic exposure to low concentrations of lead induces metabolic disorder and dysbiosis of the gut microbiota in mice[J]. Science of the Total Environment, 2018, 631-632:439-448 |
Gao B, Chi L, Mahbub R, et al. Multi-omics reveals that lead exposure disturbs gut microbiome development, key metabolites, and metabolic pathways[J]. Chemical Research in Toxicology, 2017, 30(4):996-1005 |
刘伟成, 李明云. 镉毒性毒理学研究进展[J]. 广东微量元素科学, 2005, 12(12):1-5Liu W C, Li M Y. Research advance of toxicological effects and toxigenictity mechanism of cadmium[J]. Guangdong Trace Elements Science, 2005, 12(12):1-5(in Chinese) |
Tinkov A A, Gritsenko V A, Skalnaya M G, et al. Gut as a target for cadmium toxicity[J]. Environmental Pollution, 2018, 235:429-434 |
Liu Y H, Li Y H, Liu K Y, et al. Exposing to cadmium stress cause profound toxic effect on microbiota of the mice intestinal tract[J]. Plos One, 2014, 9(2):e85323 |
Ba Q, Li M, Chen P Z, et al. Sex-dependent effects of cadmium exposure in early life on gut microbiota and fat accumulation in mice[J]. Environmental Health Perspectives, 2017, 125(3):437-446 |
Ninkov M, Popov Aleksandrov A P, Demenesku J, et al. Toxicity of oral cadmium intake:Impact on gut immunity[J]. Toxicology Letters, 2015, 237(2):89-99 |
陈晓雨, 李纪桡, 张芳, 等. 大气颗粒物的神经毒性效应[J]. 环境与职业医学, 2019, 36(6):602-608Chen X Y, Li J R, Zhang F, et al. Neurotoxic effects of airborne inhaled particulate matters[J]. Journal of Environmental & Occupational Medicine, 2019, 36(6):602-608(in Chinese) |
Kim K H, Kabir E, Kabir S. A review on the human health impact of airborne particulate matter[J]. Environment International, 2015, 74:136-143 |
Ananthakrishnan A N, McGinley E L, Binion D G, et al. Ambient air pollution correlates with hospitalizations for inflammatory bowel disease:An ecologic analysis[J]. Inflammatory Bowel Diseases, 2011, 17(5):1138-1145 |
Li R, Yang J, Saffari A, et al. Ambient ultrafine particle ingestion alters gut microbiota in association with increased atherogenic lipid metabolites[J]. Scientific Reports, 2017, 7:42906 |
Salim S Y, Jovel J, Wine E, et al. Exposure to ingested airborne pollutant particulate matter increases mucosal exposure to bacteria and induces early onset of inflammation in neonatal IL-10-deficient mice[J]. Inflammatory Bowel Diseases, 2014, 20(7):1129-1138 |
Fitch M N, Phillippi D, Zhang Y, et al. Effects of inhaled air pollution on markers of integrity, inflammation, and microbiota profiles of the intestines in Apolipoprotein E knockout mice[J]. Environmental Research, 2020, 181:108913 |
Li X B, Sun H, Li B, et al. Probiotics ameliorate colon epithelial injury induced by ambient ultrafine particles exposure[J]. Advanced Science, 2019, 6(18):1900972 |
王森, 任伶, 刘琳琳, 等. 纳米氧化锌粒径对人工湿地性能及微生物群落的影响[J]. 环境科学, 2019, 40(11):4971-4979Wang S, Ren L, Liu L L, et al.Size-dependent effects of zinc oxide nanoparticles on performance and microbial community structure of a constructed wetland[J]. Environmental Science, 2019, 40(11):4971-4979(in Chinese) |
Mahmoudi M, Azadmanesh K, Shokrgozar M A, et al. Effect of nanoparticles on the cell life cycle[J]. Chemical Reviews, 2011, 111(5):3407-3432 |
Mitrano D M, Motellier S, Clavaguera S, et al. Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products[J]. Environment International, 2015, 77:132-147 |
Bi Y Q, Marcus A K, Robert H, et al. The complex puzzle of dietary silver nanoparticles, mucus and microbiota in the gut[J]. Journal of Toxicology and Environmental Health-Part B-Critical Reviews, 2020, 23(2):69-89 |
Williams K, Milner J, Boudreau M D, et al. Effects of subchronic exposure of silver nanoparticles on intestinal microbiota and gut-associated immune responses in the ileum of Sprague-Dawley rats[J]. Nanotoxicology, 2015, 9(3):279-289 |
Ma Y B, Song L Y, Lei Y, et al. Sex dependent effects of silver nanoparticles on the zebrafish gut microbiota[J]. Environmental Science:Nano, 2018, 5(3):740-751 |
尹言吉, 台秀梅, 杜志平. 碳量子点改性纳米二氧化钛的制备及其光催化降解壬基酚聚氧乙烯醚的性能研究[J]. 日用化学工业, 2019, 49(11):733-736, 768 Yi Y J, Tai X M, Du Z P. Preparation and photocatalytic activity of carbon-quantum-dot-modified nano-TiO2[J]. China Surfactant Detergent & Cosmetics, 2019, 49(11):733-736, 768(in Chinese) |
陈杰山. 国内纳米二氧化钛应用研究的进展[J]. 广东化工, 2012, 39(18):78-79, 87 Chen J S. Home advances in study on application of nanosized titanium dioxide[J]. Guangdong Chemical Industry, 2012, 39(18):78-79, 87(in Chinese) |
Mu W, Wang Y, Huang C, et al. Effect of long-term intake of dietary titanium dioxide nanoparticles on intestine inflammation in mice[J]. Journal of Agricultural and Food Chemistry, 2019, 67(33):9382-9389 |
Pinget G, Tan J, Janac B, et al. Impact of the food additive titanium dioxide (E171) on gut microbiota-host interaction[J]. Frontiers in Nutrition, 2019, 6:57 |
Chen Z, Han S, Zhou D, et al. Effects of oral exposure to titanium dioxide nanoparticles on gut microbiota and gut-associated metabolism in vivo[J]. Nanoscale, 2019, 11(46):22398-22412 |
Kazour M, Terki S, Rabhi K, et al. Sources of microplastics pollution in the marine environment:Importance of wastewater treatment plant and coastal landfill[J]. Marine Pollution Bulletin, 2019, 146:608-618 |
Liu X M, Shi H H, Xie B, et al. Microplastics as both a sink and a source of bisphenol A in the marine environment[J]. Environmental Science & Technology, 2019, 53(17):10188-10196 |
Lu L, Wan Z, Luo T, et al. Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice[J]. Science of the Total Environment, 2018, 631-632:449-458 |
Mrema E J, Rubino F M, Brambilla G, et al. Persistent organochlorinated pesticides and mechanisms of their toxicity[J]. Toxicology, 2013, 307:74-88 |
Erickson M D, Kaley R G Ⅱ. Applications of polychlorinated biphenyls[J]. Environmental Science and Pollution Research International, 2011, 18(2):135-151 |
Saeedi Saravi S S, Dehpour A R. Potential role of organochlorine pesticides in the pathogenesis of neurodevelopmental, neurodegenerative, and neurobehavioral disorders:A review[J]. Life Sciences, 2016, 145:255-264 |
Liu Q, Shao W, Zhang C, et al. Organochloride pesticides modulated gut microbiota and influenced bile acid metabolism in mice[J]. Environmental Pollution, 2017, 226:268-276 |
Sayin S I, Wahlström A, Felin J, et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist[J]. Cell Metabolism, 2013, 17(2):225-235 |
van Bruggen A H C, He M M, Shin K, et al. Environmental and health effects of the herbicide glyphosate[J]. Science of the Total Environment, 2018, 616-617:255-268 |
Rueda-Ruzafa L, Cruz F, Roman P, et al. Gut microbiota and neurological effects of glyphosate[J]. Neurotoxicology, 2019, 75:1-8 |
Motta E V S, Raymann K, Moran N A. Glyphosate perturbs the gut microbiota of honey bees[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(41):10305-10310 |
Blot N, Veillat L, Rouzé R, et al. Glyphosate, but not its metabolite AMPA, alters the honeybee gut microbiota[J]. PLoS One, 2019, 14(4):e0215466 |
Aitbali Y, Ba-M'hamed S, Elhidar N, et al. Glyphosate based-herbicide exposure affects gut microbiota, anxiety and depression-like behaviors in mice[J]. Neurotoxicology and Teratology, 2018, 67:44-49 |
Samsel A, Seneff S. Glyphosate's suppression of cytochrome P450 enzymes and amino acid biosynthesis by the gut microbiome:Pathways to modern diseases[J]. Entropy, 2013, 15(12):1416-1463 |
魏晋飞, 赵霞, 景凌云, 等. 环境中多氯联苯(PCBs)的污染现状、处理方法及研究展望[J]. 应用化工, 2019, 48(8):1908-1913Wei J F, Zhao X, Jing L Y, et al. Polychlorinated biphenyls (PCBs) pollution status, processing methods and research prospects in the environment[J]. Applied Chemical Industry, 2019, 48(8):1908-1913(in Chinese) |
Cheng S L, Li X, Lehmler H J, et al. Gut microbiota modulates interactions between polychlorinated biphenyls and bile acid homeostasis[J]. Toxicological Sciences, 2018, 166(2):269-287 |
Petriello M C, Hoffman J B, Vsevolozhskaya O, et al. Dioxin-like PCB 126 increases intestinal inflammation and disrupts gut microbiota and metabolic homeostasis[J]. Environmental Pollution, 2018, 242(Pt A):1022-1032 |
Choi J J, Eum S Y, Rampersaud E, et al. Exercise attenuates PCB-induced changes in the mouse gut microbiome[J]. Environmental Health Perspectives, 2013, 121(6):725-730 |
Brandt K K, Amézquita A, Backhaus T, et al. Ecotoxicological assessment of antibiotics:A call for improved consideration of microorganisms[J]. Environment International, 2015, 85:189-205 |
Guo Y L, Song G H, Sun M L, et al. Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus[J]. Frontiers in Cellular and Infection Microbiology, 2020, 10:107 |
Puckowski A, Mioduszewska K, Łukaszewicz P, et al. Bioaccumulation and analytics of pharmaceutical residues in the environment:A review[J]. Journal of Pharmaceutical and Biomedical Analysis, 2016, 127:232-255 |
Cox L M, Yamanishi S, Sohn J, et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences[J]. Cell, 2014, 158(4):705-721 |
Jin S, Zhao D, Cai C W, et al. Low-dose penicillin exposure in early life decreases Th17 and the susceptibility to DSS colitis in mice through gut microbiota modification[J]. Scientific Reports, 2017, 7:43662 |
Jin Y X, Wu Y, Zeng Z Y, et al. From the cover:Exposure to oral antibiotics induces gut microbiota dysbiosis associated with lipid metabolism dysfunction and low-grade inflammation in mice[J]. Toxicological Sciences, 2016, 154(1):140-152 |
万群, 程如越, 郭佳汶, 等. 头孢曲松对乳鼠肠道上皮组织及肠道菌群的影响[J]. 中国当代儿科杂志, 2018, 20(4):318-325Wan Q, Cheng R Y, Guo J W, et al. Effect of ceftriaxone on the intestinal epithelium and microbiota in neonatal mice[J].Chinese Journal of Contemporary Pediatrics, 2018, 20(4):318-325(in Chinese) |
Guo Y J, Yang X F, Qi Y, et al. Long-term use of ceftriaxone sodium induced changes in gut microbiota and immune system[J]. Scientific Reports, 2017, 7:43035 |
Russell S L, Gold M J, Reynolds L A, et al. Perinatal antibiotic-induced shifts in gut microbiota have differential effects on inflammatory lung diseases[J]. Journal of Allergy and Clinical Immunology, 2015, 135(1):100-109 |
Bazett M, Bergeron M E, Haston C K. Streptomycin treatment alters the intestinal microbiome, pulmonary T cell profile and airway hyperresponsiveness in a cystic fibrosis mouse model[J]. Scientific Reports, 2016, 6:19189 |
Hammami R, Ben Abdallah N, Barbeau J, et al. Symbiotic maple saps minimize disruption of the mice intestinal microbiota after oral antibiotic administration[J]. International Journal of Food Sciences and Nutrition, 2015, 66(6):665-671 |
Isaac S, Scher J U, Djukovic A, et al. Short- and long-term effects of oral vancomycin on the human intestinal microbiota[J]. Journal of Antimicrobial Chemotherapy, 2017, 72(1):128-136 |
Cheng R Y, Li M, Li S S, et al. Vancomycin and ceftriaxone can damage intestinal microbiota and affect the development of the intestinal tract and immune system to different degrees in neonatal mice[J]. Pathogens and Disease, 2017, 75(8):PMID 28957452 |
Kuno T, Hirayama-Kurogi M, Ito S, et al. Proteomic analysis of small intestinal epithelial cells in antibiotic-treated mice:Changes in drug transporters and metabolizing enzymes[J]. Drug Metabolism and Pharmacokinetics, 2019, 34(2):159-162 |
Zhou C F, Wang Y J, Yu Y C, et al. Does glyphosate impact on Cu uptake by, and toxicity to, the earthworm Eisenia fetida?[J]. Ecotoxicology, 2012, 21(8):2297-2305 |
Liu W, Yao H, Xu W, et al. Suspect screening and risk assessment of pollutants in the wastewater from a chemical industry park in China[J]. Environmental Pollution, 2020, 263(Pt B):114493 |
Bopp S K, Barouki R, Brack W, et al. Current EU research activities on combined exposure to multiple chemicals[J]. Environment International, 2018, 120:544-562 |
Thoene M, Dzika E, Gonkowski S, et al. Bisphenol S in food causes hormonal and obesogenic effects comparable to or worse than bisphenol A:A literature review[J]. Nutrients, 2020, 12(2):532 |
Chioccarelli T, Manfrevola F, Migliaccio M, et al. Fetal-perinatal exposure to bisphenol-A affects quality of spermatozoa in adulthood mouse[J]. International Journal of Endocrinology, 2020, 2020(suppl 2):1-8 |
Tucker D K, Hayes Bouknight S H, Brar S S, et al. Evaluation of prenatal exposure to bisphenol analogues on development and long-term health of the mammary gland in female mice[J]. Environmental Health Perspectives, 2018, 126(8):087003 |
Hafezi S A, Abdel-Rahman W M. The endocrine disruptor bisphenol A (BPA) exerts a wide range of effects in carcinogenesis and response to therapy[J]. Current Molecular Pharmacology, 2019, 12(3):230-238 |
Chen L, Guo Y, Hu C, et al. Dysbiosis of gut microbiota by chronic coexposure to titanium dioxide nanoparticles and bisphenol A:Implications for host health in zebrafish[J]. Environmental Pollution, 2018, 234:307-317 |
Chen D M, Xiao C L, Jin H R, et al. Exposure to atmospheric pollutants is associated with alterations of gut microbiota in spontaneously hypertensive rats[J]. Experimental and Therapeutic Medicine, 2019, 18(5):3484-3492 |
Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome[J]. Nature, 2012, 486(7402):207-214 |
Nicholson J K, Holmes E, Kinross J, et al. Host-gut microbiota metabolic interactions[J]. Science, 2012, 336(6086):1262-1267 |
Koppel N, Maini Rekdal V, Balskus E P. Chemical transformation of xenobiotics by the human gut microbiota[J]. Science, 2017, 356(6344):eaag2770 |
Jeong H G, Kang M J, Kim H G, et al. Role of intestinal microflora in xenobiotic-induced toxicity[J]. Molecular Nutrition & Food Research, 2013, 57(1):84-99 |
Kang M J, Kim H G, Kim J S, et al. The effect of gut microbiota on drug metabolism[J]. Expert Opinion on Drug Metabolism & Toxicology, 2013, 9(10):1295-1308 |
Li C Y F, Lee S, Cade S, et al. Novel interactions between gut microbiome and host drug-processing genes modify the hepatic metabolism of the environmental chemicals polybrominated diphenyl ethers[J]. Drug Metabolism and Disposition:the Biological Fate of Chemicals, 2017, 45(11):1197-1214 |
Llorente C, Schnabl B. The gut microbiota and liver disease[J]. Cellular and Molecular Gastroenterology and Hepatology, 2015, 1(3):275-284 |