删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

种群生态风险评估方法研究进展

本站小编 Free考研考试/2021-12-30

谢锐莉1,2,3,
许宜平1,2,,,
张慧2,
王子健2
1. 中国科学院生态环境研究中心, 中国科学院饮用水科学与技术重点实验室, 北京 100085;
2. 中国科学院生态环境研究中心, 环境水质学国家重点实验室, 北京 100085;
3. 中国科学院大学, 北京 100049
作者简介: 谢锐莉(1996-),女,硕士研究生,研究方向为水生态毒理学,E-mail:xieruili18@mails.ucas.ac.cn.
通讯作者: 许宜平,ypxu@rcees.ac.cn ;
基金项目: 国家自然科学基金面上项目(41571469,41977350);国家自然科学基金重点项目(21437006)


中图分类号: X171.5


A Review of Population Level Ecological Risk Assessment Methods

Xie Ruili1,2,3,
Xu Yiping1,2,,,
Zhang Hui2,
Wang Zijian2
1. Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
2. State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
3. University of Chinese Academy of Sciences, Beijing 100049, China
Corresponding author: Xu Yiping,ypxu@rcees.ac.cn ;

CLC number: X171.5

-->

摘要
HTML全文
(0)(0)
参考文献(76)
相关文章
施引文献
资源附件(0)
访问统计

摘要:生态风险评估的核心目标是保护种群、群落和生态系统免受人类活动的胁迫。生物个体水平的生态风险评估由于缺乏生态系统的关联性并不能准确评估胁迫因子的生态学响应,而种群水平的生态风险评估方法逐渐成为研究热点。笔者综述了种群水平生态风险评估的发展历程,介绍了以种群为生态风险评估受体的直接评估和外推技术方法、模型原理及其特点,指出种群水平生态风险评估正在从传统野外调查型评估走向种群动态模拟的发展趋势,希望能为我国化学品环境风险管控提供信息和借鉴。
关键词: 种群生态风险/
种群动态模拟/
生态风险模型/
有害生态结局路径

Abstract:The primary target of ecological risk assessment is to protect populations, communities, and ecosystems from anthropogenic stress. Presently, majority of ecological risk assessments (ERAs) of chemicals conducted have concentrated narrowly on toxic effects in individual organisms, which cannot accurately assess the ecological response of stressors due to the lack of ecological reality. Efforts are currently underway to develop and apply innovative methods to conduct population level risk assessment (PERA). This article briefly examines the historical development of PERA and discusses principles and characteristics of current approaches. A comparison of direct assessment methods based on population attributes and individual-based extrapolation methods for PERA is presented, and further trends from traditional field investigation moving towards comprehensive dynamic simulation at population levels are discussed. We hope this review to provide necessary information and reference on chemical environmental risk management with this review. This review presents the challenges and opportunities of PERA for improving ecological relevant and reliable chemical risk assessment.
Key words:population level ecological risk/
population dynamic simulation/
ecological risk model/
ecological adverse outcome pathway (eAOP).

加载中
雷炳莉, 黄圣彪, 王子健. 生态风险评价理论和方法[J]. 化学进展, 2009, 21(Z1):350-358Lei B L, Huang S B, Wang Z J. Theories and methods of ecological risk assessment[J]. Progress in Chemistry, 2009, 21(Z1):350-358(in Chinese)
曾建军, 邹明亮, 郭建军, 等. 生态风险评价研究进展综述[J]. 环境监测管理与技术, 2017, 29(1):1-5, 10 Zeng J J, Zou M L, Guo J J, et al. Ecological risk assessment and its research progress[J]. The Administration and Technique of Environmental Monitoring, 2017, 29(1):1-5, 10(in Chinese)
United States Environmental Protection Agency. Guidelines for ecological risk assessment (USEPA-630-R-95-002F)[R]. Washington DC:United States Environmental Protection Agency, 1998
Hayashi T I, Kamo M, Tanaka Y. Population-level ecological effect assessment:Estimating the effect of toxic chemicals on density-dependent populations[J]. Ecological Research, 2008, 24(5):945-954
金小伟, 王业耀, 王子健. 淡水水生态基准方法学研究:数据筛选与模型计算[J]. 生态毒理学报, 2014, 9(1):1-13Jin X W, Wang Y Y, Wang Z J. Methodologies for deriving aquatic life criteria (ALC):Data screening and model calculating[J]. Asian Journal of Ecotoxicology, 2014, 9(1):1-13(in Chinese)
He W, Kong X, Qin N, et al. Combining species sensitivity distribution (SSD) model and thermodynamic index (exergy) for system-level ecological risk assessment of contaminates in aquatic ecosystems[J]. Environment International, 2019, 133(Pt B):105275
Gergs A, Gabsi F, Zenker A, et al. Demographic toxicokinetic-toxicodynamic modeling of lethal effects[J]. Environmental Science & Technology, 2016, 50(11):6017-6024
Jager T. All individuals are not created equal; accounting for interindividual variation in fitting life-history responses to toxicants[J]. Environmental Science & Technology, 2013, 47(3):1664-1669
David V, Joachim S, Tebby C, et al. Modelling population dynamics in mesocosms using an individual-based model coupled to a bioenergetics model[J]. Ecological Modelling, 2019, 398:55-66
Kramer V J, Etterson M A, Hecker M, et al. Adverse outcome pathways and ecological risk assessment:Bridging to population-level effects[J]. Environmental Toxicology and Chemistry, 2011, 30(1):64-76
Vlaeminck K, Viaene K P J, Van Sprang P, et al. The use of mechanistic population models in metal risk assessment:Combined effects of copper and food source on Lymnaea stagnalis populations[J]. Environmental Toxicology and Chemistry, 2019, 38(5):1104-1119
Raimondo S, Etterson M, Pollesch N, et al. A framework for linking population model development with ecological risk assessment objectives[J]. Integrated Environmental Assessment and Management, 2018, 14(3):369-380
O'Brien A L. What are the roadblocks to using population models in ecotoxicology studies?[J]. Marine Pollution Bulletin, 2017, 124(1):5-8
United States Environmental Protection Agency (US EPA). Summary Report:Risk Assessment Forum Technical Workshop on Population-level Ecological Risk Assessment[R]. Washington DC:US EPA, 2009
Dearfield K L, Bender E S, Kravitz M, et al. Ecological risk assessment issues identified during the US Environmental Protection Agency's examination of risk assessment practices[J]. Integrated Environmental Assessment and Management, 2005, 1(1):73-76
Raimondo S, Etterson M, Pollesch N, et al. A framework for linking population model development with ecological risk assessment objectives[J]. Integrated Environmental Assessment and Management, 2018, 14(3):369-380
Landis W G, Kaminski L A. Population-scale assessment endpoints in ecological risk assessment part Ⅱ:Selection of assessment endpoint attributes[J]. Integrated Environmental Assessment and Management, 2007, 3(3):450-457
Barnthouse L W, Munns Jr. W R, Sorensen M T. Population-level Ecological Risk Assessment[M]. CRC Press, 2007:211-237
Shaffer M L. Population viability analysis[J]. Conservation Biology, 1990, 4(1):39-40
Efroymson R A, Carlsen T M, Jager H I, et al. Toward an Ecological Framework for Assessing Risk to Vertebrate Populations from Brine and Petroleum Spills at Exploration and Production Sites[M]//Kapustka L, Galbraith H, Luxon M, et al. Eds. Landscape Ecology and Wildlife Habitat Evaluation:Critical Information for Ecological Risk Assessment, Land-Use Management Activities, and Biodiversity Enhancement Practices. West Conshohocken:American Society for Testing and Materials, 2004:261-286
胡明锋. 乙虫腈在模拟水生微宇宙中的归趋研究[D]. 北京:中国农业科学院, 2016:11-22 Hu M F. Study on the behavior and fate of ethiprole in simulated aquatic microcosm[D]. Beijing:Chinese Academy of Agricultural Sciences, 2016:11-22(in Chinese)
刘建梅, 王蕾, 刘济宁, 等. 微宇宙技术和物种敏感度分布曲线法评估铜离子生态危害比对研究[J]. 生态毒理学报, 2015, 10(4):34-46Liu J M, Wang L, Liu J N, et al. A microcosm study compared to the species sensitivity distribution approach:A case study with the copper ion[J]. Asian Journal of Ecotoxicology, 2015, 10(4):34-46(in Chinese)
袁丙强, 李少南. 杀虫剂三唑磷在室内淡水微宇宙中的生态效应[J]. 生态毒理学报, 2016, 11(3):101-114Yuan B Q, Li S N. Ecological effects of insecticide triazophos in indoor microcosms[J]. Asian Journal of Ecotoxicology, 2016, 11(3):101-114(in Chinese)
Haegerbaeumer A, Raschke R, Reiff N, et al. Comparing the effects of fludioxonil on non-target soil invertebrates using ecotoxicological methods from single-species bioassays to model ecosystems[J]. Ecotoxicology and Environmental Safety, 2019, 183:109596
单秀娟, 李苗, 王伟继. 环境DNA(eDNA)技术在水生生态系统中的应用研究进展[J]. 渔业科学进展, 2018, 39(3):23-29Shan X J, Li M, Wang W J. Application of environmental DNA technology in aquatic ecosystem[J]. Progress in Fishery Sciences, 2018, 39(3):23-29(in Chinese)
李飞龙, 杨江华, 杨雅楠, 等. 环境DNA宏条形码监测水生态系统变化与健康状态[J]. 中国环境监测, 2018, 34(6):37-46Li F L, Yang J H, Yang Y N, et al. Using environmental DNA metabarcoding to monitor the changes and health status of aquatic ecosystems[J]. Environmental Monitoring of China, 2018, 34(6):37-46(in Chinese)
Zhang X. Environmental DNA shaping a new era of ecotoxicological research[J]. Environmental Science & Technology, 2019, 53(10):5605-5612
Zhao M, Zhao M, Ma C, et al. Studies on the application of the environmental DNA in aquatic ecosystem[J]. Journal of Fishery Sciences of China, 2018, 25(4):714-720
Mächler E, Deiner K, Spahn F, et al. Fishing in the water:effect of sampled water volume on environmental DNA-based detection of macroinvertebrates[J]. Environmental Science & Technology, 2015, 50(1):305-312
陈炼, 吴琳, 刘燕, 等. 环境DNA metabarcoding及其在生态学研究中的应用[J]. 生态学报, 2016, 36(15):4573-4582Chen L, Wu L, Liu Y, et al. Application of environmental DNA metabarcoding in ecology[J]. Acta Ecologica Sinica, 2016, 36(15):4573-4582(in Chinese)
Thomsen P F, Willerslev E. Environmental DNA-An emerging tool in conservation for monitoring past and present biodiversity[J]. Biological Conservation, 2015, 183:4-18
Yang J, Zhang X, Xie Y, et al. Ecogenomics of zooplankton community reveals ecological threshold of ammonia nitrogen[J]. Environmental Science & Technology, 2017, 51(5):3057-3064
Yang J, Jeppe K, Pettigrove V, et al. Environmental DNA metabarcoding supporting community assessment of environmental stressors in a field-based sediment microcosm study[J]. Environmental Science & Technology, 2018, 52(24):14469-14479
Ehrlich I, Lui F. The problem of population and growth:A review of the literature from Malthus to contemporary models of endogenous population and endogenous growth[J]. Journal of Economic Dynamics and Control, 1997, 21(1):205-242
Becker C, Faber M, Hertel K, et al. Malthus vs. Wordsworth:Perspectives on humankind, nature and economy. A contribution to the history and the foundations of ecological economics[J]. Ecological Economics, 2005, 53(3):299-310
何泽荣, 马知恩. 污染与捕获对Logistic种群的影响[J]. 生物数学学报, 1997, 12(3):230-237He Z R, Ma Z E. On the effect of pollution and catch to a logistic population[J]. Journal of Biomathematics, 1997,12(3):230-237(in Chinese)
Hallam T G, de Luna J T. Effects of toxicants on populations:A qualitative:Approach Ⅲ. Environmental and food chain pathways[J]. Journal of Theoretical Biology, 1984, 109(3):411-429
金香琴. 多环芳烃胁迫对淡水生物种群生长及种间关系的影响及其生态风险评价[D]. 长春:东北师范大学, 2014:40-62 Jin X Q. Effect and ecological risk assessment of polycyclic aromatic hydrocarbons stress on populations growth and interspecific relationships of freshwater aquatic organisms[D]. Changchun:Northeast Normal University, 2014:40-62(in Chinese)
Barnthouse L W. Quantifying population recovery rates for ecological risk assessment[J]. Environmental Toxicology and Chemistry, 2004, 23(2):500-508
Deines A M, Chen V C, Landis W G. Modeling the risks of nonindigenous species introductions using a patch-dynamics approach incorporating contaminant effects as a disturbance[J]. Risk Analysis, 2005, 25(6):1637-1651
Leslie P H. On the use of matrices in certain population mathematics[J]. Biometrika, 1945, 33(3):183-212
Hanson N, Stark J D. Comparison of population level and individual level endpoints to evaluate ecological risk of chemicals[J]. Environmental Science & Technology, 2012, 46(10):5590-5598
Chandler G T, Cary T L, Bejarano A C, et al. Population consequences of fipronil and degradates to copepods at field concentrations:An integration of life cycle testing with Leslie matrix population modeling[J]. Environmental Science & Technology, 2004, 38(23):6407-6414
An W, Hu J, Giesy J P, et al. Extinction risk of exploited wild roach (Rutilus rutilus) populations due to chemical feminization[J]. Environmental Science & Technology, 2009, 43(20):7895-7901
Ducrot V, Billoir E, Péry A, et al. From individual to population level effects of toxicants in the tubicifid Branchiura sowerbyi using threshold effect models in a Bayesian framework[J]. Environmental Science & Technology, 2010, 44(9):3566-3571
Kooijman S A L M. Energy budgets can explain body size relations[J]. Journal of Theoretical Biology, 1986, 121(3):269-282
Baas J, Augustine S, Marques G M, et al. Dynamic energy budget models in ecological risk assessment:From principles to applications[J]. Science of the Total Environment, 2018, 628:249-260
Jager T, Gudmundsdottir E M, Cedergreen N. Dynamic modeling of sublethal mixture toxicity in the nematode Caenorhabditis elegans[J]. Environmental Science & Technology, 2014, 48(12):7026-7033
Billoir E, Péry A R R, Charles S. Integrating the lethal and sublethal effects of toxic compounds into the population dynamics of Daphnia magna:A combination of the DEBtox and matrix population models[J]. Ecological Modelling, 2007, 203(3-4):204-214
Grech A, Brochot C, Dorne J L, et al. Toxicokinetic models and related tools in environmental risk assessment of chemicals[J]. Science of the Total Environment, 2017, 578:1-15
Escher B I, Ashauer R, Dyer S, et al. Crucial role of mechanisms and modes of toxic action for understanding tissue residue toxicity and internal effect concentrations of organic chemicals[J]. Integrated Environmental Assessment and Management, 2011, 7(1):28-49
张慧. 基于能量分配理论的稀有鮈鲫种群生态风险评价[D]. 北京:中国科学院生态环境研究中心, 2016:32-69 Zhang H.Population-level ecological risk assessment on the basis of energy allocation theory:Cased by Chinese rare minnow (Gobiocypris rarus)[D]. Beijng:Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 2016:32-69(in Chinese)
Lopes C, Péry A R R, Chaumot A, et al. Ecotoxicology and population dynamics:Using DEBtox models in a Leslie modeling approach[J]. Ecological Modelling, 2005, 188(1):30-40
Martin B T, Zimmer E I, Grimm V, et al. Dynamic energy budget theory meets individual-based modelling:A generic and accessible implementation[J]. Methods in Ecology and Evolution, 2012, 3(2):445-449
Conolly R B, Ankley G T, Cheng W, et al. Quantitative adverse outcome pathways and their application to predictive toxicology[J]. Environmental Science & Technology, 2017, 51(8):4661-4672
Baldwin D H, Spromberg J A, Collier T K, et al. A fish of many scales:Extrapolating sublethal pesticide exposures to the productivity of wild salmon populations[J]. Ecological Applications, 2009, 8:2004-2015
Sandahl J F, Baldwin D H, Jenkins J J, et al. Comparative thresholds for acetylcholinesterase inhibition and behavioral impairment in coho salmon exposed to chlorpyrifos[J]. Environmental Toxicology and Chemistry, 2005, 24(1):136-145
Doering J A, Wiseman S, Giesy J P, et al. A cross-species quantitative adverse outcome pathway for activation of the aryl hydrocarbon receptor leading to early life stage mortality in birds and fishes[J]. Environmental Science & Technology, 2018, 52(13):7524-7533
Hines D E, Edwards S W, Conolly R B, et al. A Case study application of the aggregate exposure pathway (AEP) and adverse outcome pathway (AOP) frameworks to facilitate the integration of human health and ecological end points for cumulative risk assessment (CRA)[J]. Environmental Science & Technology, 2018, 52(2):839-849
Teeguarden J G, Tan Y M, Edwards S W, et al. Completing the link between exposure science and toxicology for improved environmental health decision making:The aggregate exposure pathway framework[J]. Environmental Science & Technology, 2016, 50(9):4579-4586
Chen S, Chen B, Fath B D. Ecological risk assessment on the system scale:A review of state-of-the-art models and future perspectives[J]. Ecological Modelling, 2013, 250:25-33
Mackay D. Multimedia Environmental Fate Models:The Fugacity Approach[M]. Boca Raton, FL:Lewis Publishers, 1991
United States Environmental Protection Agency (US EPA). Aquatox (Release 2). Modeling Environmental Fate and Ecological Effects in Aquatic Ecosystems:Technical Documentation[R]. Washington DC:US EPA, 2004
Preziosia D V, Pastorok R A. Ecological food web analysis for chemical risk assessment[J]. Science of the Total Environment, 2008, 406(3):491-502
Wang B, Yu G, Jun H, et al. Probabilistic ecological risk assessment of DDTs in the Bohai Bay based on a food web bioaccumulation model[J]. Science of the Total Environment, 2010, 409(3):495-502
Zhang L L, Cui J S, Song T C, et al. Application of an AQUATOX model for direct toxic effects and indirect ecological effects assessment of polycyclic aromatic hydrocarbons (PAHs) in a plateau eutrophication lake, China[J]. Ecological Modelling, 2018, 388:31-44
张璐璐, 刘静玲, 张少伟, 等. 基于AQUATOX模型的白洋淀湖区多溴联苯醚(PBDEs)的生态效应阈值与生态风险评价研究[J]. 生态毒理学报, 2014, 9(6):1156-1172Zhang L L, Liu J L, Zhang S W, et al. AQUATOX model for ecological threshold and ecosystem risk assessment of polybrominated diphenyl ethers (PBDEs) in Baiyangdian Lake ecosystems[J]. Asian Journal of Ecotoxicology, 2014, 9(6):1156-1172(in Chinese)
DeAngelis D L, Bartell S M, Brenkert A L. Effects of nutrient recycling and food-chain length on resilience[J]. The American Naturalist, 1989, 134(5):778-805
Boughton D A, Smith E R, O'Neill R V. Regional vulnerability:A conceptual framework[J]. Ecosystem Health, 1999, 5(4):312-322
Fath B D. Network analysis in perspective:Comments on WAND:An ecological network analysis user friendly tool[J]. Environmental Model and Software, 2004, 19(4):341-343
Naito W, Miyamoto K I, Nakanishi J, et al. Application of an ecosystem model for aquatic ecological risk assessment of chemicals for a Japanese lake[J]. Water Research, 2002, 36(1):1-14
Raghua S, Dhileepan K, Scanlan J C. Predicting risk and benefit a priori in biological control of invasive plant species:A systems modelling approach[J]. Ecological Modelling, 2007, 208(2-4):247-262
De Chazal J, Quétier F, Lavorel S, et al. Including multiple differing stakeholder values into vulnerability assessments of socio-ecological systems[J]. Global Environmental Change, 2008, 18(3):508-520
Karami F, Balci N, Guven B. A modeling approach for calcium carbonate precipitation in a hypersaline environment:A case study from a shallow, alkaline lake[J]. Ecological Complexity, 2019, 39:100774
Lin B L, Tokai A, Nakanishi J. Approaches for establishing predicted-no-effect concentrations for population-level ecological risk assessment in the context of chemical substances management[J]. Environmental Science & Technology, 2005, 39(13):4833-4840
Regan H M, Akçakaya H R, Ferson S, et al. Treatments of uncertainty and variability in ecological risk assessment of single-species populations[J]. Human and Ecological Risk Assessment, 2003, 9(4):889-906

相关话题/生态 北京 技术 环境 中国科学院