华南师范大学心理学院/心理应用研究中心, 广州 510631
收稿日期:
2021-08-09出版日期:
2022-01-25发布日期:
2021-11-26通讯作者:
温忠麟, E-mail: wenzl@scnu.edu.cn基金资助:
* 国家自然科学基金项目(32171091, 31771245)资助Standardized estimates for latent interaction effects: Method comparison and selection strategy
WEN Zhonglin, OUYANG Jinying, FANG JunyanSchool of Psychology & Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China
Received:
2021-08-09Online:
2022-01-25Published:
2021-11-26摘要/Abstract
摘要: 标准化估计对模型的解释和效应大小的比较有重要作用。虽然潜变量交互效应的恰当标准化估计公式已经面世超过10年, 国内外都在使用和引用, 但至今未见到关于不同估计方法得到的恰当标准化估计的系统比较。通过模拟实验, 比较了乘积指标法、潜调节结构方程(LMS)、无先验信息和有先验信息的贝叶斯法的潜变量交互效应标准化估计在不同条件下的表现。结果发现, 在正态条件下, LMS和有信息贝叶斯法表现较好; 而在非正态条件下, 乘积指标法比较稳健, 但需要较大的样本(不小于500), 小样本且外生潜变量之间相关很低时可使用无信息贝叶斯法。
参考文献
[1] Algina, J., & Moulder, B. C. (2001). A note on estimating the Jöreskog-Yang model for latent variable interaction using LISREL 8.3. [2] Arminger, G., & Muthén, B. (1998). A Bayesian approach to nonlinear latent variable models using the Gibbs sampler and the Metropolis-Hastings algorithm. [3] Asparouhov, T., & Muthén, B. (2010). [4] Asparouhov, T., & Muthén, B. (2021). Bayesian estimation of single and multilevel models with latent variable interactions. [5] Aytürk E., Cham H., Jennings P. A., & Brown J. L. (2020). Exploring the performance of latent moderated structural equations approach for ordered-categorical items. [6] Bandalos, D. L. (2002). The effects of item parceling on goodness-of-fit and parameter estimate bias in structural equation modeling. [7] Boomsma, A. (1983). [8] Bradley, J. V. (1978). Robustness? [9] Brandt H., Cambria J., & Kelava A. (2018). An adaptive Bayesian lasso approach with spike-and-slab priors to identify multiple linear and nonlinear effects in structural equation models. [10] Brandt H., Umbach N., & Kelava A. (2015). The standardization of linear and nonlinear effects in direct and indirect applications of structural equation mixture models for normal and nonnormal data. [11] Büchner, R. D., & Klein, A. G. (2020). A Quasi-likelihood approach to assess model fit in quadratic and interaction SEM. [12] Cham H., West S. G., Ma Y., & Aiken L. S. (2012). Estimating latent variable interactions with nonnormal observed data: A comparison of four approaches.Multivariate Behavioral Research, 47(6), 840-876. [13] Champoux, J. E., & Peters, W. S. (1987). Form, effect size and power in moderated regression analysis. [14] Fang J., Wen Z., & Hau K. -T. (2019). Mediation effects in 2-1-1 multilevel model: Evaluation of alternative estimation methods.Structural Equation Modeling: A Multidisciplinary Journal, 26(4), 591-606. [15] Foldnes, N., & Hagtvet, K. A. (2014). The choice of product indicators in latent variable interaction models: Post hoc analyses. [16] Gelman A., Carlin J. B., Stern H. S., Dunson D. B., Vehtari A., & Rubin D. B. (2014). [17] Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. [18] Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. [19] Hau, K. -T., & Marsh, H. W. (2004). The use of item parcels in structural equation modelling: Non-normal data and small sample sizes. [20] Holtmann J., Koch T., Lochner K., & Eid M. (2016). A comparison of ML, WLSMV, and Bayesian methods for multilevel structural equation models in small samples: A simulation study. [21] Hoogland, J. J., & Boomsma, A. (1998). Robustness studies in covariance structure modeling: An overview and a meta-analysis. [22] Ito T. A., Friedman N. P., Bartholow B. D., Correll J., Loersch C., Altamirano L. J., & Miyake A. (2015). Toward a comprehensive understanding of executive cognitive function in implicit racial bias. [23] Jaccard, J., & Wan, C. K. (1995). Measurement error in the analysis of interaction effects between continuous predictors using multiple regression: Multiple indicator and structural equation approaches. [24] Jackman M. G. A., Leite W. L., & Cochrane D. J. (2011). Estimating latent variable interactions with the unconstrained approach: A comparison of methods to form product indicators for large, unequal numbers of items. [25] Jia, F. (2016). [26] Jöreskog, K. G., & Sörbom, D. (1996). [27] Kelava A., Moosbrugger H., Dimitruk P., & Schermelleh- Engel K. (2008). Multicollinearity and missing constraints: A comparison of three approaches for the analysis of latent nonlinear effects. [28] Kelava, A., & Nagengast, B. (2012). A Bayesian model for the estimation of latent interaction and quadratic effects when latent variables are non-normally distributed. [29] Kelava A., Nagengast B., & Brandt H. (2014). A nonlinear structural equation mixture modeling approach for nonnormally distributed latent predictor variables. [30] Kelava A., Werner C. S., Schermelleh-Engel K., Moosbrugger H., Zapf D., Ma Y., … West S. G. (2011). Advanced nonlinear latent variable modeling: Distribution analytic LMS and QML estimators of interaction and quadratic effects. [31] Kenny, D. A., & Judd, C. M. (1984). Estimating the nonlinear and interactive effects of latent variables. [32] Klein, A. G., & Moosbrugger, H. (2000). Maximum likelihood estimation of latent interaction effects with the LMS method. [33] Klein, A. G., & Muthén, B. O. (2007). Quasi-maximum likelihood estimation of structural equation models with multiple interaction and quadratic effects. [34] Laczniak R. N., Carlson L., Walker D., & Brocato E. D. (2017). Parental restrictive mediation and children's violent video game play: The effectiveness of the Entertainment Software Rating Board (ESRB) rating system. [35] Lee, S. Y., & Song, X. Y. (2004). Evaluation of the Bayesian and maximum likelihood approaches in analyzing structural equation models with small sample sizes. [36] Lee S. Y., Song X. Y., & Poon W. Y. (2004). Comparison of approaches in estimating interaction and quadratic effects of latent variables. [37] Lee S. Y., Song X. Y., & Tang N. S. (2007). Bayesian methods for analyzing structural equation models with covariates, interaction, and quadratic latent variables. [38] Lin G. C., Wen Z., Marsh H. W., & Lin H. S. (2010). Structural equation models of latent interactions: Clarification of orthogonalizing and double-mean-centering strategies. [39] MacCallum, R. C., & Austin, J. T. (2000). Applications of structural equation modeling in psychological research. [40] Marsh H. W., Wen Z., & Hau K. -T. (2004). Structural equation models of latent interactions: Evaluation of alternative estimation strategies and indicator construction. [41] Marsh H. W., Wen Z., Nagengast B., & Hau, K. -T. (2012). Structural equation models of latent interaction. In R. H. Hoyle (Ed.), Handbook of structural equation modeling (pp. 436-458). New York: Guilford Press. [42] Metropolis N., Rosenbluth A. W., Rosenbluth M. N., Teller A. H., & Teller E. (1953). Equation of state calculations by fast computing machines. [43] Miočević M., MacKinnon D. P., & Levy R. (2017). Power in Bayesian mediation analysis for small sample research.Structural Equation Modeling: A Multidisciplinary Journal, 24(5), 666-683. [44] Moulder, B. C., & Algina, J. (2002). Comparison of methods for estimating and testing latent variable interactions. [45] Muthén, B., & Asparouhov, T. (2012). Bayesian structural equation modeling: A more flexible representation of substantive theory. [46] Muthén B., Kaplan D., & Hollis M. (1987). On structural equation modeling with data that are not missing completely at random. [47] Muthén, L. K., & Muthén, B. O. (2019). [48] Nagengast B., Marsh H. W., Scalas L. F., Xu M. K., Hau K. -T., & Trautwein U. (2011). Who took the “×” out of expectancy-value theory? A psychological mystery, a substantive-methodological synergy, and a cross-national generalization. [49] Satorra, A., & Bentler, P. M. (1994). Corrections to test statistics and standard errors in covariance structure analysis. In A. von Eye & C. C. Clogg (Eds.), [50] Schermelleh-Engel K., Klein A., & Moosbrugger H. (1998). Estimating nonlinear effects using a latent moderated structural equations approach. In R. E. Schumacker & G. A. Marcoulides (Eds.), [51] Smid S. C., McNeish D., Miočević M., & van de Schoot, R. (2020). Bayesian versus frequentist estimation for structural equation models in small sample contexts: A systematic review. [52] van Erp S., Mulder J., & Oberski D. L. (2018). Prior sensitivity analysis in default Bayesian structural equation modeling. [53] Wen Z., Hau K. -T., & Marsh H. W. (2008). Appropriate standardized estimates for moderating effects in structural equation models.Acta Psychologica Sinica, 40(6), 729-736. [温忠麟, 侯杰泰, Marsh, H. W. (2008). 结构方程模型中调节效应的标准化估计. [54] Wen Z.,& Liu, H. (2020). Analyses of mediating and moderating effects: Methods and applications. Beijing: Educational Science Publishing House. [温忠麟, 刘红云. (2020). 中介效应和调节效应:方法及应用. 教育科学出版社.] [55] Wen Z., Marsh H. W., & Hau K. -T. (2010). Structural equation models of latent interactions: An appropriate standardized solution and its scale-free properties. [56] Wen, Z., & Wu, Y. (2010). Evolution and simplification of the approaches to estimating structural equation models with latent interaction.Advance in Psychological Science, 18(8), 1306-1313. [温忠麟, 吴艳. (2010). 潜变量交互效应建模方法演变与简化. [57] Wen Z., Wu Y., & Hau K. -T. (2013). Latent interaction in structural equation modeling: Distribution-analytic approaches.Psychological Exploration, 33(5), 409-414. [温忠麟, 吴艳, 侯杰泰. (2013). 潜变量交互效应结构方程: 分布分析方法. [58] Wu Y., Wen Z., Hau K. -T., & Marsh H. W. (2011). Appropriate standardized estimates of latent interaction models without the mean structure. [吴艳, 温忠麟, 侯杰泰, Marsh, H. W. (2011). 无均值结构的潜变量交互效应模型的标准化估计. [59] Wu Y., Wen Z., & Li B. (2014). Testing the standardized solutions in structural equation models with interaction effects. [吴艳, 温忠麟, 李碧. (2014). 潜变量交互效应模型标准化估计中的检验问题. [60] Wu Y., Wen Z., & Lin G. C. (2009). Structural equation modeling of latent interactions without using the mean structure. [吴艳, 温忠麟, 林冠群. (2009). 潜变量交互效应建模:告别均值结构. [61] Wu Y., Wen Z., Marsh H. W., & Hau K. -T. (2013). A comparison of strategies for forming product indicators for unequal numbers of items in structural equation models of latent interactions. [62] You J., Deng B., Lin M. P., & Leung F. (2016). The interactive effects of impulsivity and negative emotions on adolescent nonsuicidal self-injury: A latent growth curve analysis. [63] Yuan, Y., & MacKinnon, D. P. (2009). Bayesian mediation analysis. [64] Zhang L. J., Lu J., Wei X. Y., & Pan J. H. (2019). Bayesian structural equation modeling and its current researches. [张沥今, 陆嘉琦, 魏夏琰, 潘俊豪. (2019). 贝叶斯结构方程模型及其研究现状. |
相关文章 9
[1] | 徐冉, 张宝山, 林瑶. 家人情感卷入对老年自我刻板印象的影响:基于潜变量增长模型的分析[J]. 心理学报, 2021, 53(11): 1215-1227. |
[2] | 程亚华, 伍新春, 刘红云, 李虹. 小学低年级儿童口语词汇知识的发展轨迹及其影响因素[J]. 心理学报, 2018, 50(2): 206-215. |
[3] | 张杉杉;陈楠;刘红云. LGM模型中缺失数据处理方法的比较: ML方法与Diggle-Kenward选择模型[J]. 心理学报, 2017, 49(5): 699-710. |
[4] | 刘俊升;周颖;李丹. 童年中晚期孤独感的发展轨迹:一项潜变量增长模型分析[J]. 心理学报, 2013, 45(2): 179-192. |
[5] | 张晓. 童年早期社会能力的发展:一个潜变量增长模型[J]. 心理学报, 2011, 43(12): 1388-1397. |
[6] | 吴艳,温忠麟,侯杰泰,Herbert W. Marsh. 无均值结构的潜变量交互效应模型的标准化估计[J]. 心理学报, 2011, 43(10): 1219-1228. |
[7] | 吴艳,温忠麟,林冠群. 潜变量交互效应建模: 告别均值结构[J]. 心理学报, 2009, 41(12): 1252-1259. |
[8] | 温忠麟,侯杰泰,Herbert W. Marsh. 结构方程模型中调节效应的标准化估计[J]. 心理学报, 2008, 40(06): 729-736. |
[9] | 陈天勇,李德明. 执行功能可分离性及与年龄关系的潜变量分析[J]. 心理学报, 2005, 37(02): 210-217. |
PDF全文下载地址:
http://journal.psych.ac.cn/xlxb/CN/article/downloadArticleFile.do?attachType=PDF&id=5133