删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

长期戒断海洛因成瘾者冲动性相关脑区的结构及功能特征

本站小编 Free考研考试/2022-01-01

蔡惠燕1, 苗心2, 王鹏飞1(), 林志为3, 王孟成1, 杨文登1, 麻彦坤1(), 曾红1()
1广州大学教育学院心理系, 广州 510006
2清华大学社会科学学院心理学系, 北京 100084
3广东省第二强制隔离戒毒所, 佛山 528135
收稿日期:2021-03-22出版日期:2021-08-25发布日期:2021-06-25
通讯作者:王鹏飞,麻彦坤,曾红E-mail:zhh0791@163.com;ykma@gzhu.edu.cn;pwang@gzhu.edu.cn

基金资助:*国家自然科学基金项目(31771214);广东省第二强制隔离戒毒所与广州大学合作项目《戒毒人员预防复吸训练》

Structural and functional characteristics of impulsive-related brain regions in heroin addicts with long-term withdrawal

CAI Huiyan1, MIAO Xin2, WANG Pengfei1(), LIN Zhiwei3, WANG Mengcheng1, YANG Wendeng1, MA Yankun1(), ZENG Hong1()
1Department of Psychology, Guangzhou University, Guangzhou 510006, China
2Department of Psychology, School of Social Sciences, Tsinghua University, Beijing 100084, China
3Guangdong Secondary Compulsory Substance Rehabilitation Center, Foshan 528135, China
Received:2021-03-22Online:2021-08-25Published:2021-06-25
Contact:WANG Pengfei,MA Yankun,ZENG Hong E-mail:zhh0791@163.com;ykma@gzhu.edu.cn;pwang@gzhu.edu.cn






摘要/Abstract


摘要: 冲动性是药物成瘾者的典型特征, 它既包含了抑制控制成瘾者药物使用的力量, 也包含驱动成瘾者使用药物的成分, 两者不平衡导致冲动性用药行为。海洛因成瘾者本身具有冲动性人格特质, 长时间的海洛因使用又会造成成瘾者冲动性相关的大脑结构与功能的异常。目前难以确定戒断后, 冲动性及相关的大脑结构与功能是否还呈异常状态。本研究采用基于体素的形态学分析、低频振幅、局部一致性和功能连接方法, 以35例海洛因成瘾戒断者和无任何成瘾史的健康个体26人为研究对象, 探索在长期戒断后, 海洛因成瘾者与其冲动性相关的驱动、控制系统脑网络的结构和功能情况。结果显示, 相比对照组, 戒断组灰质总体积及右内侧额上回的灰质体积显著减小, 右侧颞中回和左内侧旁扣带回的灰质体积随用药总量的增加而降低; 右侧眶部额下回与尾状核功能连接显著增强, 右侧颞中回和左侧中央前回功能连接显著降低; 右眶额中回的ReHo值、右眶额下回和左海马体的ALFF值比对照组显著更低, 而右中央后回的ReHo值显著更高。这些脑区的状况与冲动性的神经基础相吻合, 说明海洛因成瘾戒断者在戒断44个月, 奖赏、凸显、习惯性行为等网络系统仍然呈现异常状态, 且与成瘾药物使用总量有关。这些异常可能是成瘾冲动性的驱动力的神经基础, 可以作为解释成瘾者戒断后容易复吸的因素之一。


表1海洛因成瘾完全戒断组和美沙酮戒断组基本信息及脑指标(M ± SD)
基本信息 完全戒断组(23) 美沙酮戒断组(12) t p Cohen'sd
年龄(岁) 40.20 ± 3.54 41.82 ± 3.69 -1.25 0.22 -0.45
受教育程度(年) 9.04 ± 1.40 9.45 ± 1.04 -0.88 0.38 -0.33
香烟用量/天(根) 12.99 ± 5.42 15.48 ± 7.76 -1.11 0.27 -0.41
酒精用量/天(ml) 18.40 ± 10.02 18.48 ± 12.42 -0.02 0.98 -0.01
戒断前海洛因用量/天(g) 0.55 ± 0.28 0.65 ± 0.27 -0.78 0.44 -0.36
戒断前用量海洛因/月(g) 16.34 ± 8.31 18.75 ± 8.10 -0.78 0.44 -0.29
用药时长(月) 200.76 ± 40.84 223.80 ± 56.86 -1.35 0.19 -0.47
使用总量(g) 3417.44 ± 2102.84 4107.75 ± 2102.78 -0.88 0.39 -0.33
戒断时长(月) 42.43 ± 6.48 44.25 ± 5.28 -0.83 0.41 -0.31
灰质总量(mm3) 637.39 ± 63.43 664.90 ± 47.69 -1.24 0.23 -0.49
白质总量(mm3) 535.40 ± 59.03 537.40 ± 41.85 -0.10 0.92 -0.03
脑脊液总量(mm3) 234.49 ± 30.49 232.02 ± 23.93 0.23 0.82 0.09
颅内总体积(mm3) 1407.28 ± 132.81 1434.33 ± 97.14 -0.58 0.56 -0.23

表1海洛因成瘾完全戒断组和美沙酮戒断组基本信息及脑指标(M ± SD)
基本信息 完全戒断组(23) 美沙酮戒断组(12) t p Cohen'sd
年龄(岁) 40.20 ± 3.54 41.82 ± 3.69 -1.25 0.22 -0.45
受教育程度(年) 9.04 ± 1.40 9.45 ± 1.04 -0.88 0.38 -0.33
香烟用量/天(根) 12.99 ± 5.42 15.48 ± 7.76 -1.11 0.27 -0.41
酒精用量/天(ml) 18.40 ± 10.02 18.48 ± 12.42 -0.02 0.98 -0.01
戒断前海洛因用量/天(g) 0.55 ± 0.28 0.65 ± 0.27 -0.78 0.44 -0.36
戒断前用量海洛因/月(g) 16.34 ± 8.31 18.75 ± 8.10 -0.78 0.44 -0.29
用药时长(月) 200.76 ± 40.84 223.80 ± 56.86 -1.35 0.19 -0.47
使用总量(g) 3417.44 ± 2102.84 4107.75 ± 2102.78 -0.88 0.39 -0.33
戒断时长(月) 42.43 ± 6.48 44.25 ± 5.28 -0.83 0.41 -0.31
灰质总量(mm3) 637.39 ± 63.43 664.90 ± 47.69 -1.24 0.23 -0.49
白质总量(mm3) 535.40 ± 59.03 537.40 ± 41.85 -0.10 0.92 -0.03
脑脊液总量(mm3) 234.49 ± 30.49 232.02 ± 23.93 0.23 0.82 0.09
颅内总体积(mm3) 1407.28 ± 132.81 1434.33 ± 97.14 -0.58 0.56 -0.23


表2海洛因成瘾戒断组和对照组基本信息(M ± SD)
基本信息 戒断组(35) 对照组(26) t p Cohen'sd
年龄(岁) 40.69 ± 3.61 42.31 ± 8.45 -0.90 0.37 0.25
受教育程度(年) 9.17 ± 1.30 10.50 ± 1.55 -3.48 0.00 0.93
香烟用量/天(根) 13.81 ± 8.27 11.43 ± 9.72 0.99 0.33 0.26
酒精用量/天(ml) 19.74 ± 13.93 8.84 ± 8.70 3.45 0.00 0.94
戒断前海洛因用量/天(g) 0.57 ± 0.27 N/A
戒断前海洛因用量/月(g) 17.03 ± 8.21 N/A
用药时长(月) 207.34 ± 45.65 N/A
使用总量(g) 3614.67 ± 2095.69 N/A
戒断时长(月) 43.55 ± 6.59 N/A

表2海洛因成瘾戒断组和对照组基本信息(M ± SD)
基本信息 戒断组(35) 对照组(26) t p Cohen'sd
年龄(岁) 40.69 ± 3.61 42.31 ± 8.45 -0.90 0.37 0.25
受教育程度(年) 9.17 ± 1.30 10.50 ± 1.55 -3.48 0.00 0.93
香烟用量/天(根) 13.81 ± 8.27 11.43 ± 9.72 0.99 0.33 0.26
酒精用量/天(ml) 19.74 ± 13.93 8.84 ± 8.70 3.45 0.00 0.94
戒断前海洛因用量/天(g) 0.57 ± 0.27 N/A
戒断前海洛因用量/月(g) 17.03 ± 8.21 N/A
用药时长(月) 207.34 ± 45.65 N/A
使用总量(g) 3614.67 ± 2095.69 N/A
戒断时长(月) 43.55 ± 6.59 N/A


表3戒断组与对照组各脑指标的双样本t检验结果
基本信息 戒断组(35) 对照组(26) t p Cohen'sd
灰质总量(mm3) 625.41 ± 36.41 654.26 ± 63.43 -2.23 0.03 0.56
白质总量(mm3) 523.02 ± 51.08 540.36 ± 9.03 -1.28 0.21 0.47
脑脊液总量(mm3) 231.95 ± 18.98 234.16 ± 30.49 -0.34 0.73 0.09
脑实质占比(%) 0.83 ± 0.01 0.84 ± 0.02 -1.24 0.22 0.63
颅内总体积(mm3) 1380.38 ± 84.65 1428.79 ± 132.81 -1.74 0.09 0.43

表3戒断组与对照组各脑指标的双样本t检验结果
基本信息 戒断组(35) 对照组(26) t p Cohen'sd
灰质总量(mm3) 625.41 ± 36.41 654.26 ± 63.43 -2.23 0.03 0.56
白质总量(mm3) 523.02 ± 51.08 540.36 ± 9.03 -1.28 0.21 0.47
脑脊液总量(mm3) 231.95 ± 18.98 234.16 ± 30.49 -0.34 0.73 0.09
脑实质占比(%) 0.83 ± 0.01 0.84 ± 0.02 -1.24 0.22 0.63
颅内总体积(mm3) 1380.38 ± 84.65 1428.79 ± 132.81 -1.74 0.09 0.43



图1戒断组与对照组在右侧内侧额上回的双样本t检验结果
图1戒断组与对照组在右侧内侧额上回的双样本t检验结果


表4HAG灰质体积与用药总量相关的脑区
脑区名称 L/R Cluster size MNI coordinates t pAlphaSim校正
x y z
颞中回 R 2340 56 -59 -5 -4.35 < 0.01
内侧和旁扣带回 L 3640 -8 -38 33 -4.84 < 0.01

表4HAG灰质体积与用药总量相关的脑区
脑区名称 L/R Cluster size MNI coordinates t pAlphaSim校正
x y z
颞中回 R 2340 56 -59 -5 -4.35 < 0.01
内侧和旁扣带回 L 3640 -8 -38 33 -4.84 < 0.01



图2HAG右侧颞中回灰质体积与用药总量的相关图
图2HAG右侧颞中回灰质体积与用药总量的相关图



图3HAG左侧内侧和旁扣带回灰质体积与用药总量的相关图
图3HAG左侧内侧和旁扣带回灰质体积与用药总量的相关图


表5戒断组相比对照组局部一致性的双样本t检验
解剖脑区 L/R Cluster size MNI coordinates t pAlphaSim校正
x y z
HAG < HCG
额中回 R 676 12 57 -9 -6.28 < 0.01
HAG > HCG
中央后回 R 204 33 -30 54 3.54 < 0.01

表5戒断组相比对照组局部一致性的双样本t检验
解剖脑区 L/R Cluster size MNI coordinates t pAlphaSim校正
x y z
HAG < HCG
额中回 R 676 12 57 -9 -6.28 < 0.01
HAG > HCG
中央后回 R 204 33 -30 54 3.54 < 0.01



图4戒断组与对照组在右侧额中回的双样本t检验图
图4戒断组与对照组在右侧额中回的双样本t检验图



图5戒断组与对照组在右侧中央后回的双样本t检验图
图5戒断组与对照组在右侧中央后回的双样本t检验图


表6戒断者相比对照组ALFF的双样本t检验
脑区名称 L/R Cluster size MNI coordinates t pAlphaSim校正
X Y Z
HAG < HCG
眶部额下回 R 389 15 60 -6 -5.30 < 0.01
海马体 L 66 -9 -3 -15 -5.38 < 0.01

表6戒断者相比对照组ALFF的双样本t检验
脑区名称 L/R Cluster size MNI coordinates t pAlphaSim校正
X Y Z
HAG < HCG
眶部额下回 R 389 15 60 -6 -5.30 < 0.01
海马体 L 66 -9 -3 -15 -5.38 < 0.01



图6戒断组与对照组在右眶部额下回的双样本t检验图
图6戒断组与对照组在右眶部额下回的双样本t检验图



图7戒断组与对照组在左海马的双样本t检验图
图7戒断组与对照组在左海马的双样本t检验图


表7戒断组与对照组以右眶部额下回为感兴趣区的功能连接双样本t检验结果
解剖脑区 L/R Cluster size MNI coordinates t pAlphaSim校正
X Y Z
HAG > HCG
尾状核 R 192 27 12 -9 4.61 < 0.01
HAG < HCG
颞中回 R 205 33 3 -39 -4.51 < 0.01
中央前回 L 853 -30 -21 60 -4.17 < 0.01

表7戒断组与对照组以右眶部额下回为感兴趣区的功能连接双样本t检验结果
解剖脑区 L/R Cluster size MNI coordinates t pAlphaSim校正
X Y Z
HAG > HCG
尾状核 R 192 27 12 -9 4.61 < 0.01
HAG < HCG
颞中回 R 205 33 3 -39 -4.51 < 0.01
中央前回 L 853 -30 -21 60 -4.17 < 0.01



图8戒断组与对照组以右眶部额下回为感兴趣区的全脑功能连接双样本t检验图
图8戒断组与对照组以右眶部额下回为感兴趣区的全脑功能连接双样本t检验图



图9戒断组与对照组右侧眶部额下回与右侧尾状核功能连接的双样本t检验图
图9戒断组与对照组右侧眶部额下回与右侧尾状核功能连接的双样本t检验图



图10戒断组与对照组右眶部额下回与左中央前回功能连接的双样本t检验图
图10戒断组与对照组右眶部额下回与左中央前回功能连接的双样本t检验图



图11戒断组右眶部额下回-右颞中回功能连接强度与用药时间的相关
图11戒断组右眶部额下回-右颞中回功能连接强度与用药时间的相关







[1] Albein-Urios, N., Verdejo-Román, J., Asensio, S., Soriano- Mas, C., Martínez-gonzález, J. M., & Verdejo-Garcia, A. (2014). Re-appraisal of negative emotions in cocaine dependence: Dysfunctional corticolimbic activation and connectivity. Addiction Biology, 19(3),415-426.
doi: 10.1111/j.1369-1600.2012.00497.xpmid: 22978709
[2] Belin, D., Mar, A. C., Dalley, J. W., Robbins, T. W., & Everitt, B. J. (2008). High impulsivity predicts the switch to compulsive cocaine-taking. Science, 320(5881),1352-1355.
doi: 10.1126/science.1158136URL
[3] Cheng, G. L. F., Liu, Y. -P., Chan, C. C. H., So, K. -F., Zeng, H., & Lee, T. M. C. (2015). Neurobiological underpinnings of sensation seeking trait in heroin abusers. European Neuropsychopharmacology, 25(11),1968-1980.
doi: 10.1016/j.euroneuro.2015.07.023URL
[4] Connock, M., Stevens, C., Fry-Smith, A., Jowett, S., Fitzmaurice, D., Moore, D., & Song, F. (2007). Clinical effectiveness and cost-effectiveness of different models of managing long-term oral anticoagulation therapy: A systematic review and economic modelling. Health Technology Assessment, 11(38),iii-iv, ix-66.
[5] Dalley, J. W., Fryer, T. D., Brichard, L., Robinson, E. S. J., Theobald, D. E. H., Lääne, K., … Robbins, T. W. (2007). Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science, 315(5816),1267-1270.
doi: 10.1126/science.1137073URL
[6] Dalley, J. W., & Robbins, T. W. (2017). Fractionating impulsivity: Neuropsychiatric implications. Nature Reviews Neuroscience, 18(3),158-171.
[7] Deserno, L., Wilbertz, T., Reiter, A., Horstmann, A., Neumann, J., Villringer, A., … Schlagenhauf, F. (2015). Lateral prefrontal model-based signatures are reduced in healthy individuals with high trait impulsivity. Translational Psychiatry, 5(10),1-9.
[8] du Boisgueheneuc, F., Levy, R., Volle, E., Seassau, M., Duffau, H., Kinkingnehun, S., … Dubois, B. (2006). Functions of the left superior frontal gyrus in humans: A lesion study. Brain, 129(12),3315-3328.
doi: 10.1093/brain/awl244URL
[9] Ersche, K. D., Jones, P. S., Williams, G. B., Smith, D. G., Bullmore, E. T., & Robbins, T. W. (2013). Distinctive personality traits and neural correlates associated with stimulant drug use versus familial risk of stimulant dependence. Biological Psychiatry, 74(2),137-144.
doi: 10.1016/j.biopsych.2012.11.016pmid: 23273722
[10] Ersche, K. D., Jones, P., Williams, G., Turton, A., Robbins, T., & Bullmore, E. (2012). Abnormal brain structure implicated in stimulant drug addiction. Science, 335(6068),601-604.
doi: 10.1126/science.1214463pmid: 22301321
[11] Ersche, K. D., Turton, A. J., Pradhan, S., Bullmore, E. T., & Robbins, T. W. (2010). Drug addiction endophenotypes: Impulsive versus sensation-seeking personality traits. Biological Psychiatry, 68(8),770-773.
doi: 10.1016/j.biopsych.2010.06.015pmid: 20678754
[12] Everitt, B. J., & Robbins, T. W. (2016). Drug Addiction: Updating actions to habits to compulsions ten years on. In S. T. Fiske (Ed.), Annual Review of Psychology, 67,23-50.
doi: 10.1146/annurev-psych-122414-033457pmid: 26253543
[13] Fu, L. -P., Bi, G. -H., Zou, Z. -T., Wang, Y., Ye, E. -M., Ma, L., … Yang, Z. (2008). Impaired response inhibition function in abstinent heroin dependents: An fMRI study. Neuroscience Letters, 438(3),322-326.
doi: 10.1016/j.neulet.2008.04.033URL
[14] Gallagher, H. L., Happe, F., Brunswick, N., Fletcher, P. C., Frith, U., & Frith, C. D. (2000). Reading the mind in cartoons and stories: An fMRI study of “theory of mind” in verbal and nonverbal tasks. Neuropsychologia, 38(1),11-21.
pmid: 10617288
[15] Gardini, S., & Venneri, A. (2012). Reduced grey matter in the posterior insula as a structural vulnerability or diathesis to addiction. Brain Research Bulletin, 87(2-3),205-211.
[16] Goldstein, R. Z., & Volkow, N. D. (2002). Drug addiction and its underlying neurobiological basis: Neuroimaging evidence for the involvement of the frontal cortex. American Journal of Psychiatry, 159(10),1642-1652.
pmid: 12359667
[17] Grusser, S. M., Wrase, J., Klein, S., Hermann, D., Smolka, M. N., Ruf, M., … Heinz, A. (2004). Cue-induced activation of the striatum and medial prefrontal cortex is associated with subsequent relapse in abstinent alcoholics. Psychopharmacology, 175(3),296-302.
doi: 10.1007/s00213-004-1828-4URL
[18] Hassani-Abharian, P., Ganjgahi, H., Tabatabaei-Jafari, H., Oghabian, M. A., Mokri, A., & Ekhtiari, H. (2015). Exploring neural correlates of different dimensions in drug craving self-reports among heroin dependents. Basic and Clinical Neuroscience, 6(4),271-283.
pmid: 26649165
[19] He, Z., Zhou, X. -H., Wang, X. -Y., Liu, J., & Hao, W. (2008). Longitudinal observation on brain structure in the heroin dependence patients during abstince. Chinese Journal of Clinical Psychology, 16(4),358-359.
[ 贺忠, 周旭辉, 王绪轶, 刘军, 郝伟.(2008). 海洛因依赖者停药后脑灰质密度的纵向研究. 中国临床心理学杂志, 16(4),358-359+354.]
[20] Hobkirk, A. L., Bell, R. P., Utevsky, A. V., Huettel, S., & Meade, C. S. (2019). Reward and executive control network resting-state functional connectivity is associated with impulsivity during reward-based decision making for cocaine users. Drug and Alcohol Dependence, 194,32-39.
doi: 10.1016/j.drugalcdep.2018.09.013
[21] Hogarth, L., Chase, H. W., & Baess, K. (2012). Impaired goal-directed behavioural control in human impulsivity. Quarterly Journal of Experimental Psychology, 65(2),305-316.
doi: 10.1080/17470218.2010.518242URL
[22] Hu, Y., Salmeron, B. J., Gu, H., Stein, E. A., & Yang, Y. (2015). Impaired functional connectivity within and between frontostriatal circuits and its association with compulsive drug use and trait impulsivity in cocaine addiction. Jama Psychiatry, 72(6),584-592.
doi: 10.1001/jamapsychiatry.2015.1URL
[23] Jia, X. Z., Wang, J., Sun, H. Y., Zhang, H., Liao, W., Wang, Z., … Zang, Y. F. (2019). RESTplus: An improved toolkit for resting-state functional magnetic resonance imaging data processing. Science Bulletin, 64(14),953-954.
doi: 10.1016/j.scib.2019.05.008URL
[24] Keihani, A., Ekhtiari, H., Batouli, S. A. H., Shahbabaie, A., Sadighi, N., Mirmohammad, M., & Oghabian, M. A. (2017). Lower gray matter density in the anterior cingulate cortex and putamen can be traceable in chronic heroin dependents after over three months of successful abstinence. Iranian Journal of Radiology, 14(3),e41858.
[25] Koob, G. F., & Volkow, N. D. (2010). Neurocircuitry of addiction. Neuropsychopharmacology, 35(1),217-238.
doi: 10.1038/npp.2009.110URL
[26] Koob, G. F., & Volkow, N. D. (2016). Neurobiology of addiction: A neurocircuitry analysis. Lancet Psychiatry, 3(8),760-773.
doi: 10.1016/S2215-0366(16)00104-8URL
[27] Lench, D. H., DeVries, W., & Hanlon, C. A. (2017). The effect of task difficulty on motor performance and frontal-striatal connectivity in cocaine users. Drug and Alcohol Dependence, 173,178-184.
doi: 10.1016/j.drugalcdep.2016.12.008URL
[28] Li, M., Tian, J., Zhang, R., Qiu, Y., Wen, X., Ma, X., … Huang, R. (2014). Abnormal cortical thickness in heroin-dependent individuals. Neuroimage, 88,295-307.
doi: 10.1016/j.neuroimage.2013.10.021URL
[29] Liu, H., Hao, Y., Kaneko, Y., Ouyang, X., Zhang, Y., Xu, L., … Liu, Z. (2009). Frontal and cingulate gray matter volume reduction in heroin dependence: Optimized voxel- based morphometry. Psychiatry and Clinical Neurosciences, 63(4),563-568.
doi: 10.1111/pcn.2009.63.issue-4URL
[30] Martz, M. E., Zucker, R. A., Schulenberg, J. E., & Heitzeg, M. M. (2018). Psychosocial and neural indicators of resilience among youth with a family history of substance use disorder. Drug and Alcohol Dependence, 185,198-206.
doi: 10.1016/j.drugalcdep.2017.12.015URL
[31] McHugh, M. J., Gu, H., Yang, Y., Adinoff, B., & Stein, E. A. (2015). Executive control network connectivity strength protects against relapse to cocaine use. Addiction Biology, 22(6),1790-1801.
doi: 10.1111/adb.12448URL
[32] Morein-Zamir, S., & Robbins, T. W. (2015). Fronto-striatal circuits in response-inhibition: Relevance to addiction. Brain Research, 1628,117-129.
doi: 10.1016/j.brainres.2014.09.012pmid: 25218611
[33] Pattij, T., & de Vries, T. J. (2013). The role of impulsivity in relapse vulnerability. Current Opinion in Neurobiology, 23(4),700-705.
doi: 10.1016/j.conb.2013.01.023pmid: 23462336
[34] Prisciandaro, J. J., Myrick, H., Henderson, S., McRae-Clark, A. L., & Brady, K. T. (2013). Prospective associations between brain activation to cocaine and no-go cues and cocaine relapse. Drug and Alcohol Dependence, 131(1-2),44-49.
doi: 10.1016/j.drugalcdep.2013.01.023URL
[35] Qiu, Y. W., Su, H. H., Lv, X. F., Ma, X. F., Jiang, G. H., & Tian, J. Z. (2017). Intrinsic brain network abnormalities in codeine-containing cough syrup-dependent male individuals revealed in resting-state fMRI. Journal of Magnetic Resonance Imaging, 45(1),177-186.
doi: 10.1002/jmri.25352URL
[36] Ray, S., Gohel, S., & Biswal, B. B. (2015). Altered functional connectivity strength in abstinent chronic cocaine smokers compared to healthy controls. Biological Psychiatry, 5(8),476-486.
[37] Shen, Y., Wang, E., Wang, X., & Lou, M. (2012). Disrupted integrity of white matter in heroin-addicted subjects at different abstinent time. Journal of Addiction Medicine, 6(2),172-176.
doi: 10.1097/ADM.0b013e318252db94URL
[38] Tabatabaei-Jafari, H., Ekhtiari, H., Ganjgahi, H., Hassani- Abharian, P., Oghabian, M. -A., Moradi, A., … Zarei, M. (2014). Patterns of brain activation during craving in heroin dependents successfully treated by methadone maintenance and abstinence-based treatments. Journal of Addiction Medicine, 8(2),123-129.
doi: 10.1097/ADM.0000000000000022pmid: 24637623
[39] Vaquero, L., Cámara, E., Sampedro, F., Pérez de los Cobos, J., Batlle, F., Fabregas, J. M., … Riba, J. (2017). Cocaine addiction is associated with abnormal prefrontal function, increased striatal connectivity and sensitivity to monetary incentives, and decreased connectivity outside the human reward circuit. Addiction Biology, 22(3),844-856.
doi: 10.1111/adb.12356pmid: 26786150
[40] Wang, L., Zou, F., Zhai, T., Lei, Y., Tan, S., Jin, X., … Yang, Z. (2016). Abnormal gray matter volume and resting-state functional connectivity in former heroin-dependent individuals abstinent for multiple years. Addiction Biology, 21(3),646-656.
doi: 10.1111/adb.12228URL
[41] Wang, P., Yan, R., Miao, X., & Zeng, H. (2019). Impulsivity or habitual behavior? The function and mechanism of impulsivity in different phases of drug addiction. Advances in Psychological Science, 27(5),834-842.
doi: 10.3724/SP.J.1042.2019.00834URL
[ 王鹏飞, 严瑞婷, 苗心, 曾红.(2019). 冲动还是习惯? 成瘾不同阶段中冲动性的性质与机制. 心理科学进展, 27(5),834-842.]
[42] Wang, X., Li, B., Zhou, X., Liao, Y., Tang, J., Liu, T., … Hao, W. (2012). Changes in brain gray matter in abstinent heroin addicts. Drug and Alcohol Dependence, 126(3),304-308.
doi: 10.1016/j.drugalcdep.2012.05.030URL
[43] Wei, X., Li, W., Chen, J., Li, Y., Zhu, J., Shi, H., … Wang, W. (2019). Assessing drug cue-induced brain response in heroin dependents treated by methadone maintenance and protracted abstinence measures. Brain Imaging and Behavior, 14(4),1221-1229.
doi: 10.1007/s11682-019-00051-5URL
[44] Wollman, S. C., Alhassoon, O. M., Stern, M. J., Hall, M. G., Rompogren, J., Kimmel, C. L., & Perez-Figueroa, A. M. (2015). White matter abnormalities in long-term heroin users: A preliminary neuroimaging meta-analysis. American Journal of Drug and Alcohol Abuse, 41(2),133-138.
doi: 10.3109/00952990.2014.985829URL
[45] Yan, X., Li, W., Wang, Y., Li, Q., Li, Y., Zhu, J., … Wang, W. (2015). A DTI study of brain white matter integrity in heroin addicts under short-time abstinence. Chinese Journal of Magnetic Resonance Imaging, 6(2),98-103.
[ 严雪娇, 李玮, 王亚蓉, 李强, 李永斌, 朱佳, … 王玮.(2015). 短期戒断的海洛因成瘾者大脑白质完整性的DTI研究. 磁共振成像, 6(2),98-103.]
[46] Yan, X., Li, W., Wang, Y., Li, Q., Zhu, J., Li, Y., & Wang, W. (2016). Diffsion tensor imgaing evalutaion of effects of abstinence tiime on white integrity of heroin addicts. Chinese Journal of Medical Imaging Technology, 32(1),25-29.
[ 严雪娇, 李玮, 王亚蓉, 李强, 朱佳, 李永斌, 王玮.(2016). DTI评价戒断时间对海洛因成瘾者大脑白质完整性的影响. 中国医学影像技术, 32(1),25-29.]
[47] Yang, L., Zhang, Y., Cao, H., Xu, J., Du, J. -H., & Zhang, J. -X. (2019). Restorability of Working Memory in Heroin Addicts with Short-term Withdrawal. Chinese Journal of Clinical Psychology, 27(4),652-656.
[ 杨玲, 张炀, 曹华, 徐景, 杜军红, 张建勋.(2019). 海洛因依赖短期戒断者工作记忆的可恢复性. 中国临床心理学杂志, 27(4),652-656.]
[48] Yuan, Y., Zhu, Z., Shi, J., Zou, Z., Yuan, F., Liu, Y., … Weng, X. (2009). Gray matter density negatively correlates with duration of heroin use in young lifetime heroin-dependent individuals. Brain and Cognition, 71(3),223-228.
doi: 10.1016/j.bandc.2009.08.014pmid: 19775795
[49] Zeng, H., Su, D., Wang, P., Wang, M., Vollstädt-Klein, S., Chen, Q., & Ye, H. (2018). The action representation elicited by different types of drug-related cues in heroin-abstinent individuals. Frontiers in Behavioral Neuroscience, 12,1-11.
doi: 10.3389/fnbeh.2018.00001URL
[50] Zeng, H., Su, D. Q., Jiang, X., Chen, Q., & Ye, H. S. (2015). Activations of sensory-motor brain regions in response to different types of drug-associated cues. Acta Psychologica Sinica, 47(7),890-902.
doi: 10.3724/SP.J.1041.2015.00890URL
[ 曾红, 苏得权, 姜醒, 陈骐, 叶浩生.(2015). 不同药物相关线索反应下感觉-运动脑区的激活及作用. 心理学报, 47(7),890-902.]
[51] Zhang, R., Geng, X., & Lee, T. M. C. (2017). Large-scale functional neural network correlates of response inhibition: An fMRI meta-analysis. Brain Structure & Function, 222(9),3973-3990.
[52] Zhou, P., Liu, D., Zhou, R., Sun, B., Xiao, J., & Li, S. (2014). Sensitivity to monetary reward in drug abstainers at different post-drug withdrawal phases: An ERP study. Chinese Journal of Clinical Psychology, 22(4),571-576.
[ 周平艳, 刘丹玮, 周仁来, 孙本良, 肖洁, 李松.(2014). 不同戒断期毒品戒断者对金钱奖赏敏感性的ERP研究. 中国临床心理学杂志, 22(4),571-576.]
[53] Zhou, P., Zhou, R., Hui, Y., Fan, W., Sun, B., & Xiao, J. (2014). Different healing phases of heroin abstainers' processing to emotional stimuli: The evidence from erp research. Psychological Exploration, 34(2),172-178.
周平艳, 周仁来, 惠颖, 范文勇, 孙本良, 肖洁.(2014). 不同戒断期海洛因戒断者情绪加工的损伤和恢复. 心理学探新, 34(2),172-178.
[54] Zhu, X., Cortes, C. R., Mathur, K., Tomasi, D., & Momenan, R. (2017). Model-free functional connectivity and impulsivity correlates of alcohol dependence: A resting-state study. Addiction Biology, 22(1),206-217.
doi: 10.1111/adb.12272pmid: 26040546
[55] Zilverstand, A., Huang, A. S., Alia-Klein, N., & Goldstein, R. Z. (2018). Neuroimaging impaired response inhibition and salience attribution in human drug addiction: A systematic review. Neuron, 98(5),886-903.
doi: S0896-6273(18)30282-4pmid: 29879391




[1]周衡, 何华, 于薇, 王爱君, 张明. 老年人声音诱发闪光错觉的大脑静息态低频振幅[J]. 心理学报, 2020, 52(7): 823-834.
[2]郑志灵, 王鹏飞, 苏得权, 郭伟杰, 孙楠, 麻彦坤, 曾红. 不同相关线索下海洛因成瘾者的反应差异及反应抑制特征:来自ERP的证据[J]. 心理学报, 2020, 52(3): 317-328.
[3]童丹丹, 李文福, 禄鹏, 杨文静, 杨东, 张庆林, 邱江. 科学发明情境中问题提出的脑机制再探[J]. 心理学报, 2020, 52(11): 1253-1265.





PDF全文下载地址:

http://journal.psych.ac.cn/xlxb/CN/article/downloadArticleFile.do?attachType=PDF&id=5028
相关话题/检验 中央 指标 药物 心理