删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

汉字识别中亚词汇语音和语义信息在N170上的神经适应

本站小编 Free考研考试/2022-01-01

张瑞, 王振华, 王小娟(), 杨剑峰()
陕西师范大学心理学院, 西安 710062
收稿日期:2020-08-07出版日期:2021-08-25发布日期:2021-06-25
通讯作者:王小娟,杨剑峰E-mail:wangxj@snnu.edu.cn;yangjf@snnu.edu.cn

基金资助:*国家自然科学基金(31671167);中央高校基本科研业务费专项资金(GK202101010);中央高校基本科研业务费专项资金(2017TS052)

N170 adaptation effect of the sub-lexical phonological and semantic processing in Chinese character reading

ZHANG Rui, WANG Zhenhua, WANG Xiaojuan(), YANG Jianfeng()
School of Psychology, Shaanxi Normal University, Xi’an 710062, China
Received:2020-08-07Online:2021-08-25Published:2021-06-25
Contact:WANG Xiaojuan,YANG Jianfeng E-mail:wangxj@snnu.edu.cn;yangjf@snnu.edu.cn






摘要/Abstract


摘要: 视觉词汇识别的事件相关电位(ERP)研究发现早期的脑电成分N170具有对词汇的敏感性, 可能反映了字形、语音和语义加工, 目前还没有得到统一的结论。本研究利用汉字形声字声旁表音和形旁表义的独特性, 使用神经适应范式深入考察了N170对汉字亚词汇语音和语义信息的敏感性。实验1操纵了连续汉字的声旁和整字读音重复呈现探究其诱发的神经适应性, 结果发现了左侧电极的N170对声旁和整字读音重复都产生了神经适应。实验2进一步操纵形旁和整字语义的重复呈现, 结果发现左侧N170仅对整字语义相似性具有神经适应性, 而右侧N170对形旁和整字语义重复都产生了神经适应。实验结果表明, 左侧N170不仅对整字语音和语义信息敏感, 还对亚词汇的声旁信息敏感; 而右侧N170对整字语义以及亚词汇的形旁信息敏感。



图1实验1(A)和实验2(B)四个实验条件下的材料举例, 以及两个实验的流程图
图1实验1(A)和实验2(B)四个实验条件下的材料举例, 以及两个实验的流程图



图3实验1发现左侧梭状回(PO7)神经适应的条件间差异, 右侧(PO8)没有条件间差异
图3实验1发现左侧梭状回(PO7)神经适应的条件间差异, 右侧(PO8)没有条件间差异



图2实验1的4个条件在PO7和PO8电极点上都表现出神经适应
图2实验1的4个条件在PO7和PO8电极点上都表现出神经适应


附表1实验1 PO7电极点上4个汉字N170波幅的配对比较
O+P+ O+P- O-P+ O-P-
t (27) p Cohend t (27) p Cohend t(27) p Cohend t (27) p Cohend
S1 vs. S2 -10.041 0.000 1.58 -8.654 0.000 1.51 -9.251 0.000 1.54 -8.293 0.000 1.46
S1 vs. S3 -9.441 0.000 1.58 -7.71 0.000 1.43 -8.415 0.000 1.26 -8.493 0.000 1.29
S1 vs. S4 -7.302 0.000 1.14 -6.441 0.000 1.01 -6.453 0.000 0.94 -6.168 0.000 0.92
S2 vs. S3 -0.087 1.000 0.01 0.367 1.000 0.03 2.854 0.049 0.26 1.052 1.000 0.09
S2 vs. S4 3.905 0.003 0.33 5.647 0.000 0.48 5.517 0.000 0.50 4.602 0.001 0.48
S3 vs. S4 4.805 0.000 0.34 4.84 0.000 0.43 2.845 0.050 0.25 4.769 0.000 0.38

附表1实验1 PO7电极点上4个汉字N170波幅的配对比较
O+P+ O+P- O-P+ O-P-
t (27) p Cohend t (27) p Cohend t(27) p Cohend t (27) p Cohend
S1 vs. S2 -10.041 0.000 1.58 -8.654 0.000 1.51 -9.251 0.000 1.54 -8.293 0.000 1.46
S1 vs. S3 -9.441 0.000 1.58 -7.71 0.000 1.43 -8.415 0.000 1.26 -8.493 0.000 1.29
S1 vs. S4 -7.302 0.000 1.14 -6.441 0.000 1.01 -6.453 0.000 0.94 -6.168 0.000 0.92
S2 vs. S3 -0.087 1.000 0.01 0.367 1.000 0.03 2.854 0.049 0.26 1.052 1.000 0.09
S2 vs. S4 3.905 0.003 0.33 5.647 0.000 0.48 5.517 0.000 0.50 4.602 0.001 0.48
S3 vs. S4 4.805 0.000 0.34 4.84 0.000 0.43 2.845 0.050 0.25 4.769 0.000 0.38


附表2实验1 PO8电极点上4个汉字N170波幅的配对比较
O+P+ O+P- O-P+ O-P-
t (27) p Cohend t (27) p Cohend t (27) p Cohend t (27) p Cohend
S1 vs. S2 -8.937 0.000 1.87 -8.531 0.000 1.74 -8.123 0.000 1.74 -8.673 0.000 1.86
S1 vs. S3 -8.333 0.000 1.65 -7.126 0.000 1.59 -8.183 0.000 1.47 -8.099 0.000 1.71
S1 vs. S4 -5.808 0.000 1.12 -5.332 0.000 1.00 -6.453 0.000 1.10 -5.766 0.000 1.15
S2 vs. S3 1.419 1.000 0.13 0.932 1.000 0.08 1.741 0.558 0.20 2.379 0.148 0.18
S2 vs. S4 4.808 0.000 0.65 6.67 0.001 0.75 4.528 0.001 0.56 6.783 0.000 0.63
S3 vs. S4 5.084 0.000 0.50 6.619 0.000 0.64 3.815 0.004 0.35 5.617 0.000 0.47

附表2实验1 PO8电极点上4个汉字N170波幅的配对比较
O+P+ O+P- O-P+ O-P-
t (27) p Cohend t (27) p Cohend t (27) p Cohend t (27) p Cohend
S1 vs. S2 -8.937 0.000 1.87 -8.531 0.000 1.74 -8.123 0.000 1.74 -8.673 0.000 1.86
S1 vs. S3 -8.333 0.000 1.65 -7.126 0.000 1.59 -8.183 0.000 1.47 -8.099 0.000 1.71
S1 vs. S4 -5.808 0.000 1.12 -5.332 0.000 1.00 -6.453 0.000 1.10 -5.766 0.000 1.15
S2 vs. S3 1.419 1.000 0.13 0.932 1.000 0.08 1.741 0.558 0.20 2.379 0.148 0.18
S2 vs. S4 4.808 0.000 0.65 6.67 0.001 0.75 4.528 0.001 0.56 6.783 0.000 0.63
S3 vs. S4 5.084 0.000 0.50 6.619 0.000 0.64 3.815 0.004 0.35 5.617 0.000 0.47



图4实验2在PO7和PO8电极点上的4个条件上都表现出神经适应性
图4实验2在PO7和PO8电极点上的4个条件上都表现出神经适应性


附表3实验2 PO7电极点上4个汉字N170波幅的配对比较
O+S+ O+S- O-S+ O-S-
t (27) p Cohend t (27) p Cohend t (27) p Cohend t (27) p Cohend
S1 vs. S2 -11.519 0.000 1.90 -10.18 0.000 1.64 -11.41 0.000 1.81 -8.293 0.000 1.46
S1 vs. S3 -9.439 0.000 1.56 -9.145 0.000 1.47 -10.84 0.000 1.61 -8.493 0.000 1.29
S1 vs. S4 -5.977 0.000 0.96 -4.975 0.000 0.87 -7.637 0.000 1.01 -6.168 0.000 0.92
S2 vs. S3 1.182 1.000 0.09 0.055 1.000 0.01 1.284 1.000 0.11 1.052 1.000 0.09
S2 vs. S4 6.401 0.000 0.66 4.484 0.001 0.53 6.513 0.000 0.62 4.602 0.001 0.48
S3 vs. S4 6.482 0.000 0.52 5.261 0.000 0.48 6.122 0.050 0.50 4.769 0.000 0.38

附表3实验2 PO7电极点上4个汉字N170波幅的配对比较
O+S+ O+S- O-S+ O-S-
t (27) p Cohend t (27) p Cohend t (27) p Cohend t (27) p Cohend
S1 vs. S2 -11.519 0.000 1.90 -10.18 0.000 1.64 -11.41 0.000 1.81 -8.293 0.000 1.46
S1 vs. S3 -9.439 0.000 1.56 -9.145 0.000 1.47 -10.84 0.000 1.61 -8.493 0.000 1.29
S1 vs. S4 -5.977 0.000 0.96 -4.975 0.000 0.87 -7.637 0.000 1.01 -6.168 0.000 0.92
S2 vs. S3 1.182 1.000 0.09 0.055 1.000 0.01 1.284 1.000 0.11 1.052 1.000 0.09
S2 vs. S4 6.401 0.000 0.66 4.484 0.001 0.53 6.513 0.000 0.62 4.602 0.001 0.48
S3 vs. S4 6.482 0.000 0.52 5.261 0.000 0.48 6.122 0.050 0.50 4.769 0.000 0.38


附表4实验2 PO8电极点上4个汉字N170波幅的配对比较
O+S+ O+S- O-S+ O-S-
t (27) p Cohend t (27) p Cohend t (27) p Cohend t (27) p Cohend
S1 vs. S2 -9.053 0.000 2.13 -9.509 0.000 1.96 -8.475 0.000 2.00 -8.673 0.000 1.86
S1 vs. S3 -8.916 0.000 1.96 -8.837 0.000 1.86 -7.848 0.000 1.87 -8.099 0.000 1.71
S1 vs. S4 -6.377 0.000 1.25 -5.884 0.000 1.10 -5.834 0.000 1.11 -5.766 0.000 1.15
S2 vs. S3 2.847 0.050 0.19 0.445 1.000 0.04 0.63 1.000 0.07 2.379 0.148 0.18
S2 vs. S4 7.721 0.000 0.87 6.236 0.000 0.80 5.977 0.000 0.84 6.783 0.000 0.63
S3 vs. S4 7.389 0.000 0.69 6.318 0.000 0.73 6.285 0.000 0.75 5.617 0.000 0.47

附表4实验2 PO8电极点上4个汉字N170波幅的配对比较
O+S+ O+S- O-S+ O-S-
t (27) p Cohend t (27) p Cohend t (27) p Cohend t (27) p Cohend
S1 vs. S2 -9.053 0.000 2.13 -9.509 0.000 1.96 -8.475 0.000 2.00 -8.673 0.000 1.86
S1 vs. S3 -8.916 0.000 1.96 -8.837 0.000 1.86 -7.848 0.000 1.87 -8.099 0.000 1.71
S1 vs. S4 -6.377 0.000 1.25 -5.884 0.000 1.10 -5.834 0.000 1.11 -5.766 0.000 1.15
S2 vs. S3 2.847 0.050 0.19 0.445 1.000 0.04 0.63 1.000 0.07 2.379 0.148 0.18
S2 vs. S4 7.721 0.000 0.87 6.236 0.000 0.80 5.977 0.000 0.84 6.783 0.000 0.63
S3 vs. S4 7.389 0.000 0.69 6.318 0.000 0.73 6.285 0.000 0.75 5.617 0.000 0.47



图5实验2的左侧(PO7)和右侧梭状回(PO8)都表现出神经适应的条件间差异
图5实验2的左侧(PO7)和右侧梭状回(PO8)都表现出神经适应的条件间差异







[1] Binder, J. R., Medler, D. A., Westbury, C. F., Liebenthal, E., & Buchanan, L. (2006). Tuning of the human left fusiform gyrus to sublexical orthographic structure. Neuroimage, 33(2),739-748.
doi: 10.1016/j.neuroimage.2006.06.053URL
[2] Bolger, D. J., Perfetti, C. A., & Schneider, W. (2005). Cross- cultural effect on the brain revisited: Universal structures plus writing system variation. Human Brain Mapping, 25(1),92-104.
doi: 10.1002/(ISSN)1097-0193URL
[3] Booth, J. R., Lu, D., Burman, D. D., Chou, T. -L., Jin, Z., Peng, D. -L., … Liu, L. (2006). Specialization of phonological and semantic processing in Chinese word reading. Brain Research, 1071(1),197-207.
doi: 10.1016/j.brainres.2005.11.097URL
[4] Brázdil, M., Mikl, M., Mareček, R., Krupa, P., & Rektor, I. (2007). Effective connectivity in target stimulus processing: A dynamic causal modeling study of visual oddball task. Neuroimage, 35(2),827-835.
pmid: 17258910
[5] Cao, X., Ma, X., & Qi, C. (2015). N170 adaptation effect for repeated faces and words. Neuroscience, 294,21-28.
doi: 10.1016/j.neuroscience.2015.03.009pmid: 25772788
[6] Cohen, L., Dehaene, S., Naccache, L., Lehéricy, S., Dehaene- Lambertz, G., Hénaff, M. -A., & Michel, F. (2000). The visual word form area. Brain, 123(2),291-307.
doi: 10.1093/brain/123.2.291URL
[7] Davis, C. P., Libben, G., & Segalowitz, S. J. (2019). Compounding matters: Event-related potential evidence for early semantic access to compound words. Cognition, 184,44-52.
doi: 10.1016/j.cognition.2018.12.006URL
[8] Dehaene, S., & Cohen, L. (2011). The unique role of the visual word form area in reading. Trends in Cognitive Sciences, 15(6),254-262.
doi: 10.1016/j.tics.2011.04.003URL
[9] Delorme, A., & Makeig, S. (2004) EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134,9-21.
pmid: 15102499
[10] Devlin, J. T., Jamison, H. L., Gonnerman, L. M., & Matthews, P. M. (2006). The role of the posterior fusiform gyrus in reading. Journal of Cognitive Neuroscience, 18(6),911-922.
doi: 10.1162/jocn.2006.18.6.911URL
[11] Eulitz, C., Eulitz, H., Maess, B., Cohen, R., Pantev, C., & Elbert, T. (2000). Magnetic brain activity evoked and induced by visually presented words and nonverbal stimuli. Psychophysiology, 37(4),447-455.
pmid: 10934903
[12] Fraga González, G., Žarić, G., Tijms, J., Bonte, M., Blomert, L., Leppänen, P., & van der Molen, M. W. (2016). Responsivity to dyslexia training indexed by the N170 amplitude of the brain potential elicited by word reading. Brain and Cognition, 106,42-54.
doi: 10.1016/j.bandc.2016.05.001pmid: 27200495
[13] Glezer, L. S., Eden, G., Jiang, X., Luetje, M., Napoliello, E., Kim, J., & Riesenhuber, M. (2016). Uncovering phonological and orthographic selectivity across the reading network using fMRI-RA. Neuroimage, 138,248-256.
doi: 10.1016/j.neuroimage.2016.05.072URL
[14] Glezer, L. S., Jiang, X., & Riesenhuber, M. (2009). Evidence for highly selective neuronal tuning to whole words in the “Visual Word Form Area”. Neuron, 62(2),199-204.
doi: 10.1016/j.neuron.2009.03.017URL
[15] Gold, B. T., Balota, D. A., Jones, S. J., Powell, D. K., Smith, C. D., & Andersen, A. H. (2006). Dissociation of automatic and strategic lexical-semantics: Functional magnetic resonance imaging evidence for differing roles of multiple frontotemporal regions. Journal of Neuroscience, 26(24),6523-6532.
doi: 10.1523/JNEUROSCI.0808-06.2006URL
[16] Hauk, O., Davis, M. H., Ford, M., Pulvermüller, F., & Marslen- Wilson, W. D. (2006). The time course of visual word recognition as revealed by linear regression analysis of ERP data. Neuroimage, 30(4),1383-1400.
pmid: 16460964
[17] Hoversten, L. J., Brothers, T., Swaab, T. Y., & Traxler, M. J. (2017). Early processing of orthographic language membership information in bilingual visual word recognition: Evidence from ERPs. Neuropsychologia, 103,183-190.
doi: S0028-3932(17)30279-8pmid: 28743547
[18] Hsiao, J. H. -W., Shillcock, R., & Lee, C. -Y. (2007). Neural correlates of foveal splitting in reading: Evidence from an ERP study of Chinese character recognition. Neuropsychologia, 45(6),1280-1292.
doi: 10.1016/j.neuropsychologia.2006.10.001URL
[19] Hsu, C. -H., Tsai, J. -L., Lee, C. -Y., & Tzeng, O. -L. (2009). Orthographic combinability and phonological consistency effects in reading Chinese phonograms: An event-related potential study. Brain and Language, 108(1),56-66.
doi: 10.1016/j.bandl.2008.09.002URL
[20] Kim, K. H., Yoon, H. W., & Park, H. W. (2004). Spatiotemporal brain activation pattern during word/picture perception by native Koreans. Neuroreport, 15(7),1099-1103.
doi: 10.1097/00001756-200405190-00003URL
[21] Krafnick, A. J., Tan, L. -H., Flowers, D. L., Luetje, M. M., Napoliello, E. M., Siok, W. -T., … Eden, G. F. (2016). Chinese character and English word processing in children’s ventral occipitotemporal cortex: fMRI evidence for script invariance. Neuroimage, 133,302-312.
doi: S1053-8119(16)00219-6pmid: 27012502
[22] Krekelberg, B., Boynton, G. M., & van Wezel, R. J. A. (2006). Adaptation: From single cells to BOLD signals. Trends in Neurosciences, 29(5),250-256.
pmid: 16529826
[23] Kuo, W. -J., Yeh, T. -C., Lee, J. -R., Chen, L. -F., Lee, P. -L., Chen, S. -S., … Hsieh, J. -C. (2004). Orthographic and phonological processing of Chinese characters: An fMRI study. Neuroimage, 21(4),1721-1731.
doi: 10.1016/j.neuroimage.2003.12.007URL
[24] Lee, C. -Y., Tsai, J. -L., Chan, W. -H., Hsu, C. -H., Hung, D. L., & Tzeng, O. J. L. (2007). Temporal dynamics of the consistency effect in reading Chinese: An event-related potentials study. NeuroReport, 18(2),147-151.
doi: 10.1097/WNR.0b013e328010d4e4URL
[25] Lindell, A. K., & Lum, J. A. G. (2008). Priming vs. rhyming: Orthographic and phonological representations in the left and right hemispheres. Brain and Cognition, 68(2),193-203.
doi: 10.1016/j.bandc.2008.04.005URL
[26] Lin, S. E., Chen, H. C., Zhao, J., Li, S., He, S., & Weng, X. C. (2011). Left-lateralized N170 response to unpronounceable pseudo but not false Chinese characters—The key role of orthography. Neuroscience, 190,200-206.
doi: 10.1016/j.neuroscience.2011.05.071pmid: 21704128
[27] Liu, C., Zhang, W. -T., Tang, Y. -Y., Mai, X. -Q., Chen, H. -C., Tardif, T., & Luo, Y. -J. (2008). The visual word form area: Evidence from an fMRI study of implicit processing of Chinese characters. Neuroimage, 40(3),1350-1361.
doi: 10.1016/j.neuroimage.2007.10.014URL
[28] Lu, Q., Tang, Y. -Y., Zhou, L., & Yu, Q. (2011). The different time courses of reading different levels of Chinese characters: An ERP study. Neuroscience Letters, 498(3),194-198.
doi: 10.1016/j.neulet.2011.03.061URL
[29] Madden, D. J. (2004). Age-related changes in neural activity during visual target detection measured by fMRI. Cerebral Cortex, 14(2),143-155.
pmid: 14704211
[30] Maurer, U., Brem, S., Bucher, K., & Brandeis, D. (2005). Emerging neurophysiological specialization for letter strings. Journal of Cognitive Neuroscience, 17(10),1532-1552.
pmid: 16269095
[31] Maurer, U., & McCandliss, B. D. (2007). The development of visual expertise for words: The contribution of electrophysiology. In E. L. Grigorenko & A. J. Naples (Eds.),Single-word reading: Behavioral and biological perspectives. Mahwah, NJ: Lawrence Erlbaum Associates.
[32] Maurer, U., Zevin, J. D., & McCandliss, B. D. (2008). Left- lateralized N170 effects of visual expertise in reading: Evidence from Japanese syllabic and logographic scripts. Journal of Cognitive Neuroscience, 20(10),1878-1891.
doi: 10.1162/jocn.2008.20125pmid: 18370600
[33] Mechelli, A., Sartori, G., Orlandi, P., & Price, C. J. (2006). Semantic relevance explains category effects in medial fusiform gyri. Neuroimage, 30(3),992-1002.
pmid: 16343950
[34] Mei, L., Xue, G., Lu, Z. -L., He, Q., Zhang, M., Xue, F., … Dong, Q. (2013). Orthographic transparency modulates the functional asymmetry in the fusiform cortex: An artificial language training study. Brain and Language, 125(2),165-172.
doi: 10.1016/j.bandl.2012.01.006URL
[35] Mo, C., Yu, M., Seger, C., & Mo, L. (2015). Holistic neural coding of Chinese character forms in bilateral ventral visual system. Brain and Language, 141,28-34.
doi: 10.1016/j.bandl.2014.11.008URL
[36] Pattamadilok, C., Chanoine, V., Pallier, C., Anton, J. -L., Nazarian, B., Belin, P., & Ziegler, J. C. (2017). Automaticity of phonological and semantic processing during visual word recognition. Neuroimage, 149,244-255.
doi: S1053-8119(17)30107-6pmid: 28163139
[37] Price, C. J., & Devlin, J. T. (2011). The interactive account of ventral occipitotemporal contributions to reading. Trends in Cognitive Sciences, 15(6),246-253.
doi: 10.1016/j.tics.2011.04.001URL
[38] Proverbio, A. M., & Zani, A. (2003). Time course of brain activation during graphemic/phonologic processing in reading: An ERP study. Brain and Language, 87(3),412-420.
pmid: 14642543
[39] Raposo, A., Moss, H. E., Stamatakis, E. A., & Tyler, L. K. (2006). Repetition suppression and semantic enhancement: An investigation of the neural correlates of priming. Neuropsychologia, 44(12),2284-2295.
pmid: 16806317
[40] Rossion, B., Joyce, C. A., Cottrell, G. W., & Tarr, M. J. (2003). Early lateralization and orientation tuning for face, word, and object processing in the visual cortex. Neuroimage, 20(3),1609-1624.
pmid: 14642472
[41] Sacchi, E., & Laszlo, S. (2016). An event-related potential study of the relationship between N170 lateralization and phonological awareness in developing readers. Neuropsychologia, 91,415-425.
doi: 10.1016/j.neuropsychologia.2016.09.001URL
[42] Saygin, Z. M., Osher, D. E., Norton, E. S., Youssoufian, D. A., Beach, S. D., Feather, J., … Kanwisher, N. (2016). Connectivity precedes function in the development of the visual word form area. Nature Neuroscience, 19(9),1250-1255.
doi: 10.1038/nn.4354URL
[43] Scott, G. G., O’Donnell, P. J., Leuthold, H., & Sereno, S. C. (2009). Early emotion word processing: Evidence from event- related potentials. Biological Psychology, 80(1),95-104.
doi: 10.1016/j.biopsycho.2008.03.010URL
[44] Segalowitz, S. J., & Zheng, X. (2009). An ERP study of category priming: Evidence of early lexical semantic access. Biological Psychology, 80(1),122-129.
doi: 10.1016/j.biopsycho.2008.04.009pmid: 18524454
[45] Shaywitz, B. A., Shaywitz, S. E., Pugh, K. R., Mencl, W. E., Fulbright, R. K., Skudlarski, P., … Gore, J. C. (2002). Disruption of posterior brain systems for reading in children with developmental dyslexia. Biological Psychiatry, 52(2),101-110.
[46] Siok, W. T., Perfetti, C. A., Jin, Z., & Tan, L. H. (2004). Biological abnormality of impaired reading is constrained by culture. Nature, 431(7004),71-76.
doi: 10.1038/nature02865URL
[47] Szwed, M., Qiao, E., Jobert, A., Dehaene, S., & Cohen, L. (2014). Effects of literacy in early visual and occipitotemporal areas of Chinese and French readers. Journal of Cognitive Neuroscience, 26(3),459-475.
doi: 10.1162/jocn_a_00499URL
[48] Tan, L. H., Liu, H. -L., Perfetti, C. A., Spinks, J. A., Fox, P. T., & Gao, J. -H. (2001). The neural system underlying Chinese logograph reading. Neuroimage, 13(5),836-846.
pmid: 11304080
[49] Vinckier, F., Dehaene, S., Jobert, A., Dubus, J. P., Sigman, M., & Cohen, L. (2007). Hierarchical coding of letter strings in the ventral stream: Dissecting the inner organization of the visual word-form system. Neuron, 55(1),143-156.
pmid: 17610823
[50] Wang, X., Shu, H., & Yang, J. (2010). Visual word form area and its functional role in the neural network of reading. Advances in Psychological Science, 18(8),1199-1207.
[ 王小娟, 舒华, 杨剑峰.(2010). 大脑视觉词形区及其在阅读神经网络中的作用. 心理科学进展, 18(8),1199-1207.]
[51] Wang, X., Xu, Y., Wang, Y., Zeng, Y., Zhang, J., Ling, Z., & Bi, Y. (2018). Representational similarity analysis reveals task-dependent semantic influence of the visual word form area. Scientific Reports, 8(1),3047.
[52] Wang, X., Yang, J., Shu, H., & Zevin, J. D. (2011). Left fusiform BOLD responses are inversely related to word- likeness in a one-back task. Neuroimage, 55(3),1346-1356.
doi: 10.1016/j.neuroimage.2010.12.062URL
[53] Wang, X., Zhao, R., Zevin, J. D., & Yang, J. (2016). The neural correlates of the interaction between semantic and phonological processing for Chinese character reading. Frontiers in Psychology, 7(518)
[54] Wheatley, T., Weisberg, J., Beauchamp, M. S., & Martin, A. (2005). Automatic priming of semantically related words reduces activity in the fusiform gyrus. Journal of Cognitive Neuroscience, 17(12),1871-1885.
pmid: 16356325
[55] Xue, G., Chen, C., Jin, Z., & Dong, Q. (2006). Language experience shapes fusiform activation when processing a logographic artificial language: An fMRI training study. Neuroimage, 31(3),1315-1326.
doi: 10.1016/j.neuroimage.2005.11.055URL
[56] Yang, J., Mccandliss, B. D., Shu, H., & Zevin, J. D. (2009). Simulating language-specific and language-general effects in a statistical learning model of Chinese reading. Journal of Memory and Language, 61(2),238-257.
doi: 10.1016/j.jml.2009.05.001URL
[57] Yang, J., Wang, X., Shu, H., & Zevin, J. D. (2011). Brain networks associated with sublexical properties of Chinese characters. Brain and Language, 119(2),68-79.
doi: 10.1016/j.bandl.2011.03.004URL
[58] Yang, J., Wang, X., Shu, H., & Zevin, J. D. (2012). Task by stimulus interactions in brain responses during Chinese character processing. Neuroimage, 60(2),979-990.
doi: 10.1016/j.neuroimage.2012.01.036URL
[59] Yum, Y. N., Law, S. -P., Su, I. -F., Lau, K. -Y. D., & Mo, K. N. (2014). An ERP study of effects of regularity and consistency in delayed naming and lexicality judgment in a logographic writing system. Frontiers in Psychology, 5(5),315.
[60] Zhao, L., Chen, C., Shao, L., Wang, Y., Xiao, X., Chen, C.,... Xue, G. (2017). Orthographic and phonological representations in the fusiform cortex. Cerebral Cortex, 27(11),5197-5210.
[61] Zhao, J., Li, S., Lin, S. -E., Cao, X. -H., He, S., & Weng, X. -C. (2012). Selectivity of N170 in the left hemisphere as an electrophysiological marker for expertise in reading Chinese. Neuroscience Bulletin, 28(5),577-584.
doi: 10.1007/s12264-012-1274-yURL
[62] Zhou, L., Peng, G., Zheng, H. -Y., Su, I. -F., & Wang, W. S. -Y. (2012). Sub-lexical phonological and semantic processing of semantic radicals: A primed naming study. Reading and Writing, 26(6),967-989.
doi: 10.1007/s11145-012-9402-7URL
[63] Zhou, X. L., Lu, X. M., & Shu, H. (2000). The nature of sublexical processing in reading Chinese: Phonological activation of semantic radials. Acta Psychologica Sinica. 32(1),20-24.
[ 周晓林, 鲁学明, 舒华.(2000). 亚词汇水平加工的本质: 形旁的语音激活. 心理学报, 32(1),20-24.]
[64] Zhou, X., & Marslen-Wilson, W. (1999). Phonology, orthography, and semantic activation in reading Chinese. Journal of Memory and Language, 41(4),579-606.
doi: 10.1006/jmla.1999.2663URL




[1]李利平, 伍新春, 程亚华. 小学低段汉字识别和听写的发展轨迹:语素意识的预测作用[J]. 心理学报, 2020, 52(5): 623-632.
[2]罗禹, 丰丽红, 任敏, 顾秋瑀, 赵守盈, 张禹. 知觉负载对负性分心面孔的知觉加工和记忆的影响[J]. 心理学报, 2017, 49(10): 1256-1266.
[3]吴岩;莫德圆;王海英; 于溢洋;陈烜之;张明. 语义分类任务中部件位置在汉字识别中的作用[J]. 心理学报, 2016, 48(6): 599-606.
[4]钟毅平;李琎;占友龙;范伟;杨子鹿. 自我旋转面孔识别的ERPs研究[J]. 心理学报, 2016, 48(11): 1379-1389.
[5]陈京军;许 磊; 程晓荣; 刘华山. 儿童汉字练习:纸笔手写与键盘拼音输入的效果比较[J]. 心理学报, 2016, 48(10): 1258-1269.
[6]吴岩;王协顺;陈烜之. 汉字识别中部件结合率的作用:ERP研究[J]. 心理学报, 2015, 47(2): 157-166.
[7]杨亚平;徐强;张林;邓培状;梁宁建. 场景的不同空间频率信息对面部表情加工的影响:来自ERP的证据[J]. 心理学报, 2015, 47(12): 1433-1444.
[8]吴诗玉;马拯. 二语词汇阅读的跨语言语音干扰:语义关联判断任务的证据[J]. 心理学报, 2015, 47(11): 1318-1327.
[9]陈琳; 钟罗金;冷英;莫雷. 拼音自动加工和语义加工中汉字字形的激活[J]. 心理学报, 2014, 46(11): 1661-1670.
[10]邢强;张忠炉;王梦偌;张金莲;王菁;姚艳芬;占丹玲. 汉字字谜任务中限制解除的电生理机制[J]. 心理学报, 2013, 45(5): 508-516.
[11]杨昕岳;王权红; 陆其林. 地震经历对插入空白间隔的汉字知觉干扰效应的影响[J]. 心理学报, 2013, 45(5): 517-522.
[12]邢强;张忠炉;孙海龙;张金莲;王菁. 字谜顿悟任务中限制解除和组块分解的机制及其原型启发效应[J]. 心理学报, 2013, 45(10): 1061-1071.
[13]孙天义;许远理;郭春彦. 人类面孔识别工作记忆的脑电位特征[J]. 心理学报, 2013, 45(10): 1072-1084.
[14]钱怡;赵婧;毕鸿燕. 汉语学龄前儿童正字法意识的发展[J]. 心理学报, 2013, 45(1): 60-69.
[15]王娟,张积家,谢书书,袁爱玲. 结合东巴文学习汉字对幼儿汉字字形记忆的影响[J]. 心理学报, 2011, 43(05): 519-533.





PDF全文下载地址:

http://journal.psych.ac.cn/xlxb/CN/article/downloadArticleFile.do?attachType=PDF&id=5024
相关话题/实验 神经 心理 信息 材料