删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

大气颗粒物吸附的空气微生物毒性效应的研究进展

本站小编 Free考研考试/2021-12-30

王健1,2,
李慧敏1,
邓晓蓓1,3,,
1. 上海交通大学公共卫生学院, 上海 200025;
2. 上海交通大学新华临床医学院, 上海 200092;
3. 上海交通大学医学院癌基因与相关基因国家重点实验室, 上海 200032
作者简介: 王健(1997-),男,学士,研究方向为大气污染物的健康风险评价,E-mail:2837985@sjtu.edu.cn.
通讯作者: 邓晓蓓,dengxiaobei@shsmu.edu.cn
基金项目: 国家自然科学基金资助项目(21777099);上海交通大学公共卫生学院成果为导向本科生拔尖培育项目(16GWZY18)


中图分类号: X171.5


Toxicity of Inhalable Microorganisms Attached to PM2.5

Wang Jian1,2,
Li Huimin1,
Deng Xiaobei1,3,,
1. School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China;
2. School of Xinhua Clinical Medicine, Shanghai Jiao Tong University, Shanghai 200092, China;
3. State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200032, China
Corresponding author: Deng Xiaobei,dengxiaobei@shsmu.edu.cn

CLC number: X171.5

-->

摘要
HTML全文
(0)(0)
参考文献(94)
相关文章
施引文献
资源附件(0)
访问统计

摘要:大气污染与人群健康关系的研究表明,灰霾天气中的大气颗粒物上附着有多种可吸入微生物,包括病毒、细菌和真菌。大气颗粒物中的部分有机物质能够与这些微生物相互作用,进而改变颗粒物上附着微生物的致病性和持久性。大气颗粒物及其所吸附的病原微生物来源广泛,种类繁多,并由于大气污染加重而越发显得重要。本文结合以往文献资料和新型冠状病毒肺炎的一些实验观察数据,综述了大气颗粒物附着的微生物种类、影响微生物存活的环境条件、与疾病流行的内在关系、大气颗粒物对所附着的可吸入微生物的影响和与疾病相关的毒性效应等5个方面,进一步为大气污染预防和控制措施提供思路和方法。
关键词: PM2.5/
微生物/
病毒/
细菌/
致病性

Abstract:The research on the relationship between air pollution and human health has shown that airborne particles in haze days are coated with a variety of inhalable microorganisms, including viruses, bacteria, and fungi. Parts of organic substances in airborne pollutants have been proved to interact with these microorganisms and then change the pathogenicity and persistence of microorganisms attached to PM2.5. The atmosphere particles and absorbed microorganisms come from various sources and become increasingly important due to the aggravation of PM2.5 pollution. This article integrates the newest literature and experimental evidence about SARS-CoV and reviews the species of microorganisms attached to atmosphere particles, environmental conditions affecting the survival of microorganisms, the intrinsic relationship between air pollution and prevalence, the influence of particulate matter on attached microorganisms and toxic effects related to diseases, which provides the thinking and methods for prevention and control of air pollution.
Key words:PM2.5/
microorganism/
virus/
bacteria/
pathogenicity.

加载中
Beelen R, Raaschou-Nielsen O, Stafoggia M, et al. Effects of long-term exposure to air pollution on natural-cause mortality:An analysis of 22 European cohorts within the multicentre ESCAPE project[J]. Lance, 2014, 383(9919):785-795
Langrish J P, Mills N L. Air pollution and mortality in Europe[J]. Lancet, 2014, 383(9919):758-760
Shah A S, Langrish J P, Nair H, et al. Global association of air pollution and heart failure:A systematic review and meta-analysis[J]. Lancet, 2013, 382(9897):1039-1048
Figueres C, Landrigan P J, Fuller R. Tackling air pollution, climate change, and NCDs:Time to pull together[J]. Lancet, 2018, 392(10157):1502-1503
Lelieveld J, Evans J S, Fnais M, et al. The contribution of outdoor air pollution sources to premature mortality on a global scale[J]. Nature, 2015, 525(7569):367-371
Niu Y, Chen R J, Kan H D. Air pollution, disease burden, and health economic loss in China[J]. Advances in Experimental Medicine and Biology, 2017, 1017:233-242
Kuhn D M, Ghannoum M A. Indoor mold, toxigenic fungi, and Stachybotrys chartarum:Infectious disease perspective[J]. Clinical Microbiology Reviews, 2003, 16(1):144-172
Wu Y S, Fang G C, Fu P P, et al. The measurements of ambient particulates (TSP, PM2.5, PM2.5-10), chemical component concentration variation, and mutagenicity study during 1998-2001 in central Taiwan[J]. Journal of Environmental Science and Health Part C, Environmental Carcinogenesis & Ecotoxicology Reviews, 2002, 20(1):45-59
Aguilera I, Eeftens M, Meier R, et al. Land use regression models for crustal and traffic-related PM2.5 constituents in four areas of the SAPALDIA study[J]. Environmental Research, 2015, 140:377-384
Estillore A D, Trueblood J V, Grassian V H. Atmospheric chemistry of bioaerosols:Heterogeneous and multiphase reactions with atmospheric oxidants and other trace gases[J]. Chemical Science, 2016, 7(11):6604-6616
Jaenicke R. Abundance of cellular material and proteins in the atmosphere[J]. Science, 2005, 308(5718):73
An J L, Cao Q M, Zou J N, et al. Seasonal variation in water-soluble ions in airborne particulate deposition in the suburban Nanjing area, Yangtze River Delta, China, during haze days and normal days[J]. Archives of Environmental Contamination and Toxicology, 2018, 74(1):1-15
Bi C L, Chen Y T, Zhao Z Z, et al. Characteristics, sources and health risks of toxic species (PCDD/Fs, PAHs and heavy metals) in PM2.5 during fall and winter in an industrial area[J]. Chemosphere, 2020, 238:124620
Groulx N, Urch B, Duchaine C, et al. The Pollution Particulate Concentrator (PoPCon):A platform to investigate the effects of particulate air pollutants on viral infectivity[J]. Science of the Total Environment, 2018, 628-629:1101-1107
Li M F, Qi J H, Zhang H D, et al. Concentration and size distribution of bioaerosols in an outdoor environment in the Qingdao coastal region[J]. Science of the Total Environment, 2011, 409(19):3812-3819
Cao C, Jiang W J, Wang B Y, et al. Inhalable microorganisms in Beijing's PM2.5 and PM10 pollutants during a severe smog event[J]. Environmental Science & Technology, 2014, 48(3):1499-1507
宫静, 祁建华, 李鸿涛. 青岛近海生物气溶胶中总微生物的分布特征[J]. 环境科学, 2019, 40(8):3477-3488Gong J, Qi J H, Li H T. Distribution of total microbes in atmospheric bioaerosols in the coastal region of Qingdao[J]. Environmental Science, 2019, 40(8):3477-3488(in Chinese)
Moon K W, Huh E H, Jeong H C. Seasonal evaluation of bioaerosols from indoor air of residential apartments within the metropolitan area in South Korea[J]. Environmental Monitoring and Assessment, 2014, 186(4):2111-2120
孟祥斌, 李孟哲, 李鸿涛, 等. 青岛近海冬季大气生物气溶胶中微生物活性研究[J]. 环境科学, 2016, 37(11):4147-4155Meng X B, Li M Z, Li H T, et al. Microbial activity in bioaerosols in winter at the coastal region of Qingdao[J]. Environmental Science, 2016, 37(11):4147-4155(in Chinese)
Zhao Y, Richardson B, Takle E, et al. Airborne transmission may have played a role in the spread of 2015 highly pathogenic avian influenza outbreaks in the United States[J]. Scientific Reports, 2019, 9(1):11755
Xu H, Yan C H, Fu Q Y, et al. Possible environmental effects on the spread of COVID-19 in China[J]. Science of the Total Environment, 2020, 731:139211
Gandolfi I, Bertolini V, Bestetti G, et al. Spatio-temporal variability of airborne bacterial communities and their correlation with particulate matter chemical composition across two urban areas[J]. Applied Microbiology and Biotechnology, 2015, 99(11):4867-4877
Lowen A C, Mubareka S, Steel J, et al. Influenza virus transmission is dependent on relative humidity and temperature[J]. PLoS Pathogens, 2007, 3(10):1470-1476
Stanier C O, Khlystov A Y, Chan W R, et al. A method for the in situ measurement of fine aerosol water content of ambient aerosols:The dry-ambient aerosol size spectrometer (DAASS)[J]. Aerosol Science and Technology, 2004, 38:215-228
Després V, Huffman J A, Burrows S M, et al. Primary biological aerosol particles in the atmosphere:A review[J]. Tellus B:Chemical and Physical Meteorology, 2012, 64(1):15598
Setti L, Passarini F, de Gennaro G, et al. Airborne transmission route of COVID-19:Why 2 meters/6 feet of inter-personal distance could not be enough[J]. International Journal of Environmental Research and Public Health, 2020, 17(8):E2932
Zhang J, Li Y, Xu E, et al. Bacterial communities in PM2.5 and PM10 in broiler houses at different broiler growth stages in spring[J]. Polish Journal of Veterinary Sciences, 2019, 22(3):495-504
Yamaguchi N, Ichijo T, Sakotani A, et al. Global dispersion of bacterial cells on Asian dust[J]. Scientific Reports, 2012, 2:525
Qi Y Z, Li Y P, Xie W W, et al. Temporal-spatial variations of fungal composition in PM2.5 and source tracking of airborne fungi in mountainous and urban regions[J]. Science of the Total Environment, 2020, 708:135027
Franklin C. Residential exposure assessment, a sourcebook[J]. Risk Analysis, 2005, 25(3):778-779
Ljubimova J Y, Braubach O, Patil R, et al. Coarse particulate matter (PM 2.5-10) in Los Angeles Basin air induces expression of inflammation and cancer biomarkers in rat brains[J]. Scientific Reports, 2018, 8:5708
Tellier R. Aerosol transmission of influenza A virus:A review of new studies[J]. Journal of the Royal Society, Interface, 2009, 6(Suppl 6):S783-S790
Mayol E, Jiménez M A, Herndl G J, et al. Corrigendum:Resolving the abundance and air-sea fluxes of airborne microorganisms in the North Atlantic Ocean[J]. Frontiers in Microbiology, 2017, 8:1971
Mayol E, Arrieta J M, Jiménez M A, et al. Long-range transport of airborne microbes over the global tropical and subtropical ocean[J]. Nature Communications, 2017, 8(1):201
Reche I, D'Orta G, Mladenov N, et al. Deposition rates of viruses and bacteria above the atmospheric boundary layer[J]. The ISME Journal, 2018, 12(4):1154-1162
Khot W Y, Nadkar M Y. The 2019 novel coronavirus outbreak-A global threat[J]. The Journal of the Association of Physicians of India, 2020, 68(3):67-71
Liu Y, Ning Z, Chen Y, et al. Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals[J]. Nature, 2020, 582(7813):557-560
Setti L, Passarini F, de Gennaro G, et al. SARS-Cov-2RNA found on particulate matter of Bergamo in Northern Italy:First evidence[J]. Environmental Research, 2020, 188:109754
Zoran M A, Savastru R S, Savastru D M, et al. Assessing the relationship between surface levels of PM2.5 and PM10 particulate matter impact on COVID-19 in Milan, Italy[J]. Science of the Total Environment, 2020, 738:139825
van Doremalen N, Bushmaker T, Morris D H, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1[J]. The New England Journal of Medicine, 2020, 382(16):1564-1567
Matus C P, Oyarzún G M. Impact of particulate matter (PM2.5) and children's hospitalizations for respiratory diseases. A case cross-over study[J]. Revista Chilena De Pediatria, 2019, 90(2):166-174
Horne B D, Joy E A, Hofmann M G, et al. Short-term elevation of fine particulate matter air pollution and acute lower respiratory infection[J]. American Journal of Respiratory and Critical Care Medicine, 2018, 198(6):759-766
Liu X X, Li Y P, Qin G Y, et al. Effects of air pollutants on occurrences of influenza-like illness and laboratory-confirmed influenza in Hefei, China[J]. International Journal of Biometeorology, 2019, 63(1):51-60
Li L, Liu H, Wang Y, et al. Construction of a nomogram for predicting the risk of allergic rhinitis among employees of long-distance bus stations in China[J]. Indoor Air, 2020, 30(6):1178-1188
Hassard F, Gwyther C L, Farkas K, et al. Abundance and distribution of enteric bacteria and viruses in coastal and estuarine sediments-A review[J]. Frontiers in Microbiology, 2016, 7:1692
Thurston-Enriquez J A, Haas C N, Jacangelo J, et al. Chlorine inactivation of adenovirus type 40 and feline calicivirus[J]. Applied and Environmental Microbiology, 2003, 69(7):3979-3985
Gerba C P, Betancourt W Q. Viral aggregation:Impact on virus behavior in the environment[J]. Environmental Science & Technology, 2017, 51(13):7318-7325
Narang H K, Codd A A. Frequency of preclumped virus in routine fecal specimens from patients with acute nonbacterial gastroenteritis[J]. Journal of Clinical Microbiology, 1981, 13(5):982-988
Kahler A M, Cromeans T L, Metcalfe M G, et al. Aggregation of adenovirus 2 in source water and impacts on disinfection by chlorine[J]. Food and Environmental Virology, 2016, 8(2):148-155
Waldman P, Lucas F S, Varrault G, et al. Hydrophobic organic matter promotes coxsackievirus B5 stabilization and protection from heat[J]. Food and Environmental Virology, 2020, 12(2):118-129
Esseili M A, Wang Q H, Saif L J. Binding of human GII.4 Norovirus virus-like particles to carbohydrates of romaine lettuce leaf cell wall materials[J]. Applied and Environmental Microbiology, 2012, 78(3):786-794
Berger A K, Yi H, Kearns D B, et al. Bacteria and bacterial envelope components enhance mammalian reovirus thermostability[J]. PLoS Pathogens, 2017, 13(12):e1006768
Weinbauer M G, Bettarel Y, Cattaneo R, et al. Viral ecology of organic and inorganic particles in aquatic systems:Avenues for further research[J]. Aquatic Microbial Ecology:International Journal, 2009, 57(3):321-341
Hu J L, Zhao F Z, Zhang X X, et al. Metagenomic profiling of ARGs in airborne particulate matters during a severe smog event[J]. Science of the Total Environment, 2018, 615:1332-1340
Xie J W, Jin L, Luo X S, et al. Seasonal disparities in airborne bacteria and associated antibiotic resistance genes in PM2.5 between urban and rural sites[J]. Environmental Science & Technology Letters, 2018, 5(2):74-79
Li J, Cao J J, Zhu Y G, et al. Global survey of antibiotic resistance genes in air[J]. Environmental Science & Technology, 2018, 52(19):10975-10984
Martínez J L, Coque T M, Baquero F. What is a resistance gene? Ranking risk in resistomes[J]. Nature Reviews Microbiology, 2015, 13(2):116-123
Levy S B, FitzGerald G B, Macone A B. Spread of antibiotic-resistant plasmids from chicken to chicken and from chicken to man[J]. Nature, 1976, 260(5546):40-42
Zhu Y G, Zhao Y, Li B, et al. Continental-scale pollution of estuaries with antibiotic resistance genes[J]. Nature Microbiology, 2017, 2:16270
Li L Y, Wang Q, Bi W J, et al. Municipal solid waste treatment system increases ambient airborne bacteria and antibiotic resistance genes[J]. Environmental Science & Technology, 2020, 54(7):3900-3908
Knapp C W, McCluskey S M, Singh B K, et al. Antibiotic resistance gene abundances correlate with metal and geochemical conditions in archived Scottish soils[J]. PLoS One, 2011, 6(11):e27300
Hussey S J K, Purves J, Allcock N, et al. Air pollution alters Staphylococcus aureus and Streptococcus pneumoniae biofilms, antibiotic tolerance and colonization[J]. Environmental Microbiology, 2017, 19(5):1868-1880
Wu W X, Zhang W, Duggan E S, et al. RIG-I and TLR3 are both required for maximum interferon induction by influenza virus in human lung alveolar epithelial cells[J]. Virology, 2015, 482:181-188
Platanias L C, Uddin S, Domanski P, et al. Differences in interferon alpha and beta signaling. Interferon beta selectively induces the interaction of the alpha and betaL subunits of the type I interferon receptor[J]. The Journal of Biological Chemistry, 1996, 271(39):23630-23633
Perng Y C, Lenschow D J. ISG15 in antiviral immunity and beyond[J]. Nature Reviews Microbiology, 2018, 16(7):423-439
Li S, Zhu M Z, Pan R G, et al. The tumor suppressor PTEN has a critical role in antiviral innate immunity[J]. Nature Immunology, 2016, 17(3):241-249
Ma J H, Song S H, Guo M, et al. Long-term exposure to PM2.5 lowers influenza virus resistance via down-regulating pulmonary macrophage Kdm6a and mediates histones modification in IL-6 and IFN-β promoter regions[J]. Biochemical and Biophysical Research Communications, 2017, 493(2):1122-1128
Dolci M, Favero C, Bollati V, et al. Particulate matter exposure increases JC polyomavirus replication in the human host[J]. Environmental Pollution, 2018, 241:234-239
Wu J, Zhu K H, Luo X L, et al. PM2.5 promotes replication of VSV by ubiquitination degradation of phospho-IRF3 in A549 cells[J]. Toxicology in Vitro, 2020, 62:104698
Xie Y Q, Zhang X, Tian Z Y, et al. Preexposure to PM2.5 exacerbates acute viral myocarditis associated with Th17 cell[J]. International Journal of Cardiology, 2013, 168(4):3837-3845
Lambert A L, Trasti F S, Mangum J B, et al. Effect of preexposure to ultrafine carbon black on respiratory syncytial virus infection in mice[J]. Toxicological Sciences:An Official Journal of the Society of Toxicology, 2003, 72(2):331-338
Neville L F, Mathiak G, Bagasra O. The immunobiology of interferon-gamma inducible protein 10 kD (IP-10):A novel, pleiotropic member of the C-X-C chemokine superfamily[J]. Cytokine & Growth Factor Reviews, 1997, 8(3):207-219
Clifford H D, Perks K L, Zosky G R. Geogenic PM10 exposure exacerbates responses to influenza infection[J]. Science of the Total Environment, 2015, 533:275-282
Weiss G, Fuchs D, Hausen A, et al. Iron modulates interferon-gamma effects in the human myelomonocytic cell line THP-1[J]. Experimental Hematology, 1992, 20(5):605-610
Fan Y, Bergmann A. The cleaved-Caspase-3 antibody is a marker of Caspase-9-like DRONC activity in Drosophila[J]. Cell Death & Differentiation, 2010, 17(3):534-539
Zhou T, Hu Y, Wang Y X, et al. Fine particulate matter (PM2.5) aggravates apoptosis of cigarette-inflamed bronchial epithelium in vivo and vitro[J]. Environmental Pollution, 2019, 248:1-9
Koyama A H. Induction of apoptotic DNA fragmentation by the infection of vesicular stomatitis virus[J]. Virus Research, 1995, 37(3):285-290
Ritchie A I, Farne H A, Singanayagam A, et al. Pathogenesis of viral infection in exacerbations of airway disease[J]. Annals of the American Thoracic Society, 2015, 12(Suppl 2):S115-S132
Bakshi S, Taylor J, Strickson S, et al. Identification of TBK1 complexes required for the phosphorylation of IRF3 and the production of interferon Β[J]. The Biochemical Journal, 2017, 474(7):1163-1174
Li X, Zhang Q, Shi Q Z, et al. Demethylase Kdm6a epigenetically promotes IL-6 and IFN-β production in macrophages[J]. Journal of Autoimmunity, 2017, 80:85-94
Granum B, Gaarder P I, Groeng E, et al. Fine particles of widely different composition have an adjuvant effect on the production of allergen-specific antibodies[J]. Toxicology Letters, 2001, 118(3):171-181
Zhao J Z, Xie Y Q, Qian C Y, et al. Imbalance of Th1 and Th2 cells in cardiac injury induced by ambient fine particles[J]. Toxicology Letters, 2012, 208(3):225-231
Szabo S J, Kim S T, Costa G L, et al. A novel transcription factor, T-bet, directs Th1 lineage commitment[J]. Cell, 2000, 100(6):655-669
Kaplan M H, Schindler U, Smiley S T, et al. Stat6 is required for mediating responses to IL-4 and for development of Th2 cells[J]. Immunity, 1996, 4(3):313-319
Zheng W, Flavell R A. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells[J]. Cell, 1997, 89(4):587-596
Afzali B, Lombardi G, Lechler R I, et al. The role of T helper 17(Th17) and regulatory T cells (Treg) in human organ transplantation and autoimmune disease[J]. Clinical and Experimental Immunology, 2007, 148(1):32-46
Larcombe A N, Foong R E, Boylen C E, et al. Acute diesel exhaust particle exposure increases viral titre and inflammation associated with existing influenza infection, but does not exacerbate deficits in lung function[J]. Influenza and Other Respiratory Viruses, 2013, 7(5):701-709
Salim S Y, Jovel J, Wine E, et al. Exposure to ingested airborne pollutant particulate matter increases mucosal exposure to bacteria and induces early onset of inflammation in neonatal IL-10-deficient mice[J]. Inflammatory Bowel Diseases, 2014, 20(7):1129-1138
Douwes J, Siebers R, Wouters I, et al. Endotoxin, (1->3)-beta-D-glucans and fungal extra-cellular polysaccharides in New Zealand homes:A pilot study[J]. Annals of Agricultural and Environmental Medicine, 2006, 13(2):361-365
Johanning E, Biagini R, Hull D, et al. Health and immunology study following exposure to toxigenic fungi (Stachybotrys chartarum) in a water-damaged office environment[J]. International Archives of Occupational and Environmental Health, 1996, 68(4):207-218
Robbins C A, Swenson L J, Nealley M L, et al. Health effects of mycotoxins in indoor air:A critical review[J]. Applied Occupational and Environmental Hygiene, 2000, 15(10):773-784
Cabral J P. Can we use indoor fungi as bioindicators of indoor air quality? Historical perspectives and open questions[J]. Science of the Total Environment, 2010, 408(20):4285-4295
Mensah-Attipoe J, Saari S, Veijalainen A M, et al. Release and characteristics of fungal fragments in various conditions[J]. Science of the Total Environment, 2016, 547:234-243
Górny R L, Reponen T, Willeke K, et al. Fungal fragments as indoor air biocontaminants[J]. Applied and Environmental Microbiology, 2002, 68(7):3522-3531

相关话题/微生物 大气 上海交通大学 上海 病毒