李辉,
侯磊,
西南林业大学生态与环境学院, 昆明 650224
作者简介: 曾强(1992-),男,学士,研究方向为纳米材料的植物效应,E-mail:1219837853@qq.com.
通讯作者: 侯磊,houlei_1985@126.com
基金项目: 国家自然科学基金资助项目(21607120);云南省一流学科(生态学)建设经费资助项目;西南林业大学本科生科技创新项目(Z17015)中图分类号: X131
Different Effects of Nano-TiO2 Exposure on the Photosynthesis Characteristics of Wetland Plant Pistia stratiotes and Alisma plantago-aquatica
Zeng Qiang,Li Hui,
Hou Lei,
College of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
Corresponding author: Hou Lei,houlei_1985@126.com
CLC number: X131
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:纳米TiO2独特的理化性质使其成为应用最广泛的纳米材料之一,其进入水环境后对湿地植物产生的效应值得关注。以2类不同生活型的湿地植物大薸和泽泻为研究对象,纳米TiO2浓度梯度设置为0、10、30和250 mg·L-1,在暴露14 d之后分析了光合参数的变化规律,基于植物生物量变化率、各部位Ti元素浓度及光合特征参数,讨论了可能的机制。结果表明,纳米TiO2暴露促进了大薸和泽泻的生物量增长;纳米TiO2暴露后,Ti元素主要富集在植物根部,富集量随浓度升高而增加,大薸植物体内Ti元素浓度明显高于泽泻;高浓度纳米TiO2暴露能够显著改变2种植物的叶孔开放程度、CO2消耗状况及蒸腾速率,但对净光合速率的影响不显著。纳米TiO2暴露对2种植物光合特征影响的差异可能与它们不同的生活型有关。
关键词: 纳米TiO2/
湿地植物/
光合作用
Abstract:The unique physicochemical properties of nano-TiO2 make it become one of the most widely used nanomaterials, and the corresponding wetland plant effect caused by its entry into the water environment is worthy of attention. Two types of life forms of wetland plants, Pistia stratiotes and Alisma plantago-aquatica, were selected as the research objects, and the concentrations of nano-TiO2 were set as 0, 10, 30, and 250 mg·L-1, respectively. After 14 days of exposure, the change trend of photosynthetic parameters of these two plants was analyzed, and the possible mechanisms were also discussed based on the relative change rate of biomass, Ti element concentrations in each tissue of plant and photosynthetic parameters. The results showed that nano-TiO2 exposure promoted the biomass growth of Pistia stratiotes and Alisma plantago-aquatica. The enrichment of Ti mainly occurred in roots and the enrichment quantity increased with the increasing of nano-TiO2concentrations. The concentrations of Ti in plant tissues of Pistia stratiotes were significantly higher than that of Alisma plantago-aquatica. Relatively higher concentrations of nano-TiO2 could significantly change the opening degree of stomas, CO2 consumption amount and transpiration rate of the two plants, but had no significant effect on the net photosynthetic rate. Differences in plant life forms may be the main cause of different effects of nano-TiO2 exposure on the photosynthesis characteristics of these two wetland plants.
Key words:nano-TiO2/
wetland plants/
photosynthesis.
Tan W, Peralta-Videa J R, Gardea-Torresdey J L. Interaction of titanium dioxide nanoparticles with soil components and plants:Current knowledge and future research needs-A critical review[J]. Environmental Science:Nano, 2018, 5(2):257-278 |
吕继涛, 张淑贞. 人工纳米材料与植物的相互作用:植物毒性、吸收和传输[J]. 化学进展, 2013, 25(1):156-163Lv J T, Zhang S Z. Interactions between manufactured nanomaterials and plants:Phytotoxicity, uptake and translocation[J]. Progress in Chemistry, 2013, 25(1):156-163(in Chinese) |
何湘伟, 隋阳, 张雪莹, 等. 纳米材料毒性机制及其影响因素[J]. 西南民族大学学报:自然科学版, 2015, 41(3):316-325He X W, Sui Y, Zhang X Y, et al. Toxicity mechanism of nanomaterials and influencing factors[J]. Journal of Southwest University of Nationalities:Natural Science Edition, 2015, 41(3):316-325(in Chinese) |
Mitrano D M, Motellier S, Clavaguera S, et al. Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products[J]. Environment International, 2015, 77:132-147 |
Goswami L, Kim K H, Deep A, et al. Engineered nano particles:Nature, behavior, and effect on the environment[J]. Journal of Environmental Management, 2017, 196:297-315 |
Dehkourdi E H, Mosavi M. Effect of anatase nanoparticles (TiO2) on parsley seed germination (Petroselinum crispum) in vitro[J]. Biological Trace Element Research, 2013, 155(2):283-286 |
Asli S, Neumann P M. Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport[J]. Plant, Cell & Environment, 2009, 32:577-584 |
王震宇, 于晓莉, 高冬梅, 等. 人工合成纳米TiO2和MWCNTs对玉米生长及其抗氧化系统的影响[J]. 环境科学, 2010, 31(2):480-487Wang Z Y, Yu X L, Gao D M, et al. Effect of nano-rutile TiO2 and multi-walled carbon nanotubes on the growth of maize (Zea mays L.) seedlings and the relevant antioxidant response[J]. Environmental Science, 2010, 31(2):480-487(in Chinese) |
侯东颖, 冯佳, 谢树莲, 等. 纳米二氧化钛胁迫对普生轮藻的毒性效应[J]. 环境科学学报, 2012, 32(6):1481-1486Hou D Y, Feng J, Xie S L, et al. Toxic effects of nanoparticle TiO2 stress on Chara vulgaris L.[J]. Acta Scientiae Circumstantiae, 2012, 32(6):1481-1486(in Chinese) |
Du W, Sun Y, Ji R, et al. TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil[J]. Journal of Environmental Monitoring, 2011, 13(4):822-828 |
Ze Y, Liu C, Wang L, et al. The regulation of TiO2 nanoparticles on the expression of light-harvesting complex Ⅱ and photosynthesis of chloroplasts of Arabidopsis thaliana[J]. Biological Trace Element Research, 2011, 143(2):1131-1141 |
Yang F, Liu C, Gao F, et al. The improvement of spinach growth by nano-anatase TiO2treatment is related to nitrogen photoreduction[J]. Biological Trace Element Research, 2007, 119(1):77-88 |
Zahra Z, Arshad M, Rafique R, et al. Metallic nanoparticles (TiO2and Fe3O4) application modify rhizosphere phosphorus availability and uptake by Lactuca sativa[J]. Journal of Agricultural and Food Chemistry, 2015, 63(31):6876-6882 |
Li J, Naeem M S, Wang X, et al. Nano-TiO2 is not phytotoxic as revealed by the oilseed rape growth and photosynthetic apparatus ultra-structural response[J]. PLoS One, 2015, 10(12):e0143885 |
Ayyaraju M, Jie H, Xuan G, et al. Effect and mechanism of TiO2 nanoparticles on the photosynthesis of Chlorella pyrenoidosa[J]. Ecotoxicology and Environmental Safety, 2018, 161:497-506 |
Dias M C, Santos C, Pinto G, et al. Titanium dioxide nanoparticles impaired both photochemical and non-photochemical phases of photosynthesis in wheat[J]. Protoplasma, 2019, 256(1):69-78 |
Terry N. Limiting factors in photosynthesis:Ⅰ. Use of iron stress to control photochemical capacity in vivo[J]. Plant Physiology, 1980, 65(1):114-120 |
Hajra A, Mondal N K. Effects of ZnO and TiO2 nanoparticles on germination, biochemical and morphoanatomical attributes of Cicer arietinum L.[J]. Energy Ecology & Environment, 2017, 2(4):1-12 |
鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社, 1999:309-310 |
吕继涛, 罗磊, 张淑贞, 等. 玉米对纳米TiO2的吸收和积累[J]. 环境化学, 2011, 30(5):903-907Lv J T, Luo L, Zhang S Z, et al. The uptake and accumulation of TiO2 nanoparticles by maize plants[J]. Environmental Chemistry, 2011, 30(5):903-907(in Chinese) |
Song U, Jun H, Waldman B, et al. Functional analyses of nanoparticle toxicity:A comparative study of the effects of TiO2 and Ag on tomatoes Lycopersicon esculentum[J]. Ecotoxicology and Environmental Safety, 2013, 93:60-67 |
许大全. 光合作用气孔限制分析中的一些问题[J]. 植物生理学通讯, 1997, 33(4):241-244Xu D Q. Some problems in stomatal limitation analysis of photosynthesis[J]. Plant Physiology Communications, 1997, 33(4):241-244(in Chinese) |
Carvajal M, Alcaraz C F. Why titanium is a beneficial element for plants[J]. Journal of Plant Nutrition, 1998, 21(4):655-664 |
高嫄. 纳米TiO2、纳米CuO对青萍生长影响及其机理探讨[D]. 淄博:山东理工大学, 2012:19-20 Gao Y. Effect and mechanism of TiO2 and CuO nano-particles on Lemna minor growth[D]. Zibo:Shandong University of Technology, 2012:19-20(in Chinese) |
Wu Y, Gong W, Wang Y, et al. Leaf area and photosynthesis of newly emerged trifoliolate leaves are regulated by mature leaves in soybean[J]. Journal of Plant Research, 2018, 131(4):671-680 |
Lyu S, Wei X, Chen J, et al. Titanium as a beneficial element for crop production[J]. Frontiers in Plant Science, 2017, 8:597-616 |
Ahmad B, Shabbir A, Jaleel H, et al. Efficacy of titanium dioxide nanoparticles in modulating photosynthesis, peltate glandular trichomes and essential oil production and quality in Mentha piperita L.[J]. Current Plant Biology, 2018, 13:6-15 |
Kurepa J, Paunesku T, Vogt S, et al. Uptake and distribution of ultrasmall anatase TiO2 alizarin red S nanoconjugates in Arabidopsis thaliana[J]. Nano Letters, 2010, 10(7):2296-2302 |
李艳娟, 庄正, 刘青青, 等. 纳米TiO2对杉木种子萌发和幼苗生长及生理的影响[J]. 生态学杂志, 2017, 36(5):1259-1264Li Y J, Zhuang Z, Liu Q Q, et al. The effects of nano-TiO2 on seed germination, seedling growth and physiology of Chinese fir[J]. Chinese Journal of Ecology, 2017, 36(5):1259-1264(in Chinese) |
林道辉, 冀静, 田小利, 等. 纳米材料的环境行为与生物毒性[J]. 科学通报, 2009, 54(23):3590-3604Lin D H, Ji J, Tian X L, et al. Environmental behavior and toxicity of engineered nanomaterials[J]. Chinese Science Bulletin, 2009, 54(23):3590-3604(in Chinese) |
Movafeghi A, Khataee A, Abedi M, et al. Effects of TiO2 nanoparticles on the aquatic plant Spirodela polyrrhiza:Evaluation of growth parameters, pigment contents and antioxidant enzyme activities[J]. Journal of Environmental Sciences, 2018, 64(2):130-138 |
Hussain S, Iqbal N, Brestic M, et al. Changes in morphology, chlorophyll fluorescence performance and Rubisco activity of soybean in response to foliar application of ionic titanium under normal light and shade environment[J]. Science of the Total Environment, 2019, 658:626-637 |
巴翠兰. 纳米二氧化钛在植物体内吸收、转运和蓄积及与蛋白作用机理的研究[D]. 保定:河北大学, 2012:14-18 Ba C L. Absorption, transport and accumulation of titanium dioxide in plants and function methods between protein and metal[D]. Baoding:Hebei University, 2012:14-18(in Chinese) |