删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

锑的淡水沉积物质量基准初探

本站小编 Free考研考试/2021-12-30

许志楠,
杨再福,,
耿丽莎,
王亚楠,
张琪悦
东华大学环境科学与工程学院, 上海 201600
作者简介: 许志楠(1996-),男,硕士研究生,研究方向为环境生态与污染场地修复,E-mail:xznjustdoit@163.com.
通讯作者: 杨再福,zzfyang@dhu.edu.cn ;
基金项目: 上海市科技攻关项目(033919457)


中图分类号: X171.5


Preliminary Study of Antimony Freshwater Sediment Quality Criteria

Xu Zhinan,
Yang Zaifu,,
Geng Lisha,
Wang Yanan,
Zhang Qiyue
College of Environmental Science and Engineering, Donghua University, Shanghai 201600, China
Corresponding author: Yang Zaifu,zzfyang@dhu.edu.cn ;

CLC number: X171.5

-->

摘要
HTML全文
(0)(0)
参考文献(46)
相关文章
施引文献
资源附件(0)
访问统计

摘要:我国未建立锑(Sb)的淡水沉积物质量基准(freshwater sediment quality criteria,SQCfw)。锑的沉积物毒理学数据有限,本文通过分配实验获得宏观分配系数Km=165.22ρw-0.319,将锑在水中的浓度转化为锑在沉积物中的含量。在20个毒理学数据的基础上,采用物种敏感性分布法(species sensitivity distributions,SSD)并选取Logistic模型将其拟合,得到锑的SQCfw为37.80 mg·kg-1。本文同时为SQC的建立提供了基于生物毒性的方案。
关键词: /
物种敏感性分布法(SSD)/
淡水沉积物质量基准/
Logistic函数

Abstract:Freshwater sediment quality criteria of antimony (Sb) has not been established in China. Because of the limited toxicology data of antimony, the macroscopic partition coefficient was fitted by the sample points from Sb distribution experiment, and used for the conversion between the concentration of antimony in water and the content of antimony in sediments. Antimony SQCfw of 37.80 mg·kg-1 was derived by fitting the 20 toxicology data using species sensitivity distribution (SSD) method and Logistic function. This study provides a scheme based on biological toxicity for the establishment of SQC.
Key words:antimony/
species sensitivity distributions (SSD)/
freshwater sediment quality criteria/
Logistic function.

加载中
Krenev V A, Dergacheva N P, Fomichev S V. Antimony:Resources, application fields, and world market[J]. Theoretical Foundations of Chemical Engineering, 2015, 49(5):769-772
Li J, Zheng B, He Y, et al. Antimony contamination, consequences and removal techniques:A review[J]. Ecotoxicology and Environmental Safety, 2018, 156:125-134
Herath I, Vithanage M, Bundschuh J. Antimony as a global dilemma:Geochemistry, mobility, fate and transport[J]. Environmental Pollution, 2017, 223:545-559
向猛, 黄益宗, 蔡立群, 等. 外源钙对两种价态锑胁迫下水稻幼苗吸收积累锑和钙的影响[J]. 生态毒理学报, 2015, 10(3):153-160Xiang M, Huang Y Z, Cai L Q, et al. Effect of calcium on uptake and acumulation of antimony and calcium by rice seedling in solution culture[J]. Asian Journal of Ecotoxicology, 2015, 10(3):153-160(in Chinese)
He M, Wang X, Wu F, et al. Antimony pollution in China[J]. Science of the Total Environment, 2012, 421-422(3):41-50
王漫漫, 陆昊, 李慧明, 等. 太湖流域典型河流重金属污染和生态风险评估[J]. 环境化学, 2016, 35(10):2025-2035Wang M M, Lu H, Li H M, et al. Pollution level and ecological risk assessment of heavy metals in typical rivers of Taihu basin[J]Environmental Chemistry, 2016, 35(10):2025-2035(in Chinese)
Li X, Yang H, Zhang C, et al. Spatial distribution and transport characteristics of heavy metals around an antimony mine area in central China[J]. Chemosphere, 2017, 170:17-24
宁增平, 肖青相, 蓝小龙, 等. 都柳江水系沉积物锑等重金属空间分布特征及生态风险[J]. 环境科学, 2017, 38(7):2784-2792Ning Z P, Xiao Q X, Lan X L, et al. Spatial distribution characteristics and potential ecological risk of antimony and selected heavy metals in sediments of Duliujiang River[J]. Environmental Science, 2017, 38(7):2784-2792(in Chinese)
Wang X, He M, Xi J, et al. Antimony distribution and mobility in rivers around the world's largest antimony mine of Xikuangshan, Hunan Province, China[J]. Microchemical Journal, 2011, 97(1):4-11
Mandal S K, Majumder N, Chowdhury C, et al. Effect of pH and salinity on sorption of antimony (Ⅲ and Ⅴ) on mangrove sediment, Sundarban, India[J]. Soil & Sediment Contamination, 2017, 26(4):1-12
Yang H, He M. Distribution and speciation of selenium, antimony, and arsenic in soils and sediments around the area of Xikuangshan (China)[J]. CLEAN-Soil, Air, Water, 2016, 44(11):1538-1546
田大勇, 常琛朝, 王成志, 等. 环境中重金属和有机污染物的物种敏感性分布研究进展[J]. 生态毒理学报, 2015, 10(3):38-49Tian D Y, Chang C C, Wang C Z, et al. Review of species sensitivity distributions for heavy metals and organic contaminants[J]. Asian Journal of Ecotoxicology, 2015, 10(3):38-49(in Chinese)
Posthuma L, Zwart D D. Species Sensitivity Distributions[M]//Encyclopedia of Toxicology. Amsterdam:Elsevier, 2014:363-368
Leung K M Y, Anders B R, Gray J S, et al. Deriving sediment quality guidelines from field-based species sensitivity distributions[J]. Environmental Science & Technology, 2005, 39(14):5148-5156
Gao P, Li Z, Gibson M, et al. Ecological risk assessment of nonylphenol in coastal waters of China based on species sensitivity distribution model[J]. Chemosphere, 2014, 104(3):113-119
刘亚莉, 谢玉为, 张效伟, 等. 应用物种敏感性分布评价敌敌畏对淡水生物的生态风险[J]. 生态毒理学报, 2016, 11(2):531-538Liu Y L, Xie Y W, Zhang X W, et al. Assessing ecological risks of dichlorvos to freshwater organisms by species sensitivity distribution[J]. Asian Journal of Ecotoxicology, 2016, 11(2):531-538(in Chinese)
孙在金, 赵淑婷, 林祥龙, 等. 基于物种敏感度分布法建立中国土壤中锑的环境基准[J]. 环境科学研究, 2018, 31(4):774-781Sun Z J, Zhao S T, Lin X L, et al. Deriving soils environmental criteria of antimony in China by species sensitivity distributions[J]. Research of Environmental Sciences, 2018, 31(4):774-781(in Chinese)
钟文珏, 曾毅, 祝凌燕. 水体沉积物质量基准研究现状[J]. 生态毒理学报, 2013, 8(3):285-294Zhong W J, Zeng Y, Zhu L Y. Current research status of sediment quality criteria[J]. Asian Journal of Ecotoxicology, 2013, 8(3):285-294(in Chinese)
陈心悦, 张彦峰, 沈兆爽, 等. 中国七大水系淡水沉积物中林丹(γ-HCH)的生态风险评估[J]. 生态毒理学报, 2018, 13(3):103-111Chen X Y, Zhang Y F, Shen Z S, et al. Ecological risk assessment of γ-HCH for freshwater sediment of seven major river systems in China[J]. Asian Journal of Ecotoxicology, 2018, 13(3):103-111(in Chinese)
Long E R, Morgan L G. Potential for biological effects of sediment-sorbed contaminants tested in the National Status and Trends program. Technical memo[R]. Rockville:National Oceanic & Atmospheric Admininistration, 1990
McCready S, Birch G F, Long E R, et al. An evaluation of Australian sediment quality guidelines[J]. Archives of Environmental Contamination & Toxicology, 2006, 50(3):306-315
金相灿. 沉积物污染化学[M]. 北京:中国环境科学出版社, 1992:135 Jin X C. Sediment Contamination Chemistry[M]. Beijing:China Environmental Science Press, 1992:135(in Chinese)
Obiakor M O, Tighe M, Wang Z, et al. The relative sensitivity of freshwater species to antimony(Ⅲ):Implications for water quality guidelines and ecological risk assessments[J]. Environmental Science & Pollution Research International, 2017, 24(32):25276-25290
Wheeler J R, Grist E P M, Leung K M Y, et al. Species sensitivity distributions:Data and model choice[J]. Marine Pollution Bulletin, 2002, 45(1):192-202
王小庆, 韦东普, 黄占斌. 物种敏感性分布法在土壤中铜生态阈值建立中的应用研究[J]. 环境科学学报, 2013, 33(6):1787-1794Wang X Q, Wei D P, Huang Z B, et al. Application of species sensitivity distribution in deriving of ecological thresholds for copper in soils[J]. Acta Scientiae Circumstantiae, 2013, 33(6):1787-1794(in Chinese)
Keating K A, Cherry S. Use and interpretation of Logistic regression in habitat-selection studies[J]. Journal of Wildlife Management, 2011, 68(4):774-789
Silva P V, Silva A R R, Mendo S, et al. Toxicity of tributyltin (TBT) to terrestrial organisms and its species sensitivity distribution[J]. Science of the Total Environment, 2014, 466-467(1):1037-1046
李雪华, 徐鹏, 李俊青. 污染河流沉积物锑释放规律的研究[J]. 北京工业大学学报, 2013(5):785-791 Li X H, Xu P, Li J Q. Antimony release from the sediments of the antimony-polluted river[J]. Journal of Beijing University of Technology, 2013(5):785-791(in Chinese)
Borgmann U, Couillard Y, Doyle P, et al. Toxicity of sixty-three metals and metalloids to Hyalella azteca at two levels of water hardness[J]. Environmental Toxicology & Chemistry, 2010, 24(3):641-652
Nan S H, Yang C Y, An Y J. Effects of antimony on aquatic organisms (larva and embryo of Oryzias latipes, Moina macrocopa, Simocephalus mixtus, and Pseudokirchneriella subcapitata)[J]. Chemosphere, 2009, 75(7):889-893
Díaz S, Villares R, Vázquez M D, et al. Physiological effects of exposure to arsenic, mercury, antimony and selenium in the aquatic moss Fontinalis antipyretica Hedw.[J]. Water Air & Soil Pollution, 2013, 224(8):1659
Yang J L. Comparative acute toxicity of gallium(Ⅲ), antimony(Ⅲ), indium(Ⅲ), cadmium(Ⅱ), and copper(Ⅱ) on freshwater swamp shrimp (Macrobrachium nipponense)[J]. Biological Research, 2014, 47(1):1-4
Yang J L, Chen L H. Toxicity of antimony, gallium, and indium toward a teleost model and a native fish species of semiconductor manufacturing districts of Taiwan[J]. Journal of Elementology, 2018, 23(1):191-199
Yang J L, Chen L H, Chen H C. Effects of SbCl3 on aquatic organism:Acute test, serum metabolic enzyme activities, and blood cell deformation[J]. Environmental Science:An Indian Journal, 2007, 2(1):53-58
Heitmuller P T, Hollister T A, Parrish P R. Acute toxicity of 54 industrial chemicals to sheepshead minnows (Cyprinodon variegatus)[J]. Bulletin of Environmental Contamination & Toxicology, 1981, 27(5):596-604
Ohio Environmental Protection Agency (Ohio EPA). Surface Water Quality Criterion Fast Sheet[R]. Columbus, Ohio:Ohio EPA, 2006
Williams P L, Dusenbery D B. Aquatic toxicity testing using the nematode, Caenorhabditis elegans[J]. Environmental Toxicology & Chemistry, 2010, 9(10):1285-1290
Lin H C, Hwang P P. Acute and chronic effects of antimony chloride (SbCl3) on tilapia (Oreochromis mossambicus) larvae[J]. Bulletin of Environmental Contamination & Toxicology, 1998, 61(1):129-134
Kitamura H. Relation between the toxicity of some toxicants to the aquatic animals (Tanichthys albonubes and Neocaridina denticulata) and the hardness of the test solution[J]. Bulletin of the Faculty of Fisheries Nagasaki University, 1990, 67:13-19
熊旭, 刘燕群, 叶超, 等. 三氯化锑对泥鳅的毒性效应[J]. 环境与健康杂志, 2014, 31(6):534-535Xiong X, Liu Y Q, Ye C, et al. Toxic effects of antimony trichloride on loach[J]. Journal of Environment and Health, 2014, 31(6):534-535(in Chinese)
Xu F L, Li Y L, Wang Y, et al. Key issues for the development and application of the species sensitivity distribution (SSD) model for ecological risk assessment[J]. Ecological Indicators, 2015, 54(3):227-237
赵佳懿, 杜建国, 陈彬, 等. 应用物种敏感性分布评估九龙江口水体重金属生态风险[J]. 生态学杂志, 2014, 33(2):400-407Zhao J Y, Du J G, Chen B, et al. Assessing ecological risks of heavy metals to marine organisms in the Jiulongjiang Estuary by species sensitivity distribution[J]. Chinese Journal of Ecology, 2014, 33(2):400-407(in Chinese)
Xu L, Wu F, Jian Z, et al. Sediment records of Sb and Pb stable isotopic ratios in Lake Qinghai[J]. Microchemical Journal, 2011, 97(1):25-29
卢莎莎, 顾尚义, 韩露, 等. 都柳江水体-沉积物间锑的迁移转化规律[J]. 贵州大学学报:自然版, 2013, 30(3):131-136Lu S S, Gu S Y, Han L, et al. Migration and transformation of antimony between water and sediment in Duliujiang River[J]. Journal of Guizhou University:Natural Sciences, 2013, 30(3):131-136(in Chinese)
王茜, 刘永侠, 庄文, 等. 南四湖表层沉积物中铍、锑、铊的地球化学特征与环境风险[J]. 环境科学学报, 2018, 38(5):1968-1982Wang Q, Liu Y X, Zhuang W, et al. Research on geochemical characteristics and environmental risk of Be, Sb and Ti in surface sediments of the Nansihu[J]. Acta Scientiae Circumstantiae, 2018, 38(5):1968-1982(in Chinese)
高阳俊, 耿春女, 曹勇. 基于三种污染危害评价方法的上海市郊区河网底泥重金属评价[J]. 环境工程, 2015, 33(10):121-125Gao Y J, Gen C N, Cao Y. Three assessment methods on heavy metals contamination in river sediments of Shanghai suburban area[J]. Environmental Engineering, 2015, 33(10):121-125(in Chinese)

相关话题/生态 环境科学 环境 污染 质量