黄荣1,
席贻龙1,2,
项贤领1,2,,
1. 安徽师范大学生态与环境学院, 芜湖 241000;
2. 皖江流域退化生态系统的恢复与重建省部共建协同创新中心, 芜湖 241000
作者简介: 李猛(1995-),男,硕士,研究方向为纳米材料的生态毒理效应,E-mail:1259305578@qq.com.
通讯作者: 项贤领,xiangxianling@163.com
基金项目: 国家自然科学基金资助项目(31872208);生物环境与生态安全安徽省高校省级重点实验室专项中图分类号: X171.5
Effects of nano-TiO2 Exposure on Population Dynamics of Brachionus calyciflorus
Li Meng1,Huang Rong1,
Xi Yilong1,2,
Xiang Xianling1,2,,
1. School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China;
2. Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu 241000, China
Corresponding author: Xiang Xianling,xiangxianling@163.com
CLC number: X171.5
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:因具有特殊的结构和性能,纳米材料的环境生物安全和潜在风险已引起人们的广泛关注,而由纳米TiO2所引起的轮虫种群动态变化尚鲜有报道。以萼花臂尾轮虫(Brachionus calyciflorus)为受试生物,通过急性和慢性毒性实验,探究纳米TiO2暴露对萼花臂尾轮虫种群动态的影响。结果表明,萼花臂尾轮虫48 h半致死浓度(48 h-LC50)值为30.20 mg·L-1;当纳米TiO2浓度≥1 mg·L-1时,萼花臂尾轮虫的最大种群密度、平均种群密度、平均种群增长率、平均非混交卵数量以及总雌体生产量受到显著抑制,且轮虫达到最大种群密度的时间更短,说明纳米TiO2的介入降低了环境容纳量,抑制了萼花臂尾轮虫种群繁殖力。此外,在2.0 mg·L-1和2.5 mg·L-1纳米TiO2处理组中休眠卵产量较对照组显著提高,当浓度≥1.5 mg·L-1时,种群平均混交率也显著提高,说明纳米TiO2暴露对萼花臂尾轮虫的有性生殖具有显著影响,这可归结于纳米TiO2显著提高了单位体积内产休眠卵的混交雌体生产量。
关键词: 纳米TiO2/
萼花臂尾轮虫/
急性毒性/
慢性毒性/
种群动态
Abstract:Increasing attention has been paid to the challenging issue of environmental biosafety and potential risks of nanomaterials due to its special structure and property. Few of these efforts, however, have focused on the effects of nano-TiO2 on the population dynamic of rotifers. In this study, Brachionus calyciflorus was taken as the subject to conduct the acute and chronic toxicity experiment so as to explore the population dynamic of B. calyciflorus influenced by nano-TiO2 exposure. The results showed that the 48 h half lethal concentration (48 h-LC50) value of nano-TiO2 was 30.20 mg·L-1. In the chronic assay, when the concentration of nano-TiO2 was greater than or equal to 1 mg·L-1, the maximum population density, mean population density, mean population growth rate, mean number of amictic eggs and the total female production of B. calyciflorus were inhibited significantly. And it took a shorter time to reach the maximum population density. It is indicated that the intervention of nano-TiO2 could reduce the environmental capacity and inhibit the fecundity of B. calyciflorus. In addition, the production of resting eggs in nano-TiO2 treatments with concentration of 2.0 mg·L-1 and 2.5 mg·L-1 were significantly higher than that in the control group, and as the concentration of nano-TiO2 was higher than 1.5 mg·L-1, the mean mictic rate has also increased significantly. These results highlighted that nano-TiO2 had an obvious impact on the sexual reproduction of B. calyciflorus, which could be attributed to the fact that nano-TiO2 increased the production of mictic female with resting eggs per unit volume significantly.
Key words:nano-TiO2/
Brachionus calyciflorus/
acute toxicity/
chronic toxicity/
population dynamics.
Ge Y, Schimel J P, Holden P A. Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities[J]. Environmental Science & Technology, 2011, 45(4):1659-1664 |
Shi H B, Magaye R, Castranova V, et al. Titanium dioxide nanoparticles:A review of current toxicological data[J]. Particle and Fibre Toxicology, 2013, 10:15 |
Teske S S, Detweiler C S. The biomechanisms of metal and metal-oxide nanoparticles' interactions with cells[J]. International Journal of Environmental Research and Public Health, 2015, 12(2):1112-1134 |
Roy B, Chandrasekaran H, Palamadai Krishnan S, et al. UVA pre-irradiation to P25 titanium dioxide nanoparticles enhanced its toxicity towards freshwater algae Scenedesmus obliquus[J]. Environmental Science and Pollution Research International, 2018, 25(17):16729-16742 |
Naha P C, Mukherjee S P, Byrne H J. Toxicology of engineered nanoparticles:Focus on poly(amidoamine) dendrimers[J]. International Journal of Environmental Research and Public Health, 2018, 15(2):E338 |
Goswami L, Kim K H, Deep A, et al. Engineered nano particles:Nature, behavior, and effect on the environment[J]. Journal of Environmental Management, 2017, 196:297-315 |
Sadrieh N, Wokovich A M, Gopee N V, et al. Lack of significant dermal penetration of titanium dioxide from sunscreen formulations containing nano- and submicron-size TiO2 particles[J]. Toxicological Sciences, 2010, 115(1):156-166 |
Zhao Y X, Lin K F, Zhang W. Nano-titanium dioxide (TiO2)-induced changes affecting Cu2+-mediated alterations in bacterium Bacillus subtilis and α-amylase[J]. Toxicological & Environmental Chemistry, 2010, 92(10):1851-1856 |
Weir A, Westerhoff P, Fabricius L, et al. Titanium dioxide nanoparticles in food and personal care products[J]. Environmental Science & Technology, 2012, 46(4):2242-2250 |
Foster H A, Ditta I B, Varghese S, et al. Photocatalytic disinfection using titanium dioxide:Spectrum and mechanism of antimicrobial activity[J]. Applied Microbiology and Biotechnology, 2011, 90(6):1847-1868 |
Hazani A, Ibrahim M, Shehata A, et al. Ecotoxicity of Ag-nanoparticles on two microalgae, Chlorella vulgaris and Dunaliella tertiolecta[J]. Archives of Biological Sciences, 2013, 65(4):1447-1457 |
Tyner K M, Wokovich A M, Godar D E, et al. The state of nano-sized titanium dioxide (TiO2) may affect sunscreen performance[J]. International Journal of Cosmetic Science, 2011, 33(3):234-244 |
Tang X H, Wu C Z, Li B Z, et al. New applications of nano titanium dioxide[J]. Meteorological and Environmental Research, 2012, 3(Z1):55-57 |
Li Q L, Mahendra S, Lyon D Y, et al. Antimicrobial nanomaterials for water disinfection and microbial control:Potential applications and implications[J]. Water Research, 2008, 42(18):4591-4602 |
Dréno B, Alexis A, Chuberre B, et al. Safety of titanium dioxide nanoparticles in cosmetics[J]. Journal of the European Academy of Dermatology and Venereology, 2019, 33(Suppl 7):34-46 |
Gupta V K, Jain R, Mittal A, et al. Photochemical degradation of the hazardous dye Safranin-T using TiO2 catalyst[J]. Journal of Colloid and Interface Science, 2007, 309(2):464-469 |
Cardinale B J, Bier R, Kwan C. Effects of TiO2 nanoparticles on the growth and metabolism of three species of freshwater algae[J]. Journal of Nanoparticle Research, 2012, 14(8):1-8 |
Binh C T, Peterson C G, Tong T Z, et al. Comparing acute effects of a nano-TiO2 pigment on cosmopolitan freshwater phototrophic microbes using high-throughput screening[J]. PLoS One, 2015, 10(4):e0125613 |
Xiong D W, Fang T, Yu L P, et al. Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish:Acute toxicity, oxidative stress and oxidative damage[J]. The Science of the Total Environment, 2011, 409(8):1444-1452 |
Fekete-Kertész I, Maros G, Molnár M, et al. The effect of TiO2 nanoparticles on the aquatic ecosystem:A comparative ecotoxicity study with test organisms of different trophic levels[J]. Periodica Polytechnica Chemical Engineering, 2016, 60(4):231-243 |
Zhu X S, Chang Y, Chen Y S. Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna[J]. Chemosphere, 2010, 78(3):209-215 |
Farner J M, Cheong R S, Mahé E, et al. Comparing TiO2 nanoparticle formulations:Stability and photoreactivity are key factors in acute toxicity to Daphnia magna[J]. Environmental Science:Nano, 2019, 6(8):2532-2543 |
Nogueira V, Lopes I, Rocha-Santos T A, et al. Assessing the ecotoxicity of metal nano-oxides with potential for wastewater treatment[J]. Environmental Science and Pollution Research International, 2015, 22(17):13212-13224 |
Clément L, Hurel C, Marmier N. Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants-Effects of size and crystalline structure[J]. Chemosphere, 2013, 90(3):1083-1090 |
Gottschalk F, Sonderer T, Scholz R W, et al. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions[J]. Environmental Science & Technology, 2009, 43(24):9216-9222 |
Jing Q F, Yi Z L, Lin D H, et al. Enhanced sorption of naphthalene and p-nitrophenol by nano-SiO2 modified with a cationic surfactant[J]. Water Research, 2013, 47(12):4006-4012 |
Peltier W H, Weber C I. Methods for measuring the acute toxicity of effluents to freshwater and marine organisms[R]. Cincinnati, Ohio:United States Environmental Protection Agency, 1985:31-36 |
Organization for Economic Co-operation and Development (OECD). OECD Guidelines for the Testing of Chemicals, Section 2, Test No. 201:Freshwater Alga and Cyanobacteria, Growth Inhibition Test[S]. Paris:OECD, 2011 |
Lee W M, An Y J. Effects of zinc oxide and titanium dioxide nanoparticles on green algae under visible, UVA, and UVB irradiations:No evidence of enhanced algal toxicity under UV pre-irradiation[J]. Chemosphere, 2013, 91(4):536-544 |
Liu Y H, Wang S, Wang Z, et al. TiO2, SiO2 and ZrO2 nanoparticles synergistically provoke cellular oxidative damage in freshwater microalgae[J]. Nanomaterials, 2018, 8(2):95 |
Metzler D M, Erdem A, Huang C P. Influence of algae age and population on the response to TiO2 nanoparticles[J]. International Journal of Environmental Research and Public Health, 2018, 15(4):E585 |
Chen J Y, Li H R, Han X Q, et al. Transmission and accumulation of nano-TiO2 in a 2-step food chain (Scenedesmus obliquus to Daphnia magna)[J]. Bulletin of Environmental Contamination and Toxicology, 2015, 95(2):145-149 |
Dumont H J, Sarma S S S. Demography and population growth of Asplanchna girodi (Rotifera) as a function of prey (Anuraeopsis fissa) density[J]. Hydrobiologia, 1995, 306(2):97-107 |
Krebs C J. Ecology:The Experimental Analysis of Distribution and Abundance[M]. Benjamin Cummings, 1985:133-148 |
Snell T W, Hoff F H. The effect of environmental factors on resting egg production in the rotifer Brachionus plicatilis[J]. Journal of the World Mariculture Society, 2009, 16(1-4):484-497 |
Klaine S J, Alvarez P J, Batley G E, et al. Nanomaterials in the environment:Behavior, fate, bioavailability, and effects[J]. Environmental Toxicology and Chemistry, 2008, 27(9):1825-1851 |
Tsiridis V, Petala M, Koukiotis C, et al. Implications of handling practices on the ecotoxic profile of alumina nanoparticles towards the bacteria Vibrio fischeri[J]. Journal of Environmental Science and Health Part A, Toxic/Hazardous Substances & Environmental Engineering, 2017, 52(1):15-22 |
Seitz F, Rosenfeldt R R, Müller M, et al. Quantity and quality of natural organic matter influence the ecotoxicity of titanium dioxide nanoparticles[J]. Nanotoxicology, 2016, 10(10):1415-1421 |
Horst A M, Neal A C, Mielke R E, et al. Dispersion of TiO2 nanoparticle agglomerates by Pseudomonas aeruginosa[J]. Applied and Environmental Microbiology, 2010, 76(21):7292-7298 |
Ottofuelling S, von der Kammer F, Hofmann T. Commercial titanium dioxide nanoparticles in both natural and synthetic water:Comprehensive multidimensional testing and prediction of aggregation behavior[J]. Environmental Science & Technology, 2011, 45(23):10045-10052 |
Segers H. Global diversity of rotifers (Rotifera) in freshwater[J]. Hydrobiologia, 2008, 595(1):49-59 |
Verma V, Rico-Martinez R, Kotra N, et al. Estimating the toxicity of ambient fine aerosols using freshwater rotifer Brachionus calyciflorus (Rotifera:Monogononta)[J]. Environmental Pollution, 2013, 182:379-384 |
Kaneko G, Yoshinaga T, Yanagawa Y, et al. Molecular characterization of Mn-superoxide dismutase and gene expression studies in dietary restricted Brachionus plicatilis rotifers[J]. Hydrobiologia, 2005, 546(1):117-123 |
Halbach U, Siebert M, Westermayer M, et al. Population ecology of rotifers as a bioassay tool for ecotoxicological tests in aquatic environments[J]. Ecotoxicology and Environmental Safety, 1983, 7(5):484-513 |
Rico-Martínez R, Pérez-Legaspi I A, Arias-Almeida J C, et al. Rotifers in Ecotoxicology[M]//Encyclopedia of Aquatic Ecotoxicology. Dordrecht:Springer Netherlands, 2013:973-996 |
Rotini A, Gallo A, Parlapiano I, et al. Insights into the CuO nanoparticle ecotoxicity with suitable marine model species[J]. Ecotoxicology and Environmental Safety, 2018, 147:852-860 |
Khoshnood R, Jaafarzadeh N, Jamili S, et al. Nanoparticles ecotoxicity on Daphnia magna[J]. Transylvanian Review of Systematical and Ecological Research, 2016, 18(2):29-38 |
Zhu X S, Zhu L, Chen Y S, et al. Acute toxicities of six manufactured nanomaterial suspensions to Daphnia magna[J]. Journal of Nanoparticle Research, 2009, 11(1):67-75 |
Adam N, Vakurov A, Knapen D, et al. The chronic toxicity of CuO nanoparticles and copper salt to Daphnia magna[J]. Journal of Hazardous Materials, 2015, 283:416-422 |
Gökçe D, Köytepe S, Özcan I·. Effects of nanoparticles on Daphnia magna population dynamics[J]. Chemistry and Ecology, 2018, 34(4):301-323 |
Noss C, Dabrunz A, Rosenfeldt R R, et al. Three-dimensional analysis of the swimming behavior of Daphnia magna exposed to nanosized titanium dioxide[J]. PLoS One, 2013, 8(11):e80960 |
Mackevica A, Skjolding L M, Gergs A, et al. Chronic toxicity of silver nanoparticles to Daphnia magna under different feeding conditions[J]. Aquatic Toxicology, 2015, 161:10-16 |
Zhao C M, Wang W X. Comparison of acute and chronic toxicity of silver nanoparticles and silver nitrate to Daphnia magna[J]. Environmental Toxicology and Chemistry, 2011, 30(4):885-892 |
Wang H H, Fan W H, Xue F, et al. Chronic effects of six micro/nano-Cu2O crystals with different structures and shapes on Daphnia magna[J]. Environmental Pollution, 2015, 203:60-68 |
Pourriot R, Snell T W. Resting eggs in rotifers[J]. Hydrobiologia, 1983, 104(1):213-224 |