潘一帆1,
魏若瑾1,
李济彤1,
杨璐1,
朱莉飞2,
王会利1,,
1. 中国科学院生态环境研究中心环境生物技术重点实验室, 北京 100085;
2. 北京市水产科学研究所, 北京 100068
作者简介: 常静(1990-),女,博士研究生,研究方向为生态毒理学,E-mail:changjingforever@163.com.
通讯作者: 王会利,huiliwang@rcees.ac.cn
基金项目: 国家自然科学基金资助项目(41807478);公益性行业(农业)科研专项(201503108)中图分类号: X171.5
Application of Metabolomics in Chemical Risk Assessment
Chang Jing1,Pan Yifan1,
Wei Ruojin1,
Li Jitong1,
Yang Lu1,
Zhu Lifei2,
Wang Huili1,,
1. Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
2. Beijing Fisheries Research Institute, Beijing 100068, China
Corresponding author: Wang Huili,huiliwang@rcees.ac.cn
CLC number: X171.5
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:随着化学品的数量日益增长,其潜在毒性对人类及环境中的非靶标生物造成了严重威胁。化学品风险评估的速度已经跟不上化学品的发展速度,急需根据现代毒理学技术的发展,对化学品风险评估方法进行丰富与发展。代谢组学作为系统生物学最下游的组学技术,是整体性研究生命体系功能变化的重要学科之一。基于代谢组学的毒理学评价方法不仅具有成本低、周期短和实验动物消耗少等特点,而且可以快速筛选出低剂量化学品早期暴露的生物标记物,揭示化学品毒性作用通路及机制。本文主要介绍了代谢组学的起源与发展、代谢组学技术应用于毒理学评价的优势、案例及前景展望。
关键词: 代谢组学/
核磁共振/
质谱/
毒理学/
毒性机理
Abstract:With the increasing amount of chemicals, the potential toxicity poses a serious threat to humans and non-target organisms in environment. As the speed of chemical risk assessment has not kept pace with the development of chemicals, it is urgent to enrich and develop the chemical risk assessment methods according to the modern toxicology technology. Metabolomics, as the downstream omics technology of system biology, is one of the important subjects to study the function changes of life system integrality. The toxicological evaluation method based on metabolomics is not only characterized by the low cost, short experiment cycle and low consumption of experimental animals, but also stand out from the quickly biomarker screening of early low dose chemical exposure and unraveling the pathway and mechanism of chemical toxicity. This paper mainly introduced the origin and development of metabolomics, the advantages, cases and prospects of the application of metabolomics in toxicological evaluation.
Key words:metabolomics/
nuclear magnetic resonance (NMR)/
mass spectra/
toxicology/
toxic mechanism.
Judson R, Richard A, Dix D J, et al. The toxicity data landscape for environmental chemicals[J]. Environmental Health Perspectives, 2009, 117(5):685-695 |
Hartung T, Rovida C. Chemical regulators have overreached[J]. Nature, 2009, 460(7259):1080-1081 |
Hartung T. Toxicology for the twenty-first century[J]. Nature, 2009, 460(7252):208-212 |
Silbergeld E K, Mandrioli D, Cranor C F. Regulating chemicals:Law, science, and the unbearable burdens of regulation[J]. Annual Review of Public Health, 2015, 36:175-191 |
何庆华, 郑宗坤, 任萍萍, 等. 代谢组学在毒理学研究中的应用[J]. 卫生研究, 2014, 43(1):161-165 |
Oliver S G, Winson M K, Kell D B, et al. Systematic functional analysis of the yeast genome[J]. Trends in Biotechnology, 1998, 16(9):373-378 |
Nicholson J K, Lindon J C, Holmes E. Metabonomics:Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data[J]. Xenobiotica, 1999, 29(11):1181-1189 |
Fiehn O, Kopka J, Dormann P, et al. Metabolite profiling for plant functional genomics[J]. Nature Biotechnology, 2001, 19(2):173 |
Fiehn O, Sumner L W, Rhee S Y, et al. Minimum reporting standards for plant biology context information in metabolomic studies[J]. Metabolomics, 2007, 3(3):195-201 |
Griffin J L, Nicholls A W, Daykin C A, et al. Standard reporting requirements for biological samples in metabolomics experiments:Mammalian/in vivo experiments[J]. Metabolomics, 2007, 3(3):179-188 |
Hardy N W, Taylor C F. A roadmap for the establishment of standard data exchange structures for metabolomics[J]. Metabolomics, 2007, 3(3):243-248 |
Morrison N, Bearden D, Bundy J G, et al. Standard reporting requirements for biological samples in metabolomics experiments:Environmental context[J]. Metabolomics, 2007, 3(3):203-210 |
Rubtsov D V, Jenkins H, Ludwig C, et al. Proposed reporting requirements for the description of NMR-based metabolomics experiments[J]. Metabolomics, 2007, 3(3):223-229 |
Sansone S A, Schober D, Atherton H J, et al. Metabolomics standards initiative:Ontology working group work in progress[J]. Metabolomics, 2007, 3(3):249-256 |
Fiehn O, Robertson D, Griffin J, et al. The metabolomics standards initiative (MSI)[J]. Metabolomics, 2007, 3(3):175-178 |
Van der Werf M J, Takors R, Smedsgaard J, et al. Standard reporting requirements for biological samples in metabolomics experiments:Microbial and in vitro biology experiments[J]. Metabolomics, 2007, 3(3):189-194 |
Goodacre R, Broadhurst D, Smilde A K, et al. Proposed minimum reporting standards for data analysis in metabolomics[J]. Metabolomics, 2007, 3(3):231-241 |
Sumner L W, Amberg A, Barrett D, et al. Proposed minimum reporting standards for chemical analysis chemical analysis working group (CAWG) metabolomics standards initiative (MSI)[J]. Metabolomics, 2007, 3(3):211-221 |
Beger R D, Dunn W B, Bandukwala A, et al. Towards quality assurance and quality control in untargeted metabolomics studies[J]. Metabolomics, 2019, 15(1):1-5 |
Zhang A, Sun H, Wang P, et al. Modern analytical techniques in metabolomics analysis[J]. Analyst, 2012, 137(2):293-300 |
Ravanbakhsh S, Liu P, Bjordahl T C, et al. Accurate, fully-automated NMR spectral profiling for metabolomics[J]. PLoS One, 2015, 10(5):1-15 |
Jayavelu N D, Bar N S. Metabolomic studies of human gastric cancer:Review[J]. World Journal of Gastroenterology, 2014, 20(25):8092-8101 |
Mir S A, Rajagopalan P, Jain A P, et al. LC-MS-based serum metabolomic analysis reveals dysregulation of phosphatidylcholines in esophageal squamous cell carcinoma[J]. Journal of Proteomics, 2015, 127:96-102 |
Schauer N, Steinhauser D, Strelkov S, et al. GC-MS libraries for the rapid identification of metabolites in complex biological samples[J]. FEBS Letters, 2005, 579(6):1332-1337 |
Buchholz A, Takors R, Wandrey C. Quantification of intracellular metabolites in Escherichia coli K12 using liquid chromatographic-electrospray ionization tandem mass spectrometric techniques[J]. Analytical Biochemistry, 2001, 295(2):129-137 |
廖春晓, 高文静, 李立明. 代谢组学在心血管流行病学研究中的应用[J]. 中华流行病学杂志, 2014, 35(5):610-612Liao C X, Gao W J, Li L M. Application of metabolomics in research on cardiovascular disease[J]. Chinese Journal of Epidemiology, 2014, 35(5):610-612(in Chinese) |
Wettersten H I, Weiss R H. Applications of metabolomics for kidney disease research from biomarkers to therapeutic targets[J]. Organogenesis, 2013, 9(1):11-18 |
Schwab M, Fisel P, Schaeffeler E. Metabolomics and tumor diseases[J]. Pathologe, 2017, 38:202-204 |
Kaddurah D R, Krishnan K R R. Metabolomics:A global biochemical approach to the study of central nervous system diseases[J]. Neuropsychopharmacology, 2009, 34(1):173-186 |
Lin C Y, Viant M R, Tjeerdema R S. Metabolomics:Methodologies and applications in the environmental sciences[J]. Journal of Pesticide Science, 2006, 31(3):245-251 |
Viant M R, Rosenblum E S, Tjeerdema R S. NMR-based metabolomics:A powerful approach for characterizing the effects of environmental stressors on organism health[J]. Environmental Science & Technology, 2003, 37(21):4982-4989 |
Warne M A, Lenz E M, Osborn D, et al. An NMR-based metabonomic investigation of the toxic effects of 3-trifluoromethyl-aniline on the earthworm Eisenia veneta[J]. Biomarkers, 2000, 5(1):56-72 |
Levandi T, Leon C, Kaljurand M, et al. Capillary electrophoresis time-of-flight mass spectrometry for comparative metabolomics of transgenic versus conventional maize[J]. Analytical Chemistry, 2008, 80(16):6329-6335 |
Simo C, Ibanez C, Valdes A, et al. Metabolomics of genetically modified crops[J]. International Journal of Molecular Sciences, 2014, 15(10):18941-18966 |
Hoekenga O A. Using metabolomics to estimate unintended effects in transgenic crop plants:Problems, promises, and opportunities[J]. Journal of Biomolecular Techniques, 2008, 19(3):159-166 |
Van Ravenzwaay B, Herold M, Kamp H, et al. Metabolomics:A tool for early detection of toxicological effects and an opportunity for biology based grouping of chemicals-From QSAR to QBAR[J]. Mutation Research-Genetic Toxicology and Environmental Mutagenesis, 2012, 746(2):144-150 |
Davis J M, Ekman D R, Skelton D M, et al. Metabolomics for informing adverse outcome pathways:Androgen receptor activation and the pharmaceutical spironolactone[J]. Aquatic Toxicology, 2017, 184:103-115 |
Southam A D, Lange A, Hines A, et al. Metabolomics reveals target and off-target toxicities of a model organophosphate pesticide to roach (Rutilus rutilus):Implications for biomonitoring[J]. Environmental Science & Technology, 2011, 45(8):3759-3767 |
Dixit R, Riviere J, Krishnan K, et al. Toxicokinetics and physiologically based toxicokinetics in toxicology and risk assessment[J]. Journal of Toxicology and Environmental Health Part B Critical Reviews, 2003, 6(1):1-40 |
Van Ravenzwaay B, Sperber S, Lemke O, et al. Metabolomics as read-across tool:A case study with phenoxy herbicides[J]. Regulatory Toxicology and Pharmacology, 2016, 81:288-304 |
Blais E M, Rawls K D, Dougherty B V, et al. Reconciled rat and human metabolic networks for comparative toxicogenomics and biomarker predictions[J]. Nature Communications, 2017, 8:1-15 |
Taylor N S, Gavin A, Viant M R. Metabolomics discovers early-response metabolic biomarkers that can predict chronic reproductive fitness in individual Daphnia magna[J]. Metabolites, 2018, 8(3):109501-109519 |
Taylor N S, Weber R J M, White T A, et al. Discriminating between different acute chemical toxicities via changes in the daphnid metabolome[J]. Toxicological Sciences, 2010, 118(1):307-317 |
Yan J, Zhu W, Wang D, et al. Different effects of alpha-endosulfan, beta-endosulfan, and endosulfan sulfate on sex hormone levels, metabolic profile and oxidative stress in adult mice testes[J]. Environmental Research, 2019, 169:315-325 |
Wei Z, Xi J, Gao S, et al. Metabolomics coupled with pathway analysis characterizes metabolic changes in response to BDE-3 induced reproductive toxicity in mice[J]. Scientific Reports, 2018, 8:5423 |
Di Q N, Cao W X, Xu R, et al. Chronic low-dose exposure of nonylphenol alters energy homeostasis in the reproductive system of female rats[J]. Toxicology and Applied Pharmacology, 2018, 348:67-75 |
Zhu Y, Zhang J, Liu Y, et al. Environmentally relevant concentrations of the flame retardant tris(1,3-dichloro-2-propyl) phosphate inhibit the growth and reproduction of earthworms in soil[J]. Environmental Science & Technology Letters, 2019, 6(5):277-282 |
Jiang Y X, Shi W J, Ma D D, et al. Male-biased zebrafish sex differentiation and metabolomics profile changes caused by dydrogesterone[J]. Aquatic Toxicology, 2019, 214:105242 |
Zhou X, Li Y, Li H, et al. Responses in the crucian carp (Carassius auratus) exposed to environmentally relevant concentration of 17 alpha-ethinylestradiol based on metabolomics[J]. Ecotoxicology and Environmental Safety, 2019, 183:1-8 |
Wang X R, Wang D Z, Zhou Z Q, et al. Subacute oral toxicity assessment of benalaxyl in mice based on metabolomics methods[J]. Chemosphere, 2018, 191:373-380 |
Gong Y, Zhang H, Geng N, et al. Short-chain chlorinated paraffins (SCCPs) disrupt hepatic fatty acid metabolism in liver of male rat via interacting with peroxisome proliferator-activated receptor a (PPAR alpha)[J]. Ecotoxicology and Environmental Safety, 2019, 181:164-171 |
Olsvik P A, Larsen A K, Berntssen M H G, et al. Effects of agricultural pesticides in aquafeeds on wild fish feeding on leftover pellets near fish farms[J]. Frontiers in Genetics, 2019, 10:18 |
Dong M, Xu X, Huang Q, et al. Dose-dependent effects of triclocarban exposure on lipid homeostasis in rats[J]. Chemical Research in Toxicology, 2019, 32(11):2320-2328 |
Geng N, Ren X, Gong Y, et al. Integration of metabolomics and transcriptomics reveals short-chain chlorinated paraffin-induced hepatotoxicity in male Sprague Dawley rat[J]. Environment International, 2019, 133:105231-105241 |
Zhang H, Shao X, Zhao H, et al. Integration of metabolomics and lipidomics reveals metabolic mechanisms of triclosan-induced toxicity in human hepatocytes[J]. Environmental Science & Technology, 2019, 53(9):5406-5415 |
Zhao Y Y, Lin R C. Metabolomics in nephrotoxicity[J]. Advances in Clinical Chemistry, 2014, 65:69-89 |
Zgoda P J R, Chowdhury S, Wirth M, et al. Metabolomics analysis reveals elevation of 3-indoxyl sulfate in plasma and brain during chemically-induced acute kidney injury in mice:Investigation of nicotinic acid receptor agonists[J]. Toxicology and Applied Pharmacology, 2011, 255(1):48-56 |
Ranninger C, Rurik M, Limonciel A, et al. Nephron toxicity profiling via untargeted metabolome analysis employing a high performance liquid chromatography-mass spectrometry-based experimental and computational pipeline[J]. Journal of Biological Chemistry, 2015, 290(31):19121-19132 |
Qiu J, Cheng J, Xie Y, et al. 1,4-Dioxane exposure induces kidney damage in mice by perturbing specific renal metabolic pathways:An integrated omics insight into the underlying mechanisms[J]. Chemosphere, 2019, 228:149-158 |
Reiter L. Introduction to neurobehavioral toxicology[J]. Environmental Health Perspectives, 1978, 26:5-7 |
Lei E N, Yau M S, Yeung C C, et al. Profiling of selected functional metabolites in the central nervous system of marine medaka (Oryzias melastigma) for environmental neurotoxicological assessments[J]. Archives of Environmental Contamination and Toxicology, 2017, 72(2):269-280 |
Faria M, Ziv T, Gomez C C, et al. Acrylamide acute neurotoxicity in adult zebrafish[J]. Scientific Reports, 2018(8):7918-7925 |
Yau M S, Lei E N Y, Ng I H M, et al. Changes in the neurotransmitter profile in the central nervous system of marine medaka (Oryzias melastigma) after exposure to brevetoxin PbTx-1-A multivariate approach to establish exposure biomarkers[J]. Science of the Total Environment, 2019, 673:327-336 |
Wang J, Li C L, Tu B J, et al. Integrated epigenetics, transcriptomics, and metabolomics to analyze the mechanisms of benzo a pyrene neurotoxicity in the hippocampus[J]. Toxicological Sciences, 2018, 166(1):65-81 |
Zeng J, Kuang H, Hu C X, et al. Effect of bisphenol A on rat metabolic profiling studied by using capillary electrophoresis time-of-flight mass spectrometry[J]. Environmental Science & Technology, 2013, 47(13):7457-7465 |
Miller M G. Environmental metabolomics:A SWOT analysis (strengths, weaknesses, opportunities, and threats)[J]. Journal of Proteome Research, 2007, 6(2):540-545 |
Hines A, Staff F J, Widdows J, et al. Discovery of metabolic signatures for predicting whole organism toxicology[J]. Toxicological Sciences, 2010, 115(2):369-378 |