马芳芳,
郭熙瑞,
谢宏彬
大连理工大学环境学院, 工业生态与环境工程教育部重点实验室, 大连 116024
作者简介: 陈杰(1995-),男,硕士,研究方向为环境化学,E-mail:jiechen@mail.dlut.edu.cn.
基金项目: 国家自然科学基金资助项目(21677028)中图分类号: X171.5
Atmospheric Oxidation Mechanism and Kinetics of Naphthalene Initiated by Chlorine Radicals (·Cl)
Chen Jie,Ma Fangfang,
Guo Xirui,
Xie Hongbin
Key Laboratory of Industrial Ecology and Environmental Engineering(Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
CLC number: X171.5
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:氯自由基(·Cl)内陆来源的新发现增强了其对转化大气有机污染物的贡献,因此,需要更深入地研究·Cl引发有机污染物的转化机制和动力学。萘(Nap)是一种重要的化学品,也是城市大气浓度最高的多环芳烃,前人针对羟基自由基(·OH)引发Nap的大气氧化开展了研究。然而,目前对于·Cl引发Nap的大气氧化机制还不清楚。本研究通过量子化学计算(ωB97XD/6-311++G (3df,2pd)//ωB97XD/6-31+G (d,p))和动力学模拟相结合的方法研究了·Cl引发Nap的大气氧化机制与动力学,发现·Cl主要加成到Nap分子的C5位置,形成加成中间体·C10H8Cl (R1)。随后,O2加成到R1的C2和C6位置生成过氧自由基(RO2·) R1-2OO-s/a和R1-6OO-s/a (s/a=syn/anti,syn表示O2加成方向和·Cl加成方向相同,anti表示O2加成方向和·Cl加成方向相反)。这4种RO2·的环化、氢迁移和氯迁移反应均很难(能垒>20 kcal·mol-1)发生。因此,在低NO浓度条件下,RO2·主要和HO2·反应生成氢过氧化合物(QOOH)和烷氧自由基(RO·) R1-2O-s/a和R1-6O-s/a;在高NO浓度条件下,RO2·将主要与NO反应生成RO·(R1-2O-s/a和R1-6O-s/a)和有机硝酸酯(C10H8ClNO3)。生成的RO·进一步通过单分子环化反应生成双环产物R1-21O-s/a和R1-61O-s/a。重要的是,生成的有机氢过氧化合物和有机硝酸酯的水生毒性比其母体化合物Nap更强,表明·Cl引发Nap反应增加了Nap释放的环境风险。揭示的机制对理解大气Nap化学及Nap释放导致的环境风险具有重要意义。
关键词: 萘/
氯自由基/
量子化学/
转化机制/
动力学
Abstract:The new findings of chlorine radicals (·Cl) in mid-continental areas increase the importance of ·Cl in transforming atmospheric organic pollutants. Hence, more research should be performed on the atmospheric transformation of organic pollutants initiated by·Cl. Naphthalene (Nap) is one type of chemicals and the most abundant polycyclic aromatic hydrocarbons in the urban atmosphere. Atmospheric oxidation of Nap initiated by hydroxyl radicals (·OH) have been studied previously. However, the mechanism of·Cl initiated reaction of Nap is not fully understood. Herein,·Cl initiated reactions of Nap were investigated by a quantum chemical method (ωB97XD/6-311++G(3df,2pd)//ωB97XD/6-31+G(d,p)) andkinetics modeling. Results show that·Cl addition to the C5-position of Nap, forming radicals·C10H8Cl(R1), is the dominant reaction pathway. Subsequently, O2 is mainly added to the C2 and C6 positions of R1 to form peroxy radicals (RO2·) R1-2OO-s/a and R1-6OO-s/a depending on the attacking direction of O2(s/a = syn/anti, syn and anti correspond to the O2 additions from the same and opposite sites of the direction of·Cl addition). In the atmosphere, the isomerization reactions (including cyclization, H-transfer, and Cltransfer) of the four RO2·proceed very slowly due to the high reaction energy barriers (> 20 kcal·mol-1). Therefore, the formed four RO2·will mainly react with HO2·to form hydroperoxide (QOOH) and alkoxy radicals (RO ·) under the condition of low NO concentration, or react with NO to form organonitrates (C10H8ClNO3) and RO· (R1-2O-s/a, R1-6O-s/a) under the condition of high NO concentration. The formed RO·will finally undergo ringclosure reactions forming bi-cyclic intermediates (R1-21O-s/a, R1-61O-s/a). More importantly, the predicted toxicity of the formed organonitrates and hydroperoxide is much higher than that of Nap, indicating the·Cl initiated transformation of Nap increases the environmental risk caused by Nap emission. The revealed mechanism is of great significance for understanding atmospheric chemistry and environmental risk assessment of Nap.
Key words:naphthalene/
chlorine radicals/
quantum chemistry/
transformation mechanism/
kinetics.
Faxon C B, Allen D T. Chlorine chemistry in urban atmospheres:A review[J]. Environmental Chemistry, 2013, 10(3):221 |
Young C J, Washenfelder R A, Edwards P M, et al. Chlorine as a primary radical:Evaluation of methods to understand its role in initiation of oxidative cycles[J]. Atmospheric Chemistry and Physics, 2014, 14(7):3427-3440 |
Liu C, Ma F F, Elm J, et al. Mechanism and predictive model development of reaction rate constants for N-center radicals with O 2[J]. Chemosphere, 2019, 237:124411 |
Atkinson R, Baulch D L, Cox R A, et al. Evaluated kinetic and photochemical data for atmospheric chemistry:Supplement Ⅳ:IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry[J]. Atmospheric Environment Part A General Topics, 1992, 26(7):1187-1230 |
Keene W C, Khalil M A K, Erickson D J Ⅲ, et al. Composite global emissions of reactive chlorine from anthropogenic and natural sources:Reactive Chlorine Emissions Inventory[J]. Journal of Geophysical Research:Atmospheres, 1999, 104(D7):8429-8440 |
Finlayson-Pitts B J. Chlorine chronicles[J]. Nature Chemistry, 2013, 5(8):724 |
Knipping E M. Experiments and simulations of ion-enhanced interfacial chemistry on aqueous NaCl aerosols[J]. Science, 2000, 288(5464):301-306 |
Sommariva R, von Glasow R. Multiphase halogen chemistry in the tropical Atlantic Ocean[J]. Environmental Science & Technology, 2012, 46(19):10429-10437 |
Lawler M J, Finley B D, Keene W C, et al. Pollution-enhanced reactive chlorine chemistry in the eastern tropical Atlantic boundary layer[J]. Geophysical Research Letters, 2009, 36(8):L08810 |
Liu X X, Qu H, Huey L G, et al. High levels of daytime molecular chlorine and nitryl chloride at a rural site on the North China plain[J]. Environmental Science & Technology, 2017, 51(17):9588-9595 |
Thornton J A, Kercher J P, Riedel T P, et al. A large atomic chlorine source inferred from mid-continental reactive nitrogen chemistry[J]. Nature, 2010, 464(7286):271-274 |
Mielke L H, Furgeson A, Osthoff H D. Observation of ClNO2 in a mid-continental urban environment[J]. Environmental Science & Technology, 2011, 45(20):8889-8896 |
Zhou W, Zhao J, Ouyang B, et al. Production of N2O5 and ClNO2 in summer in urban Beijing, China[J]. Atmospheric Chemistry and Physics, 2018, 18(16):11581-11597 |
Le Breton M, Hallquist Å M, Pathak R K, et al. Chlorine oxidation of VOCs at a semi-rural site in Beijing:Significant chlorine liberation from ClNO2 and subsequent gasand particle-phase Cl-VOC production[J]. Atmospheric Chemistry and Physics, 2018, 18(17):13013-13030 |
Xie H B, Ma F F, Wang Y F, et al. Quantum chemical study on·Cl-initiated atmospheric degradation of monoethanolamine[J]. Environmental Science & Technology, 2015, 49(22):13246-13255 |
Ma F F, Ding Z Z, Elm J, et al. Atmospheric oxidation of piperazine initiated by ·Cl:Unexpected high nitrosamine yield[J]. Environmental Science & Technology, 2018, 52(17):9801-9809 |
Guo X R, Ma F F, Liu C, et al. Atmospheric oxidation mechanism and kinetics of isoprene initiated by chlorine radicals:A computational study[J]. Science of the Total Environment, 2020, 712:136330 |
Shen H Z, Huang Y, Wang R, et al. Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions[J]. Environmental Science & Technology, 2013, 47(12):6415-6424 |
Reisen F, Arey J. Atmospheric reactions influence seasonal PAH and nitro-PAH concentrations in the Los Angeles basin[J]. Environmental Science & Technology, 2005, 39(1):64-73 |
Lammel G, Klánová J, Ilic P, et al. Polycyclic aromatic hydrocarbons in air on small spatial and temporal scales-II. Mass size distributions and gas-particle partitioning[J]. Atmospheric Environment, 2010, 44(38):5022-5027 |
杨春, 杨琦, 杨素银, 等. 萘好氧降解菌的筛选及降解特性的初步研究[J]. 环境科学与技术, 2005, 28(6):19-21, 110 Yang C, Yang Q, Yang S Y, et al. Strains isolation and study on aerobic biodegradability of naphthalene[J]. Environmental Science and Technology, 2005, 28(6):19-21, 110(in Chinese) |
Sasaki J, Aschmann S M, Kwok E S C, et al. Products of the gas-phase OH and NO3 radical-initiated reactions of naphthalene[J]. Environmental Science & Technology, 1997, 31(11):3173-3179 |
Huang G C, Liu Y, Shao M, et al. Potentially important contribution of gas-phase oxidation of naphthalene and methylnaphthalene to secondary organic aerosol during haze events in Beijing[J]. Environmental Science & Technology, 2019, 53(3):1235-1244 |
Bunce N J, Liu L N, Zhu J, et al. Reaction of naphthalene and its derivatives with hydroxyl radicals in the gas phase[J]. Environmental Science & Technology, 1997, 31(8):2252-2259 |
Riva M, Healy R M, Flaud P M, et al. Gas-and particlephase products from the chlorine-initiated oxidation of polycyclic aromatic hydrocarbons[J]. The Journal of Physical Chemistry A, 2015, 119(45):11170-11181 |
Lee J Y, Lane D A. Unique products from the reaction of naphthalene with the hydroxyl radical[J]. Atmospheric Environment, 2009, 43(32):4886-4893 |
Kautzman K E, Surratt J D, Chan M N, et al. Chemical composition of gas-and aerosol-phase products from the photooxidation of naphthalene[J]. The Journal of Physical Chemistry A, 2010, 114(2):913-934 |
Ouyang B, Fang H J, Dong W B, et al. Different mechanisms both lead to the production of the naphthalene-OH adduct in the 355 nm and 266 nm laser flash photolysis of the mixed aqueous solution of naphthalene and nitrous acid[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2006, 181(2-3):348-356 |
Zhang Z J, Lin L, Wang L M. Atmospheric oxidation mechanism of naphthalene initiated by OH radical. A theoretical study[J]. Physical Chemistry Chemical Physics, 2012, 14(8):2645-2650 |
Riva M, Healy R M, Flaud P M, et al. Kinetics of the gasphase reactions of chlorine atoms with naphthalene, acenaphthene, and acenaphthylene[J]. The Journal of Physical Chemistry A, 2014, 118(20):3535-3540 |
刘聪, 马芳芳, 付自豪, 等. ·Cl引发3种环状含有NH结构有机化合物的大气转化机制及动力学[J]. 生态毒理学报, 2019, 14(4):65-72Liu C, Ma F F, Fu Z H, et al. Atmospheric transformation mechanism and kinetics of three cyclic NH-containing compounds initiated by·Cl[J]. Asian Journal of Ecotoxicology, 2019, 14(4):65-72(in Chinese) |
Li C, Xie H B, Chen J W, et al. Predicting gaseous reaction rates of short chain chlorinated paraffins with ·OH:Overcoming the difficulty in experimental determination[J]. Environmental Science & Technology, 2014, 48(23):13808-13816 |
Xu T, Chen J W, Chen X, et al. Prediction models on pKa and base-catalyzed hydrolysis kinetics of parabens:Experimental and quantum chemical studies[J]. Environmental Science & Technology, 2021, 55(9):6022-6031 |
Xu T, Chen J W, Wang Z Y, et al. Development of prediction models on base-catalyzed hydrolysis kinetics of phthalate esters with density functional theory calculation[J]. Environmental Science & Technology, 2019, 53(10):5828-5837 |
Li C, Chen J W, Xie H B, et al. Effects of atmospheric water on ·OH-initiated oxidation of organophosphate flame retardants:A DFT investigation on TCPP[J]. Environmental Science & Technology, 2017, 51(9):5043-5051 |
United States Environmental Protection Agency (US EPA). ECOSAR V2.0[CP/OL].[2021-03-26]. https://www.epa.gov/tsca-screening-tools/ecological-structure-activity-relationships-ecosar-predictive-model |
Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09[CP]. Wallingford, CT:Gaussian, Inc, 2009 |
Chai J D, Head-Gordon M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections[J]. Physical Chemistry Chemical Physics, 2008, 10(44):6615 |
Barker J R, Nguyen T L, Stanton J F, et al. MultiWell program suite[CP]. Ann Arbor, MI:University of Michigan, 2014 |
Barker J R. Multiple-well, multiple-path unimolecular reaction systems. Ⅰ. MultiWell computer program suite[J]. International Journal of Chemical Kinetics, 2001, 33(4):232-245 |
Carl E. The penetration of a potential barrier by electrons[J]. Physical Review, 1930, 35(11):1303-1309 |
Raman S, Ashcraft R W, Vial M, et al. Oxidation of hydroxylamine by nitrous and nitric acids. Model development from first principle SCRF calculations[J]. The Journal of Physical Chemistry A, 2005, 109(38):8526-8536 |
Braña P, Sordo J A. Mechanistic aspects of the abstraction of an allylic hydrogen in the chlorine atom reaction with 2-methyl-1, 3-butadiene (isoprene)[J]. Journal of the American Chemical Society, 2001, 123(42):10348-10353 |
Sun C H, Xu B E, Zhang S W. Atmospheric reaction of Cl + methacrolein:A theoretical study on the mechanism, and pressure-and temperature-dependent rate constants[J]. The Journal of Physical Chemistry A, 2014, 118(20):3541-3551 |
Wang L Y, Wang L M. Atmospheric oxidation mechanism of acenaphthene initiated by OH radicals[J]. Atmospheric Environment, 2020, 243:117870 |
Dang J, He M X. Mechanisms and kinetic parameters for the gas-phase reactions of anthracene andpyrene with Cl atoms in the presence of NOx[J]. RSC Advances, 2016, 6(21):17345-17353 |
Wennberg P O, Bates K H, Crounse J D, et al. Gas-phase reactions of isoprene and its major oxidation products[J]. Chemical Reviews, 2018, 118(7):3337-3390 |
Patchen A K, Pennino M J, Elrod M J. Overall rate constant measurements of the reaction of chloroalkylperoxy radicals with nitric oxide[J]. The Journal of Physical Chemistry A, 2005, 109(26):5865-5871 |
Fu Z H, Xie H B, Elm J, et al. Formation of low-volatile products and unexpected high formaldehyde yield from the atmospheric oxidation of methylsiloxanes[J]. Environmental Science & Technology, 2020, 54(12):7136-7145 |
Atkinson R. Atmospheric reactions of alkoxy and-hydroxyalkoxy radicals[J]. International Journal of Chemical Kinetics, 1997, 29(2):99-111 |