删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

一种高效的CD-CAT在线标定新方法:基于熵的信息增益与EM视角

本站小编 Free考研考试/2022-01-01

谭青蓉, 汪大勋, 罗芬, 蔡艳(), 涂冬波()
江西师范大学心理学院, 南昌 330022
收稿日期:2020-11-30出版日期:2021-11-25发布日期:2021-09-23
通讯作者:蔡艳,涂冬波E-mail:cy1979123@aliyun.com;tudongbo@aliyun.com

基金资助:国家自然科学基金项目(31760288);国家自然科学基金项目(31960186);国家自然科学基金项目(31660278)

A high-efficiency and new online calibration method in CD-CAT based on information gain of entropy and EM algorithm

TAN Qingrong, WANG Daxun, LUO Fen, CAI Yan(), TU Dongbo()
School of Psychology, Jiangxi Normal University, Nanchang 330022, China
Received:2020-11-30Online:2021-11-25Published:2021-09-23
Contact:CAI Yan,TU Dongbo E-mail:cy1979123@aliyun.com;tudongbo@aliyun.com






摘要/Abstract


摘要: 项目增补(Item Replenishing)对认知诊断计算机自适应测验(CD-CAT)题库的维护有着至关重要的作用, 而在线标定是一种重要的项目增补方式。基于数据挖掘中特征选择(Feature Selection)的思路, 提出一种高效的基于熵的信息增益的在线标定方法(记为IGEOCM), 该方法利用被试在新旧题上的作答联合估计新题的Q矩阵和项目参数。研究采用Monte Carlo模拟实验验证所开发新方法的效果, 并同时与已有的在线标定方法SIE、SIE-R-BIC和RMSEA-N进行比较。结果表明:新开发的IGEOCM在各实验条件下均具有较好的项目标定精度和项目估计效率, 且整体上优于已有的SIE等方法; 同时, IGEOCM标定新题所需的时间低于SIE等方法。总之, 研究为CD-CAT题库中项目的增补提供了一种更为高效、准确的方法。


表1不同q向量下E(Rj|qj)和g(Rj, qj)的计算
q向量 掌握组 非掌握组 E(Rj|qj) g(Rj, qj)
qcorrect j = [100] 属性掌握模式 [100] [110] [101] [111] [000] [010] [001] [011] 0 0.690
被试数目 nj/2 nj/2
正确作答比 1 0
错误作答比 0 1
qincorrect j = [011] 属性掌握模式 [011] [111] [000] [100] [010] [001] [110] [101] 0.690 0.003
被试数目 nj/4 3nj/4
正确作答比 0.500 0.500
错误作答比 0.500 0.500

表1不同q向量下E(Rj|qj)和g(Rj, qj)的计算
q向量 掌握组 非掌握组 E(Rj|qj) g(Rj, qj)
qcorrect j = [100] 属性掌握模式 [100] [110] [101] [111] [000] [010] [001] [011] 0 0.690
被试数目 nj/2 nj/2
正确作答比 1 0
错误作答比 0 1
qincorrect j = [011] 属性掌握模式 [011] [111] [000] [100] [010] [001] [110] [101] 0.690 0.003
被试数目 nj/4 3nj/4
正确作答比 0.500 0.500
错误作答比 0.500 0.500



图1各在线标定方法在不同条件下的AVCER (属性向量估计正确率)结果
图1各在线标定方法在不同条件下的AVCER (属性向量估计正确率)结果


表2各在线标定方法在不同条件下的RMSE (均方根误差)结果
分布 项目 方法 40 80 120 160 200
高阶 4 SIE 0.090 0.060 0.048 0.041 0.036
SIE-R-BIC 0.088 0.065 0.057 0.052 0.049
RMSEA-N 0.132 0.099 0.086 0.079 0.073
IGEOCM 0.090 0.060 0.048 0.041 0.036
6 SIE 0.092 0.061 0.049 0.041 0.037
SIE-R-BIC 0.089 0.066 0.057 0.053 0.050
RMSEA-N 0.132 0.099 0.085 0.077 0.074
IGEOCM 0.092 0.061 0.049 0.041 0.037
8 SIE 0.095 0.060 0.048 0.042 0.037
SIE-R-BIC 0.090 0.066 0.057 0.053 0.050
RMSEA-N 0.132 0.098 0.085 0.078 0.074
IGEOCM 0.095 0.061 0.048 0.042 0.037
均匀 4 SIE 0.123 0.071 0.055 0.046 0.041
SIE-R-BIC 0.097 0.068 0.057 0.051 0.047
RMSEA-N 0.118 0.090 0.082 0.078 0.076
IGEOCM 0.121 0.071 0.055 0.046 0.041
6 SIE 0.121 0.069 0.053 0.045 0.039
SIE-R-BIC 0.097 0.068 0.056 0.050 0.046
RMSEA-N 0.116 0.090 0.081 0.078 0.076
IGEOCM 0.119 0.069 0.053 0.045 0.039
8 SIE 0.122 0.071 0.054 0.046 0.040
SIE-R-BIC 0.097 0.068 0.057 0.051 0.047
RMSEA-N 0.116 0.090 0.082 0.078 0.076
IGEOCM 0.121 0.071 0.054 0.046 0.040
正态 4 SIE 0.126 0.076 0.059 0.049 0.044
SIE-R-BIC 0.099 0.073 0.064 0.058 0.055
RMSEA-N 0.170 0.149 0.138 0.130 0.123
IGEOCM 0.126 0.076 0.059 0.049 0.044
6 SIE 0.124 0.076 0.059 0.050 0.044
SIE-R-BIC 0.098 0.073 0.064 0.058 0.055
RMSEA-N 0.171 0.149 0.138 0.129 0.125
IGEOCM 0.123 0.076 0.059 0.050 0.044
8 SIE 0.129 0.079 0.059 0.049 0.044
SIE-R-BIC 0.100 0.074 0.063 0.058 0.055
RMSEA-N 0.170 0.149 0.136 0.128 0.121
IGEOCM 0.130 0.079 0.060 0.050 0.044

表2各在线标定方法在不同条件下的RMSE (均方根误差)结果
分布 项目 方法 40 80 120 160 200
高阶 4 SIE 0.090 0.060 0.048 0.041 0.036
SIE-R-BIC 0.088 0.065 0.057 0.052 0.049
RMSEA-N 0.132 0.099 0.086 0.079 0.073
IGEOCM 0.090 0.060 0.048 0.041 0.036
6 SIE 0.092 0.061 0.049 0.041 0.037
SIE-R-BIC 0.089 0.066 0.057 0.053 0.050
RMSEA-N 0.132 0.099 0.085 0.077 0.074
IGEOCM 0.092 0.061 0.049 0.041 0.037
8 SIE 0.095 0.060 0.048 0.042 0.037
SIE-R-BIC 0.090 0.066 0.057 0.053 0.050
RMSEA-N 0.132 0.098 0.085 0.078 0.074
IGEOCM 0.095 0.061 0.048 0.042 0.037
均匀 4 SIE 0.123 0.071 0.055 0.046 0.041
SIE-R-BIC 0.097 0.068 0.057 0.051 0.047
RMSEA-N 0.118 0.090 0.082 0.078 0.076
IGEOCM 0.121 0.071 0.055 0.046 0.041
6 SIE 0.121 0.069 0.053 0.045 0.039
SIE-R-BIC 0.097 0.068 0.056 0.050 0.046
RMSEA-N 0.116 0.090 0.081 0.078 0.076
IGEOCM 0.119 0.069 0.053 0.045 0.039
8 SIE 0.122 0.071 0.054 0.046 0.040
SIE-R-BIC 0.097 0.068 0.057 0.051 0.047
RMSEA-N 0.116 0.090 0.082 0.078 0.076
IGEOCM 0.121 0.071 0.054 0.046 0.040
正态 4 SIE 0.126 0.076 0.059 0.049 0.044
SIE-R-BIC 0.099 0.073 0.064 0.058 0.055
RMSEA-N 0.170 0.149 0.138 0.130 0.123
IGEOCM 0.126 0.076 0.059 0.049 0.044
6 SIE 0.124 0.076 0.059 0.050 0.044
SIE-R-BIC 0.098 0.073 0.064 0.058 0.055
RMSEA-N 0.171 0.149 0.138 0.129 0.125
IGEOCM 0.123 0.076 0.059 0.050 0.044
8 SIE 0.129 0.079 0.059 0.049 0.044
SIE-R-BIC 0.100 0.074 0.063 0.058 0.055
RMSEA-N 0.170 0.149 0.136 0.128 0.121
IGEOCM 0.130 0.079 0.060 0.050 0.044



图2各在线标定方法在不同条件下的ART (平均运行时间)结果(单位:秒)
图2各在线标定方法在不同条件下的ART (平均运行时间)结果(单位:秒)


表3SIE方法和IGEOCM在不同条件下的项目标定精度与标定效率结果
分布 方法 AVCER RMSE ART
PWKL MPWKL SHE GDI PWKL MPWKL SHE GDI PWKL MPWKL SHE GDI
高阶 SIE 0.607 0.617 0.615 0.614 0.082 0.083 0.083 0.083 78.438 78.083 78.116 77.818
IGEOCM 0.678 0.677 0.676 0.679 0.082 0.084 0.082 0.083 1.808 1.811 1.800 1.797
均匀 SIE 0.809 0.807 0.814 0.808 0.089 0.090 0.090 0.089 90.388 89.742 90.421 89.702
IGEOCM 0.828 0.827 0.831 0.825 0.089 0.090 0.090 0.089 1.861 1.846 1.857 1.845
正态 SIE 0.385 0.383 0.383 0.384 0.099 0.099 0.100 0.099 81.850 81.420 81.752 81.587
IGEOCM 0.454 0.462 0.457 0.467 0.099 0.099 0.099 0.099 1.884 1.865 1.873 1.880

表3SIE方法和IGEOCM在不同条件下的项目标定精度与标定效率结果
分布 方法 AVCER RMSE ART
PWKL MPWKL SHE GDI PWKL MPWKL SHE GDI PWKL MPWKL SHE GDI
高阶 SIE 0.607 0.617 0.615 0.614 0.082 0.083 0.083 0.083 78.438 78.083 78.116 77.818
IGEOCM 0.678 0.677 0.676 0.679 0.082 0.084 0.082 0.083 1.808 1.811 1.800 1.797
均匀 SIE 0.809 0.807 0.814 0.808 0.089 0.090 0.090 0.089 90.388 89.742 90.421 89.702
IGEOCM 0.828 0.827 0.831 0.825 0.089 0.090 0.090 0.089 1.861 1.846 1.857 1.845
正态 SIE 0.385 0.383 0.383 0.384 0.099 0.099 0.100 0.099 81.850 81.420 81.752 81.587
IGEOCM 0.454 0.462 0.457 0.467 0.099 0.099 0.099 0.099 1.884 1.865 1.873 1.880







[1] Ban J. C., Hanson B. A., Wang T., Yi Q., & Harris D. J. (2001). A comparative study of on-line pretest item— Calibration/scaling methods in computerized adaptive testing. Journal of Educational Measurement, 38(3), 191-212.
[2] Chandrashekar G., & Sahin F. (2014). A survey on feature selection methods. Computers & Electrical Engineering, 40(1), 16-28.
[3] Chen J. (2017). A residual-based approach to validate Q-matrix specifications. Applied Psychological Measurement, 41(4), 277-293.
[4] Chen, P. (2016). Two new online calibration methods for computerized adaptive testing. Acta Psychologica Sinica, 48(9), 1184-1198.
[ 陈平. (2016). 两种新的计算机化自适应测验在线标定方法. 心理学报, 48(9), 1184-1198.]
[5] Chen P. (2017). A comparative study of online item calibration methods in multidimensional computerized adaptive testing. Journal of Educational and Behavioral Statistics, 42(5), 559-590.
[6] Chen P., & Wang C. (2015). A new online calibration method for multidimensional computerized adaptive testing. Psychometrika, 81(3), 674-701.
[7] Chen P., Wang C., Xin T., & Chang H. H. (2017). Developing new online calibration methods for multidimensional computerized adaptive testing. British Journal of Mathematical and Statistical Psychology, 70(1), 81-117.
[8] Chen P., & Xin T. (2011 a). Developing on-line calibration methods for cognitive diagnostic computerized adaptive testing. Acta Psychologica Sinica, 43(6), 710-724.
[ 陈平, 辛涛. (2011 a). 认知诊断计算机化自适应测验中在线标定方法的开发. 心理学报, 43(6), 710-724.]
[9] Chen P., & Xin T. (2011 b). Item replenishing in cognitive diagnostic computerized adaptive testing. Acta Psychologica Sinica, 43(7), 836-850.
[ 陈平, 辛涛. (2011 b). 认知诊断计算机化自适应测验中的项目增补. 心理学报, 43(7), 836-850.]
[10] Chen P., Xin T., Wang C., & Chang H. H. (2012). Online calibration methods for the DINA model with independent attributes in CD-CAT. Psychometrika, 77(2), 201-222.
[11] Chen Y., Liu J., & Ying Z. (2015). Online item calibration for Q-matrix in CD-CAT. Applied Psychological Measurement, 39(1), 5-15.
[12] Cheng Y. (2009). When cognitive diagnosis meets computerized adaptive testing: CD-CAT. Psychometrika, 74(4), 619-632.
[13] Chiu C. Y., Sun Y., & Bian Y. (2018). Cognitive diagnosis for small educational programs: The general nonparametric classification method. Psychometrika, 83(2), 355-375.
[14] de la Torre, J. (2011). The generalized DINA model framework. Psychometrika, 76(2), 179-199.
[15] de la Torre, J., &Chiu C. Y. (2016). A General method of empirical Q-matrix validation. Psychometrika, 81(2), 253-273.
[16] Fleuret F. (2004). Fast binary feature selection with conditional mutual information. Journal of Machine Learning Research, 5(11), 1531-1555.
[17] Guyon I., & Elisseeff A. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research, 3(3), 1157-1182.
[18] Hartz S. M. (2002). A Bayesian framework for the unified model for assessing cognitive abilities: Blending theory with practicality (Unpublished doctoral dissertation). University of Illinois at Urbana-Champaign.
[19] He Y., Chen P., & Li Y. (2020). New efficient and practicable adaptive designs for calibrating items online. Applied Psychological Measurement, 44 (1), 3-16.
[20] Hoque N., Bhattacharyya D. K., & Kalita J. K. (2014). MIFS-ND: A mutual information-based feature selection method. Expert Systems with Applications, 41(14), 6371-6385.
[21] Junker B. W., & Sijtsma K. (2001). Cognitive assessment models with few assumptions, and connections with nonparametric item response theory. Applied Psychological Measurement, 25(3), 258-272.
[22] Kaplan M., de la Torre J., & Barrada J. R. (2015). New item selection methods for cognitive diagnosis computerized adaptive testing. Applied Psychological Measurement, 39(3), 167-188.
[23] Leighton J. P., Gierl M. J., & Hunka S. M. (2004). The attribute hierarchy method for cognitive assessment: A variation on Tatsuoka's rule-space approach. Journal of Educational Measurement, 41(3), 205-237.
[24] Li, H. ( 2012). Statistical learning method. Beijing: Tsinghua University Press.
[ 李航. ( 2012). 统计学习方法. 北京: 清华大学出版社.]
[25] Liu H. Y., You X. F., Wang W. Y., Ding S. L., & Chang H. H. (2013). The development of computerized adaptive testing with cognitive diagnosis for an English achievement test in China. Journal of Classification, 30(2), 152-172.
[26] Ma, W., & de la Torre J. (2016). A sequential cognitive diagnosis model for polytomous responses. British Journal of Mathematical and Statistical Psychology, 69(3), 253-275.
[27] Pereira R. B., Plastino A., Zadrozny B., & Merschmann L. H. (2015). Information gain feature selection for multi-label classification. Journal of Information and Data Management, 6(1), 48-58.
[28] Rupp A. A., & Templin J.L. (2008). The effects of Q-matrix misspecification on parameter estimates and classification accuracy in the DINA model. Educational and Psychological Measurement, 68(1), 78-96.
[29] Stocking M. L. (1988). Scale drift in on-line calibration. ETS Research Report, 1988(1), 1-122.
[30] Tan, Q. (2019). The development of generalized online calibration methods in CD-CAT (Unpublished master’s thesis). Jiangxi Normal University, Nanchang, China.
[ 谭青蓉. (2019). CD-CAT广义在线标定方法开发研究 (硕士学位论文). 江西师范大学, 南昌.]
[31] Vinh L. T., Lee S., Park Y. T., & d’Auriol B. J. (2012). A novel feature selection method based on normalized mutual information. Applied Intelligence, 37(1), 100-120.
[32] Wainer H., & Mislevy R. J. (1990). Item response theory, item calibration, and proficiency estimation. In H. Wainer (Ed), Computerized adaptive testing: A primer (Chap. 4, pp. 65-102). Hillsdale, NJ: Erlbaum.
[33] Wang C. (2013). Mutual information item selection method in cognitive diagnostic computerized adaptive testing with short test length. Educational and Psychological Measurement, 73(6), 1017-1035.
[34] Weiss D. J. (1982). Improving measurement quality and efficiency with adaptive testing. Applied Psychological Measurement, 6(4), 473-492.
[35] Yu X., & Cheng Y. (2020). Data-driven Q-matrix validation using a residual-based statistic in cognitive diagnostic assessment. British Journal of Mathematical and Statistical Psychology, 73( Suppl 1), 145-179.




[1]陈平. 两种新的计算机化自适应测验在线标定方法[J]. 心理学报, 2016, 48(9): 1184-1198.
[2]陈平,辛涛. 认知诊断计算机化自适应测验中的项目增补[J]. 心理学报, 2011, 43(07): 836-850.
[3]陈平,辛涛. 认知诊断计算机化自适应测验中在线标定方法的开发[J]. 心理学报, 2011, 43(06): 710-724.





PDF全文下载地址:

http://journal.psych.ac.cn/xlxb/CN/article/downloadArticleFile.do?attachType=PDF&id=5094
相关话题/心理 计算 江西师范大学 实验 方法