删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

羧基化多壁碳纳米管与镉复合干扰蚕豆幼苗生理特性的研究

本站小编 Free考研考试/2021-12-30

刘玲1,2,
许婷婷1,
赵薪程1,
刘海燕1,
戴慧芳1,
杨俊文1,
汪承润1,,
1. 淮南师范学院生物工程学院, 淮南 232038;
2. 资源与环境生物技术安徽普通高校重点实验室, 淮南 232038
作者简介: 刘玲(1967-),女,博士,副教授,研究方向为植物生态学及逆境生理学,E-mail:lliiuu494@sina.com.
通讯作者: 汪承润,chengrunwang@163.com
基金项目: 安徽省教育厅重点项目(KJ2018A0472);安徽省重大专项项目(18030701189);安徽省自然科学基金资助项目(1608085QC50)


中图分类号: X171.5


Study on the Disturbation of Physiological Characteristics in Vicia faba L. Seedlings Exposed to Combination of Carboxylated Multi-Walled Carbon Nanotubes and Cadmium

Liu Ling1,2,
Xu Tingting1,
Zhao Xincheng1,
Liu Haiyan1,
Dai Huifang1,
Yang Junwen1,
Wang Chengrun1,,
1. School of Biological Engineering, Huainan Normal University, Huainan 232038, China;
2. Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan 232038, China
Corresponding author: Wang Chengrun,chengrunwang@163.com

CLC number: X171.5

-->

摘要
HTML全文
(0)(0)
参考文献(50)
相关文章
施引文献
资源附件(0)
访问统计

摘要:为探究羧基化多壁碳纳米管(MWCNTs-COOH)复合镉(Cd)对蚕豆幼苗的毒性效应,利用水培实验研究了MWCNTs-COOH(0、1.5、3.0、6.0和12.0 mg·L-1)与Cd(10 μmol·L-1)单一、复合胁迫下蚕豆幼苗生理的变化。结果表明,MWCNTs-COOH单一处理,随着其浓度的增加,根系活力呈下降趋势,当浓度达到12.0 mg·L-1时,与对照相比下降35.7%;低浓度的MWCNTs-COOH促使叶绿素含量增加,且1.5 mg·L-1 MWCNTs-COOH显著诱导叶中过氧化物酶(POD)活性升高;6.0~12.0 mg·L-1 MWCNTs-COOH促进叶·O2-产生速率加快,超氧化物歧化酶(SOD)活性升高,叶中红褐色斑点增多;MWCNTs-COOH浓度为12.0 mg·L-1时,根·O2-产生速率显著加快,SOD活性下降,根细胞染色加深,死亡加剧。MWCNTs-COOH与Cd复合后,当MWCNTs-COOH低于6.0 mg·L-1,与MWCNTs-COOH单一处理组比较,根系活力未见明显变化;增至6.0 mg·L-1后,根系活力降低至10 μmol·L-1 Cd单独处理组之下。所有复合处理组根和叶丙二醛(MDA)含量皆高于对应的MWCNTs-COOH单一处理,6.0 mg·L-1 MWCNTs-COOH复合Cd诱导根和叶POD活性增加,而12.0 mg·L-1 MWCNTs-COOH与Cd共同作用使叶中红褐色斑点加深且所占叶面积加大,达到64.02%,H2O2含量急剧增加,根尖细胞受损并部分脱落。因此,高浓度的MWCNTs-COOH能够加剧Cd对蚕豆幼苗的氧化胁迫。
关键词: 羧基化多壁碳纳米管/
/
蚕豆幼苗/
毒性效应

Abstract:In order to explore the joint toxic effects of carboxylated multi-walled carbon nanotubes (MWCNTs-COOH) and cadmium (Cd) on Vicia faba seedlings, the physiological changes of the seedlings hydroponically cultured in solution of MWCNTs-COOH (0, 1.5, 3.0, 6.0, and 12.0 mg·L-1), Cd (10 μmol·L-1) alone or their combination were investigated in present experiments. The results showed that root activities tended to decrease with the increase of the single treatment concentration of MWCNTs-COOH. The root activity decreased by 35.7% at 12.0 mg·L-1 MWCNTs-COOH in comparison to that of the control. In addition, low concentrations of MWCNTs-COOH promoted the production of chlorophyll, and peroxidase (POD) activity was significantly elevated at 1.5 mg·L-1 MWCNTs-COOH compared with the control in the leaves. Moreover,·O2- production rates, superoxide dismutase (SOD) activities and reddish-brown spots were increased with the increase of MWCNTs-COOH concentration from 6.0 to 12.0 mg·L-1 in the leaves. In roots, at 12.0 mg·L-1 MWCNTs-COOH, the·O2- was significantly produced, and the SOD activity was obviously declined compared with the control. Additionally, the dead cells in stained roots increased under the treatment. Under the combination of MWCNTs-COOH and Cd, no obvious changes were observed in the root activities at the concentrations of MWCNTs-COOH lower than 6.0 mg·L-1, compared with the single MWCNTs treatments with the corresponding concentrations. When the MWCNTs-COOH increased up to 6.0 mg·L-1, the root activities decreased below that of 10 μmol·L-1 Cd single treatment. Malondialdehyde (MDA) contents increased to be more than the corresponding treatment of MWCNTs-COOH in the roots or leaves under the combined treatments. POD activity was boosted in all the roots or leaves under the joint treatment by 6.0 mg·L-1 MWCNTs-COOH and 10 μmol·L-1 Cd. Particularly, the reddish-brown spots were expanded to 64.02%, and hydrogen peroxide production was markedly accumulated in the leaves, while the root tip cells were damaged and partially fell off the roots under the combination of 12.0 mg·L-1 MWCNTs-COOH and 10 μmol·L-1 Cd. Thus, it can be concluded that higher concentrations of MWCNTs-COOH (no less than 6.0 mg·L-1) may exacerbate the oxidative stress in V. faba seedlings exposed to Cd in culture solution.
Key words:MWCNTs-COOH/
Cd/
Vicia faba seedlings/
toxic effect.

加载中
Guaglianoni W C, Florence C L, Bonatto F, et al. Novel nanoarchitectured cobalt-doped TiO2 and carbon nanotube arrays:Synthesis and photocurrent performance[J]. Ceramics International, 2019, 45(2):2439-2445
Ninnora Meethal B, Ramanarayanan R, Swaminathan S. Surface modification of oxygen-deficient ZnO nanotubes by interstitially incorporated carbon:A superior photocatalytic platform for sustainable water and surface treatments[J]. Applied Nanoscience, 2018, 8(6):1545-1555
王婧雯, 张静静, 范同祥. 碳纳米管表面处理及其在铜基复合材料中的应用[J]. 材料导报, 2018, 32(17):2932-2939, 2948 Wang J W, Zhang J J, Fan T X. Process in surface treatment of carbon nanotubes and its applications to copper matrix composites[J]. Materials Review, 2018, 32(17):2932-2939, 2948(in Chinese)
陈晓, 陈佳辉, 陈日耀, 等. 功能化多壁碳纳米管负载铁离子改性双极膜的制备与表征[J]. 高分子材料科学与工程, 2017, 33(4):148-153Chen X, Chen J H, Chen R Y, et al. Preparation and characterization of bipolar membranes modified by functionalized multiwalled carbon nanotubes loaded with Fe3+[J]. Polymer Materials Science & Engineering, 2017, 33(4):148-153(in Chinese)
Petersen E J, Zhang L W, Mattison N T, et al. Potential release pathways, environmental fate, and ecological risks of carbon nanotubes[J]. Environmental Science & Technology, 2011, 45(23):9837-9856
贾建博, 江翠娟, 闫兵. 纳米材料在易感群体小鼠模型中的潜在毒性[J]. 科学通报, 2017, 62(24):2749-2757Jia J B, Jiang C J, Yan B. Potential nanotoxicity in susceptible populations:Insight from investigation of mouse models[J]. Chinese Science Bulletin, 2017, 62(24):2749-2757(in Chinese)
Edgington A J, Roberts A P, Taylor L M, et al. The influence of natural organic matter on the toxicity of multiwalled carbon nanotubes[J]. Environmental Toxicology and Chemistry, 2010, 29(11):2511-2518
Mouchet F, Landois P, Puech P, et al. Carbon nanotube ecotoxicity in amphibians:Assessment of multiwalled carbon nanotubes and comparison with double-walled carbon nanotubes[J]. Nanomedicine, 2010, 5(6):963-974
Folkrnann J K, Risom L, Jacobsen N R, et al. Oxidatively damaged DNA in rats exposed by oral gavage to C60 fullerenes and single-walled carbon nanotubes[J]. Environmental Health Perspectives, 2009, 117(5):703-708
Liu S, Wei L, Hao L, et al. Sharper and faster "nanodarts" kill more bacteria:A still of antibacterial activity of individually dispersed pristine single-walled carbon nanotube[J]. ACS Nano, 2009, 3(12):3891-3902
Parvin B, Ikhtiari R, Fugetsu B, et al. Phytotoxicity of multi-walled carbon nanotubes assessed by selected plant species in the seedling stage[J]. Applied Surface Science, 2012, 262(13):120-124
Begum P, Ikhtiari R, Fugetsu B. Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce[J]. Carbon, 2011, 49(12):3907-3919
Khodakovskaya M, Dervishi E, Mahmood M, et al. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth[J]. ACS Nano, 2009, 3(10):3221-3227
Khodakovskaya M V, Dervishi E, Villagarcia H, et al. Carbon nanotubes induce growth enhancement of tobacco cells[J]. ACS Nano, 2012, 6(3):2128-2135
Hassan S E, Hijri M, St-Arnaud M. Effect of arbuscular mycorrhizal fungi on trace metal uptake by sunflower plants grown on cadmium contaminated soil[J]. New Biotechnology, 2013, 30(6):780-787
Sato A, Takeda H, Wataru O, et al. Reduction of cadmium uptake in spinach (Spinacia oleracea L.) by soil amendment with animal waste compost[J]. Journal of Hazardous Materials, 2010, 181(1-3):298-304
刘俊, 廖柏寒, 曾清如, 等. 镉胁迫对豆科作物生理生态效应研究进展[J]. 生态毒理学报, 2010, 5(2):295-301Liu J, Liao B H, Zeng Q R, et al. Advances on physiological and ecological effects of cadmium onlegume crops[J]. Asian Journal of Ecotoxicology, 2010, 5(2):295-301(in Chinese)
王素娟. 水体重金属污染现状及其治理方法研究[J]. 中国化工贸易, 2015(19):151
Gomez M R, Cerutti S, Sombra L L, et al. Determination of heavy metals for the quality control in Argentinian herbal medicines by ETAAS and ICP-OES[J]. Food and Chemical Toxicology, 2006, 45(6):1060-1064
Gupta S K, Chabukdhara M, Singh J, et al. Evaluation and potential health hazard of selected metals in water, sediments, and fish from the Gomti River[J]. Human and Ecological Risk Assessment, 2015, 21(1):227-240
Zhang X R, Song K H, Liu J F, et al. Sorption of triclosan by carbon nanotubes in dispersion:The importance of dispersing properties using different surfactants[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2019, 562:280-288
Wang C, Liu H, Chen J, et al. Carboxylated multi-walled carbon nanotubes aggravated biochemical and subcellular damages in leaves of broad bean (Vicia faba L.) seedlings under combined stress of lead and cadmium[J]. Journal of Hazardous Materials, 2014, 274(15):404-412
胡秉芬, 黄华梨, 季元祖, 等. 分光光度法测定叶绿素含量的提取液的适宜浓度[J]. 草业科学, 2018, 35(8):1965-1974Hu B F, Huang H L, Ji Y Z, et al. Evaluation of the optimum concentration of chlorophyll extract for determination of chlorophyll content by spectrophotometry[J]. Pratacultural Science, 2018, 35(8):1965-1974(in Chinese)
张志勇, 卜晶晶, 王素芳, 等. 冠菌素对不同钾水平下TTC法测定的棉花根系活力的影响[J]. 植物生理学报, 2015, 51(5):695-701Zhang Z Y, Bu J J, Wang S F, et al. Effect of coronatine on cotton root activity determined by TTC assay at different levels of potassium[J]. Plant Physiology Journal, 2015, 51(5):695-701(in Chinese)
李忠光, 龚明. 植物中超氧阴离子自由基测定方法的改进[J]. 云南植物研究, 2005, 27(2):211-216Li Z G, Gong M. Improvement of measurement method for superoxide anion radical in plant[J]. Acta Botanica Yunnanica, 2005, 27(2):211-216(in Chinese)
丛国强, 尹成林, 何邦令, 等. 水分胁迫下内生真菌球毛壳ND35对冬小麦苗期生长和抗旱性的影响[J]. 生态学报, 2015, 35(18):6120-6128Cong G Q, Yin C L, He B L, et al. Effect of the endophytic fungus Chaetomium globosum ND35 on the growth and resistance to drought of winter wheat at the seedling stage under water stress[J]. Acta Ecologica Sinica, 2015, 35(18):6120-6128(in Chinese)
Romero-Puertas M C, Rodriguez-Serrano M, Corpas F J, et al. Cadmium-induced subcellular accumulation of·O2- and H2O2 in pea leaves[J]. Plant, Cell and Environment, 2004, 27(9):1122-1134
刘楠, 林植芳. 用伊文思蓝染色法检测植物整体叶片的细胞活性[J]. 植物生理学报, 2011, 47(6):570-574Liu N, Lin Z F. Use of Evans blue for testing cell viability of intact leaves of plant[J]. Plant Physiology Journal, 2011, 47(6):570-574(in Chinese)
Rong H, Wang C R, Yu X R, et al. Carboxylated multi-walled carbon nanotubes exacerbated oxidative damage in roots of Vicia faba L. seedlings under combined stress of lead and cadmium[J]. Ecotoxicology and Environmental Safety, 2018, 161:616-623
Jiang L, Ma L, Sui Y, et al. Effect of manure compost on the herbicide prometryne bioavailability to wheat plants[J]. Journal of Hazardous Materials, 2010, 184(1-3):337-344
Zhou Z S, Wang S J, Yang Z M. Biological detection and analysis of mercury toxicity to alfalfa (Medicago sativa) plants[J]. Chemosphere, 2008, 70(8):1500-1509
张栋. 干旱胁迫对苹果光合作用和叶绿素荧光的影响及叶片衰老特性研究[D]. 杨凌:西北农林科技大学, 2011:6-7 Zhang D. Effects of drought stress on photosynthesis and fluorescence chlorophyll parameters of apple leaves and leaf senescence characteristics[D]. Yangling:Northwest A & F University, 2011:6-7(in Chinese)
李香玲, 冯跃华. 水稻根系生长特性及其与地上部分关系的研究进展[J]. 中国农学通报, 2015, 31(6):1-6Li X L, Feng Y H. Research advance on relation of aerial part and root traits of rice[J]. Chinese Agricultural Science Bulletin, 2015, 31(6):1-6(in Chinese)
杨祥宇. 纳米二氧化钛对人工湿地水处理系统的影响机制研究[D]. 重庆:重庆大学, 2018:55-56 Yang X Y. Impacts mechanism of titanium oxidation nanoparticles on functionalities of constructed wetlands[D]. Chongqing:Chongqing University, 2018:55-56(in Chinese)
Begum P, Ikhtiari R, Fugetsu B, et al. Phytotoxicity of multi-walled carbon nanotubes assessed by selected plant species in the seedling stage[J]. Applied Surface Science, 2012, 262:120-124
Wang H J, Zhou A L, Peng F, et al. Adsorption characteristic of acidified carbon nanotubes for heavy metal Pb(Ⅱ) in aqueous solution[J]. Materials Science and Engineering:A, 2007, 466(1-2):201-206
Noctor G, Reichheld J P, Foyer C H. ROS-related redox regulation and signaling in plants[J]. Seminars in Cell & Developmental Biology, 2018, 80:3-12
Segal L M, Wilson R A. Reactive oxygen species metabolism and plant-fungal interactions[J]. Fungal Genetics & Biology, 2018, 110(110):1-9
Begum P, Ikhtiari R, Fugetsu B. Potential impact of multi-walled carbon nanotubes exposure to the seedling stage of selected plant species[J]. Nanomaterials, 2014, 4(2):203-221
Begum P, Fugetsu B. Phytotoxicity of multi-walled carbon nanotubes on red spinach (Amaranthus tricolor L.) and the role of ascorbic acid as an antioxidant[J]. Journal of Hazardous Materials, 2012, 243:212-222
Tan X M, Lin C, Fugetsu B. Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells[J]. Carbon, 2009, 47(15):3479-3487
刘雪琴. 纳米ZnO/AM真菌对玉米的生物效应及作用机理研究[D]. 重庆:西南大学, 2015:28-29 Liu X Q. Biological effects of nano-ZnO and arbuscular mycorrhizal fungi on maize and its mechanism[D]. Chongqing:Southwest University, 2015:28-29(in Chinese)
邱清华, 邓绍云, 黄娟, 等. 铅胁迫对十字花科种子萌发及幼苗生长的影响[J]. 中国农学通报, 2010, 26(18):175-179Qiu Q H, Deng S Y, Huang J, et al. Study on the influence of lead stress on the mustard family's seed sprouting and seedling growing[J]. Chinese Agricultural Science Bulletin, 2010, 26(18):175-179(in Chinese)
张苗苗. Se4+对Cd2+胁迫下蚕豆根生理生化特性的研究[D]. 成都:四川师范大学, 2008:27-29 Zhang M M. The research on the physiological and chemical characteristic of Vicia faba cultivating in Se-Cd compounds[D]. Chengdu:Sichuan Normal University, 2008:27-29(in Chinese)
俞萍, 高凡, 刘杰, 等. 镉对植物生长的影响和植物耐镉机制研究进展[J]. 中国农学通报, 2017, 33(11):89-95Yu P, Gao F, Liu J, et al. Effect of Cd on plant growth and its tolerance mechanism[J]. Chinese Agricultural Science Bulletin, 2017, 33(11):89-95(in Chinese)
钟建丹, 陈红春, 罗春燕, 等. 碳纳米管与菲暴露对水稻发芽及幼苗生长的影响[J]. 农业环境科学学报, 2018, 37(10):2110-2117Zhong J D, Chen H C, Luo C Y, et al. Exposure to carbon nanotube and phenanthrene:Impact on germination and seedling growth of rice[J]. Journal of Agro-Environment Science, 2018, 37(10):2110-2117(in Chinese)
Seppänen M, Turakainen M, Hartikainen H. Selenium effects on oxidative stress in potato[J]. Plant Science, 2003, 165(2):311-319
杨淑慎, 高俊凤. 活性氧、自由基与植物的衰老[J]. 西北植物学报, 2001, 21(2):215-220Yang S S, Gao J F. Influence of active oxygen and free radicals on plant senescence[J]. Acta Botanica Boreali-Occidentalia Sinica, 2001, 21(2):215-220(in Chinese)
郭敏, 龚继来, 曾光明. 多壁碳纳米管对水稻幼苗的植物毒性研究[J]. 生态毒理学报, 2016, 11(5):94-102Guo M, Gong J L, Zeng G M. Comprehensive phytotoxicity assessment of multi-wall carbon nanotubes on rice seedlings[J]. Asian Journal of Ecotoxicology, 2016, 11(5):94-102(in Chinese)
罗潇宇, 任垠安, 高浩杰, 等. 羧基化多壁碳纳米管对蛋白核小球藻的生物学效应研究[J]. 生态毒理学报, 2017, 12(5):212-218Luo X Y, Ren Y A, Gao H J, et al. Effects of carboxylated multi-walled carbon nanotubes on the physiology of Chlorella pyrenoidosa[J]. Asian Journal of Ecotoxicology, 2017, 12(5):212-218(in Chinese)

相关话题/植物 生态 生理 细胞 农学