薛庆举1,
顾毓蓉1,2,
谢丽强1,,
1. 中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室, 南京 210008;
2. 中国科学院大学, 北京 100049
作者简介: 万翔(1992-),男,博士研究生,研究方向为环境毒理学,E-mail:rgwanxiang@163.com.
通讯作者: 谢丽强,lqxie@niglas.ac.cn
基金项目: 国家水体污染控制与治理科技重大专项(2018ZX07208-008);国家自然科学基金资助项目(41877486)中图分类号: X171.5
Advance on Combined Toxicity of Microcystins and Other Environmental Pollutants
Wan Xiang1,2,Xue Qingju1,
Gu Yurong1,2,
Xie Liqiang1,,
1. State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
Corresponding author: Xie Liqiang,lqxie@niglas.ac.cn
CLC number: X171.5
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:微囊藻毒素(microcystins,MCs)是一种蓝藻代谢产物,在全球富营养淡水生态系统中广泛分布,高浓度的MCs不仅对水生生物造成负面影响,还会与水体中共存污染物发生相互作用,影响彼此在生物体内转化代谢和毒性效应。因此,开展MCs与多种环境污染物的复合污染对不同生物的毒性研究十分必要,其对水体复合污染风险评价和防控有着重要的意义。笔者综述了MCs在全球水体中的分布情况,并介绍了MCs与水体中其他典型污染物联合暴露时对不同生物的毒性作用,最后针对目前相关研究的不足进行了分析并提出几点展望。
关键词: 微囊藻毒素/
水生生物/
陆生生物/
联合毒性/
协同作用
Abstract:Microcystins (MCs), a kind of cyanobacterial metabolite, are distributed worldwide in eutrophic freshwater ecosystems. High concentration of MCs not only cause negative effects on aquatic organisms, but also interact with co-existing pollutants in water, thus altering each other's metabolism and toxic effects. Therefore, it is necessary to study the combined toxicity of MCs and a variety of environmental pollutants on different organisms, which is of great significance for the risk assessment and prevention and control of combined pollution in water. This paper summarized the distribution patterns of MCs in global freshwaters and reviewed the current studies concerning the combined toxic effects of MCs and other typical pollutants. Finally, the possible limitations of existing studies were discussed and further research efforts were prospected.
Key words:microcystins/
aquatic organism/
terrestrial organism/
combined toxicity/
synergetic effect.
曲久辉. 我国水体复合污染与控制[J]. 科学对社会的影响, 2000(1):35-39 |
Paerl H W, Otten T G. Blooms bite the hand that feeds them[J]. Science, 2013, 342(6157):433-434 |
王宏洋, 赵鑫, 曲超, 等. 美国排水综合毒性在有毒污染物排放控制中的应用方法与启示[J]. 环境工程技术学报, 2016, 6(6):636-644Wang H Y, Zhao X, Qu C, et al. Application and enlightenment of whole effluent toxicity for toxics control in United States[J]. Journal of Environmental Engineering Technology, 2016, 6(6):636-644(in Chinese) |
文湘华, 申博. 新兴污染物水环境保护标准及其实用型去除技术[J]. 环境科学学报, 2018, 38(3):847-857Wen X H, Shen B. Standards of water environmental protection and practical removal technologies of emerging contaminants[J]. Acta Scientiae Circumstantiae, 2018, 38(3):847-857(in Chinese) |
Pham T L, Utsumi M. An overview of the accumulation of microcystins in aquatic ecosystems[J]. Journal of Environmental Management, 2018, 213:520-529 |
吴庆龙, 谢平, 杨柳燕, 等. 湖泊蓝藻水华生态灾害形成机理及防治的基础研究[J]. 地球科学进展, 2008, 23(11):1115-1123Wu Q L, Xie P, Yang L Y, et al. Ecological consequences of cyanobacetrial blooms in lakes and their countermeasures[J]. Advances in Earth Science, 2008, 23(11):1115-1123(in Chinese) |
姜锦林, 时玥, 杨柳燕, 等. 微囊藻毒素与阿特拉津复合染毒对鲤鱼的组织病理学效应[J]. 生态与农村环境学报, 2013, 29(2):241-247Jiang J L, Shi Y, Yang L Y, et al. Histopathological effects of combined pollution of microcystin and atrazine on Cyprinus carpio[J]. Journal of Ecology and Rural Environment, 2013, 29(2):241-247(in Chinese) |
Vasas G. Capillary Electrophoresis of Cyanobacterial Toxins[M]//Meriluoto J, Spoof L, Codd G A. Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis. Chichester, UK:John Wiley & Sons, Ltd, 2017:258-262 |
Zamyadi A, MacLeod S L, Fan Y, et al. Toxic cyanobacterial breakthrough and accumulation in a drinking water plant:A monitoring and treatment challenge[J]. Water Research, 2012, 46(5):1511-1523 |
Mez K, Beattie K, Codd G, et al. Identification of a microcystin in benthic cyanobacteria linked to cattle deaths on alpine pastures in Switzerland[J]. European Journal of Phycology, 1997, 32(2):111-117 |
Azevedo S M, Carmichael W W, Jochimsen E M, et al. Human intoxication by microcystins during renal dialysis treatment in Caruaru-Brazil[J]. Toxicology, 2002, 181-182:441-446 |
Krienitz L, Ballot A, Kotut K, et al. Contribution of hot spring cyanobacteria to the mysterious deaths of Lesser Flamingos at Lake Bogoria, Kenya[J]. FEMS Microbiology Ecology, 2003, 43(2):141-148 |
Chen J, Zhang D W, Xie P, et al. Simultaneous determination of microcystin contaminations in various vertebrates (fish, turtle, duck and water bird) from a large eutrophic Chinese lake, Lake Taihu, with toxic Microcystis blooms[J]. Science of the Total Environment, 2009, 407(10):3317-3322 |
MacKintosh C, Beattie K A, Klumpp S, et al. Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants[J]. FEBS Letters, 1990, 264(2):187-192 |
Ding W X, Shen H M, Ong C N. Calpain activation after mitochondrial permeability transition in microcystin-induced cell death in rat hepatocytes[J]. Biochemical and Biophysical Research Communications, 2002, 291(2):321-331 |
Zegura B, Lah T T, Filipic M. The role of reactive oxygen species in microcystin-LR-induced DNA damage[J]. Toxicology, 2004, 200(1):59-68 |
Chen L, Chen J, Zhang X Z, et al. A review of reproductive toxicity of microcystins[J]. Journal of Hazardous Materials, 2016, 301:381-399 |
Dawson R M. The toxicology of microcystins[J]. Toxicon, 1998, 36(7):953-962 |
Turner P C, Gammie A J, Hollinrake K, et al. Pneumonia associated with contact with cyanobacteria[J]. BMJ, 1990, 300(6737):1440-1441 |
Zhao Y Y, Xue Q J, Su X M, et al. First identification of the toxicity of microcystins on pancreatic islet function in humans and the involved potential biomarkers[J]. Environmental Science & Technology, 2016, 50(6):3137-3144 |
谢平. 微囊藻毒素对人类健康影响相关研究的回顾[J]. 湖泊科学, 2009, 21(5):603-613Xie P. A review on the studies related to the effects of microcystins on human health[J]. Journal of Lake Sciences, 2009, 21(5):603-613(in Chinese) |
Pouria S, de Andrade A, Barbosa J, et al. Fatal microcystin intoxication in haemodialysis unit in Caruaru, Brazil[J]. Lancet, 1998, 352(9121):21-26 |
Jetoo S, Grover V I, Krantzberg G. The Toledo drinking water advisory:Suggested application of the water safety planning approach[J]. Sustainability, 2015, 2015(7):9787-9808 |
World Health Organization. Guidelines for Drinking-water Quality[S]. Fourth edition. Geneva:World Health Organization, 2011 |
Su X M, Xue Q J, Steinman A D, et al. Spatiotemporal dynamics of microcystin variants and relationships with environmental parameters in Lake Taihu, China[J]. Toxins, 2015, 7(8):3224-3244 |
余丽, 朱广伟, 孔繁翔, 等. 巢湖微囊藻毒素异构体组成的时空分布特征及影响因子[J]. 湖泊科学, 2019, 31(3):700-713Yu L, Zhu G W, Kong F X, et al. Spatiotemporal characteristics of microcystin variants composition and associations with environmental parameters in Lake Chaohu, China[J]. Journal of Lake Sciences, 2019, 31(3):700-713(in Chinese) |
Wu Y L, Li L, Gan N Q, et al. Seasonal dynamics of water bloom-forming Microcystis morphospecies and the associated extracellular microcystin concentrations in large, shallow, eutrophic Dianchi Lake[J]. Journal of Environmental Sciences, 2014, 26(9):1921-1929 |
袁丽娟, 廖且根, 张莉, 等. 鄱阳湖微囊藻毒素时空分布格局及其与理化和生物因子的关系[J]. 环境科学, 2018, 39(1):450-459Yuan L J, Liao Q G, Zhang L, et al. Seasonal and spatial variations of microcystins and their relationships with physiochemical and biological factors in Poyang Lake[J]. Environmental Science, 2018, 39(1):450-459(in Chinese) |
Xue Q J, Rediske R R, Gong Z J, et al. Spatio-temporal variation of microcystins and its relationship to biotic and abiotic factors in Hongze Lake, China[J]. Journal of Great Lakes Research, 2018, 44(2):253-262 |
万翔, 邰义萍, 王瑞, 等. 洱海水华期间饮用水源区产毒微囊藻和微囊藻毒素-LR的分布特征[J]. 环境科学学报, 2017, 37(6):2040-2047Wan X, Tai Y P, Wang R, et al. Distribution patterns of microcystins-producing Microcystis and microcystin-LR during blooms in drinking water source areas of Lake Erhai[J]. Acta Scientiae Circumstantiae, 2017, 37(6):2040-2047(in Chinese) |
Wu S K, Xie P, Liang G D, et al. Relationships between microcystins and environmental parameters in 30 subtropical shallow lakes along the Yangtze River, China[J]. Freshwater Biology, 2006, 51(12):2309-2319 |
Park H D, Iwami C, Watanabe M F, et al. Temporal variabilities of the concentrations of intra- and extracellular microcystin and toxic Microcystis species in a hypertrophic lake, Lake Suwa, Japan (1991-1994)[J]. Environmental Toxicology and Water Quality, 1998, 13(1):61-72 |
Loftin K A, Graham J L, Hilborn E D, et al. Cyanotoxins in inland lakes of the United States:Occurrence and potential recreational health risks in the EPA National Lakes Assessment 2007[J]. Harmful Algae, 2016, 56:77-90 |
Orihel D M, Bird D F, Brylinsky M, et al. High microcystin concentrations occur only at low nitrogen-to-phosphorus ratios in nutrient-rich Canadian lakes[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2012, 69(9):1457-1462 |
Frank C A. Microcystin-producing cyanobacteria in recreational waters in southwestern Germany[J]. Environmental Toxicology, 2002, 17(4):361-366 |
Singh S, Rai P K, Chau R, et al. Temporal variations in microcystin-producing cells and microcystin concentrations in two fresh water ponds[J]. Water Research, 2015, 69:131-142 |
Jones G J, Orr P T. Release and degradation of microcystin following algicide treatment of a Microcystis aeruginosa bloom in a recreational lake, as determined by HPLC and protein phosphatase inhibition assay[J]. Water Research, 1994, 28(4):871-876 |
孔繁翔, 高光. 大型浅水富营养化湖泊中蓝藻水华形成机理的思考[J]. 生态学报, 2005, 25(3):589-595Kong F X, Gao G. Hypothesis on cyanobacteria bloom-forming mechanism in large shallow eutrophic lakes[J]. Acta Ecologica Sinica, 2005, 25(3):589-595(in Chinese) |
Chen W, Li L, Gan N Q, et al. Optimization of an effective extraction procedure for the analysis of microcystins in soils and lake sediments[J]. Environmental Pollution, 2006, 143(2):241-246 |
Jiang X D, Xie J H, Xu Y, et al. Increasing dominance of small zooplankton with toxic cyanobacteria[J]. Freshwater Biology, 2017, 62(2):429-443 |
Zastepa A, Pick F R, Blais J M, et al. Analysis of intracellular and extracellular microcystin variants in sediments and pore waters by accelerated solvent extraction and high performance liquid chromatography-tandem mass spectrometry[J]. Analytica Chimica Acta, 2015, 872:26-34 |
Efting A A, Snow D D, Fritz S C. Cyanobacteria and microcystin in the Nebraska (USA) Sand Hills Lakes before and after modern agriculture[J]. Journal of Paleolimnology, 2011, 46(1):17-27 |
Gurbuz F, Uzunmehmetoğlu O Y, Diler Ö, et al. Occurrence of microcystins in water, bloom, sediment and fish from a public water supply[J]. Science of the Total Environment, 2016, 562:860-868 |
Rinta-Kanto J M, Konopko E A, DeBruyn J M, et al. Lake Erie Microcystis:Relationship between microcystin production, dynamics of genotypes and environmental parameters in a large lake[J]. Harmful Algae, 2009, 8(5):665-673 |
Ballot A, Krienitz L, Kotut K, et al. Cyanobacteria and cyanobacterial toxins in the alkaline crater lakes Sonachi and Simbi, Kenya[J]. Harmful Algae, 2005, 4(1):139-150 |
DeMott W R, Zhang Q X, Carmichael W W. Effects of toxic cyanobacteria and purified toxins on the survival and feeding of a copepod and three species of Daphnia[J]. Limnology and Oceanography, 1991, 36(7):1346-1357 |
Chen W, Song L R, Ou D Y, et al. Chronic toxicity and responses of several important enzymes in Daphnia magna on exposure to sublethal microcystin-LR[J]. Environmental Toxicology, 2005, 20(3):323-330 |
Smutná M, Babica P, Jarque S, et al. Acute, chronic and reproductive toxicity of complex cyanobacterial blooms in Daphnia magna and the role of microcystins[J]. Toxicon:Official Journal of the International Society on Toxinology, 2014, 79:11-18 |
Cao H S, Lyu K, Xiang F H, et al. Life history responses of Daphnia similoides simultaneously exposed to microcystin-LR and ammonia and their postexposure recovery[J]. Environmental Toxicology and Chemistry, 2014, 33(11):2497-2505 |
Yang Z, Xiang F H, Minter E J, et al. The interactive effects of microcystin and nitrite on life-history parameters of the cladoceran Daphnia obtuse[J]. Journal of Hazardous Materials, 2011, 190(1-3):113-118 |
Cerbin S, Kraak M H S, Voogt P, et al. Combined and single effects of pesticide carbaryl and toxic Microcystis aeruginosa on the life history of Daphnia pulicaria[J]. Hydrobiologia, 2010, 643(1):129-138 |
Hochmuth J D, Asselman J, De Schamphelaere K A C. Are interactive effects of harmful algal blooms and copper pollution a concern for water quality management?[J]. Water Research, 2014, 60:41-53 |
Pires L M, Sarpe D, Brehm M, et al. Potential synergistic effects of microcystins and bacterial lipopolysaccharides on life history traits of Daphnia galeata raised on low and high food levels[J]. Aquatic Toxicology, 2011, 104(3-4):230-242 |
Xie L Q, Xie P, Guo L G, et al. Organ distribution and bioaccumulation of microcystins in freshwater fish at different trophic levels from the eutrophic Lake Chaohu, China[J]. Environmental Toxicology, 2005, 20(3):293-300 |
Baganz D, Staaks G, Steinberg C. Impact of the cyanobacteria toxin, microcystin-LR on behaviour of zebrafish, Danio rerio[J]. Water Research, 1998, 32(3):948-952 |
Chen L, Chen J, Zhang X Z, et al. A review of reproductive toxicity of microcystins[J]. Journal of Hazardous Materials, 2016, 301:381-399 |
Sun H J, Lv K, Minter E J, et al. Combined effects of ammonia and microcystin on survival, growth, antioxidant responses, and lipid peroxidation of bighead carp Hypophthalmythys nobilis larvae[J]. Journal of Hazardous Materials, 2012, 221-222:213-219 |
Pavagadhi S, Gong Z Y, Balasubramanian R. Toxicological implications of microcystins for zebrafish embryos in the presence of other environmental pollutants[J]. Environmental Toxicology and Chemistry, 2013, 32(7):1574-1581 |
Lin W, Hou J, Guo H H, et al. The synergistic effects of waterborne microcystin-LR and nitrite on hepatic pathological damage, lipid peroxidation and antioxidant responses of male zebrafish[J]. Environmental Pollution, 2018, 235:197-206 |
Cheng H C, Yan W, Wu Q, et al. Adverse reproductive performance in zebrafish with increased bioconcentration of microcystin-LR in the presence of titanium dioxide nanoparticles[J]. Environmental Science:Nano, 2018, 5(5):1208-1217 |
倪婉敏, 张杭君, 张建英, 等. 微囊藻毒素与饮用水消毒副产物复合诱导草鱼淋巴细胞凋亡[J]. 应用生态学报, 2009, 20(1):228-232Ni W M, Zhang H J, Zhang J Y, et al. Apoptosis of grass carp (Ctenopharngodon idellus) lymphocytes induced by the combination of microcystins and disinfection by-products in drinking water[J]. Chinese Journal of Applied Ecology, 2009, 20(1):228-232(in Chinese) |
Wei H M, Wang S, Xu E G, et al. Synergistic toxicity of microcystin-LR and Cu to zebrafish (Danio rerio)[J]. Science of the Total Environment, 2020, 713:136393 |
Azevedo-Linhares M, Souza A T C, Lenz C A, et al. Microcystin and pyriproxyfen are toxic to early stages of development in Rhamdia quelen:An experimental and modelling study[J]. Ecotoxicology and Environmental Safety, 2018, 166:311-319 |
方文迪, 张杭君, 吴玉环. 微囊藻毒素与细菌内毒素对草鱼淋巴细胞凋亡的联合毒效应[J]. 应用生态学报, 2014, 25(2):584-590Fang W D, Zhang H J, Wu Y H. Joint effects of apoptosis induced by microcystins and bacterial lipopolysaccharides on grass carp (Ctenopharyngodon idellus) lymphocytes[J]. Chinese Journal of Applied Ecology, 2014, 25(2):584-590(in Chinese) |
姜锦林, 宋睿, 任静华, 等. 蓝藻水华衍生的微囊藻毒素污染及其对水生生物的生态毒理学研究[J]. 化学进展, 2011, 23(1):246-253Jiang J L, Song R, Ren J H, et al. Advances in pollution of cyanobacterial blooms-producing microcystins and their ecotoxicological effects on aquatic organisms[J]. Progress in Chemistry, 2011, 23(1):246-253(in Chinese) |
Hu Z Q, Liu Y D, Li D H, et al. Growth and antioxidant system of the cyanobacterium Synechococcus elongatus in response to microcystin-RR[J]. Hydrobiologia, 2005, 534(1-3):23-29 |
Cao Q, Wan X, Shu X B, et al. Bioaccumulation and detoxication of microcystin-LR in three submerged macrophytes:The important role of glutathione biosynthesis[J]. Chemosphere, 2019, 225:935-942 |
Jiang J L, Gu X Y, Song R, et al. Microcystin-LR induced oxidative stress and ultrastructural alterations in mesophyll cells of submerged macrophyte Vallisneria natans (Lour.) Hara[J]. Journal of Hazardous Materials, 2011, 190(1-3):188-196 |
Contardo-Jara V, Kuehn S, Pflugmacher S. Single and combined exposure to MC-LR and BMAA confirm suitability of Aegagropila linnaei for use in green liver systems(®)-A case study with cyanobacterial toxins[J]. Aquatic Toxicology, 2015, 165:101-108 |
Pinheiro C, Azevedo J, Campos A, et al. The interactive effects of microcystin-LR and cylindrospermopsin on the growth rate of the freshwater algae Chlorella vulgaris[J]. Ecotoxicology, 2016, 25(4):745-758 |
Wang Z, Xiao B D, Song L R, et al. Responses and toxin bioaccumulation in duckweed (Lemna minor) under microcystin-LR, linear alkybenzene sulfonate and their joint stress[J]. Journal of Hazardous Materials, 2012, 229-230:137-144 |
Wang Z, Zhang J Q, Li E H, et al. Combined toxic effects and mechanisms of microsystin-LR and copper on Vallisneria Natans (Lour.) Hara seedlings[J]. Journal of Hazardous Materials, 2017, 328:108-116 |
Li Q, Gu P, Zhang C, et al. Combined toxic effects of anatoxin-a and microcystin-LR on submerged macrophytes and biofilms[J]. Journal of Hazardous Materials, 2020, 389:122053 |
薛庆举, 苏小妹, 谢丽强. 蓝藻毒素对底栖动物的毒理学研究进展[J]. 生态学报, 2015, 35(14):4570-4578Xue Q J, Su X M, Xie L Q. Advances on cyanotoxin toxicology of zoobenthos[J]. Acta Ecologica Sinica, 2015, 35(14):4570-4578(in Chinese) |
Lance E, Desprat J, Holbech B F, et al. Accumulation and detoxication responses of the gastropod Lymnaea stagnalis to single and combined exposures to natural (cyanobacteria) and anthropogenic (the herbicide RoundUp® Flash) stressors[J]. Aquatic Toxicology, 2016, 177:116-124 |
Xiang L, Li Y W, Liu B L, et al. High ecological and human health risks from microcystins in vegetable fields in Southern China[J]. Environment International, 2019, 133:105142 |
Corbel S, Mougin C, Bouaïcha N. Cyanobacterial toxins:Modes of actions, fate in aquatic and soil ecosystems, phytotoxicity and bioaccumulation in agricultural crops[J]. Chemosphere, 2014, 96:1-15 |
詹晓静, 向垒, 李彦文, 等. 微囊藻毒素(MC-LR)和重金属铬复合污染对白菜种子发芽的影响[J]. 农业环境科学学报, 2013, 32(1):203-204Zhan X J, Xiang L, Li Y W, et al. Influences of microcystin-LR and chromium on seed germination of Chinese cabbage[J]. Journal of Agro-Environment Science, 2013, 32(1):203-204(in Chinese) |
Cao Q, Steinman A D, Wan X, et al. Combined toxicity of microcystin-LR and copper on lettuce (Lactuca sativa L.)[J]. Chemosphere, 2018, 206:474-482 |
Wang Z, Xiao B D, Song L R, et al. Effects of microcystin-LR, linear alkylbenzene sulfonate and their mixture on lettuce (Lactuca sativa L.) seeds and seedlings[J]. Ecotoxicology, 2011, 20(4):803-814 |
Pikula J, Bandouchova H, Hilscherova K, et al. Combined exposure to cyanobacterial biomass, lead and the Newcastle virus enhances avian toxicity[J]. Science of the Total Environment, 2010, 408(21):4984-4992 |
Paskova V, Veronika P, Paskerova H, et al. Combined exposure of Japanese quails to cyanotoxins, Newcastle virus and lead:Oxidative stress responses[J]. Ecotoxicology and Environmental Safety, 2011, 74(7):2082-2090 |
Zhao Y Y, Yan Y J, Xie L Q, et al. Long-term environmental exposure to microcystins increases the risk of nonalcoholic fatty liver disease in humans:A combined fisher-based investigation and murine model study[J]. Environment International, 2020, 138:105648 |
Liu W Y, Wang L Q, Yang X H, et al. Environmental microcystin exposure increases liver injury risk induced by hepatitis B virus combined with aflatoxin:A cross-sectional study in southwest China[J]. Environmental Science & Technology, 2017, 51(11):6367-6378 |
Ma M, Pi F W, Wang J S, et al. New insights into cytotoxicity induced by microcystin-LR, estradiol, and ractopamine with mathematical models:Individual and combined effects[J]. Chemosphere, 2017, 168:223-233 |
邱斐斐, 刘冉. 微囊藻毒素与甲基硝基亚硝基胍对食管癌EC109细胞株毒性的联合作用[J]. 环境与职业医学, 2016, 33(4):340-344Qiu F F, Liu R. Combined toxicity of microcystins and N-methyl-N'-nitro-N-nitrosoguanidine on esophageal cancer cell line EC109[J]. Journal of Environmental & Occupational Medicine, 2016, 33(4):340-344(in Chinese) |
王红兵, 朱惠刚, 聂岚, 等. 微囊藻毒素和水体有机污染物联合诱导SHE细胞转化及相关癌基因的变化[J]. 卫生研究, 1998, 27(1):41-44Wang H B, Zhu H G, Nie L, et al. The combined effects of MCYST and water organic pollutants on the co-induction of SHE cell transformation[J]. Journal of Hygiene Research, 1998, 27(1):41-44(in Chinese) |