删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于干扰物特征的统计规则对注意抑制效应的影响

本站小编 Free考研考试/2022-01-01

张帆, 王爱君(), 张明()
苏州大学心理学系, 心理与行为科学研究中心, 苏州 215123
收稿日期:2020-08-05发布日期:2021-04-25
通讯作者:王爱君,张明E-mail:psyzm@suda.edu.cn;ajwang@suda.edu.cn

基金资助:国家自然科学基金(31871092);国家自然科学基金(31700939);江苏省基础研究计划(BK20170333)

The influence of feature-based statistical regularity of singletons on the attentional suppression effect

ZHANG Fan, WANG Aijun(), ZHANG Ming()
Department of Psychology, Research Center for Psychology and Behavioral Sciences, Soochow University, Suzhou 215123, China
Received:2020-08-05Published:2021-04-25
Contact:WANG Aijun,ZHANG Ming E-mail:psyzm@suda.edu.cn;ajwang@suda.edu.cn






摘要/Abstract


摘要: 采用经典的额外单例范式的变式, 通过操纵基于干扰物颜色的统计规则, 考察其对注意抑制效应的影响。结果发现:(1)当迫使被试采取特征探测策略时, 与无颜色独子的条件相比, 被试在所有呈现独子的条件中反应都显著较快; (2)与呈现低概率颜色独子条件相比, 呈现高概率颜色独子条件下被试的反应显著较快。研究表明, 统计规则对注意的影响不局限于刺激位置, 基于干扰物特征的统计规则也会影响注意抑制效应的大小。



图1实验1流程图。正式实验中, 要求被试搜索特定形状的靶子(菱形或圆形), 并既快又准地对其内部的线段朝向做出判断。搜索序列呈现时, 一半试次中所有刺激颜色一致(即无颜色独子呈现), 另一半试次中有一个颜色独子呈现(虚线圆圈标识, 彩图见电子版)。
图1实验1流程图。正式实验中, 要求被试搜索特定形状的靶子(菱形或圆形), 并既快又准地对其内部的线段朝向做出判断。搜索序列呈现时, 一半试次中所有刺激颜色一致(即无颜色独子呈现), 另一半试次中有一个颜色独子呈现(虚线圆圈标识, 彩图见电子版)。



图2实验1中不同独子呈现条件下的平均反应时结果。图A为实验1总的反应时结果, 图B为前1/4试次和后1/4试次中不同独子呈现条件下的反应时结果。 注:***p< 0.001, n.s.p > 0.05
图2实验1中不同独子呈现条件下的平均反应时结果。图A为实验1总的反应时结果, 图B为前1/4试次和后1/4试次中不同独子呈现条件下的反应时结果。 注:***p< 0.001, n.s.p > 0.05



图3实验2中不同独子呈现条件下的反应时。图A为实验2总的反应时结果, 图B为前1/4试次和后1/4试次中不同独子呈现条件下的反应时结果。 注:***p< 0.001, **p< 0.01, *p< 0.05, n.s.p> 0.05
图3实验2中不同独子呈现条件下的反应时。图A为实验2总的反应时结果, 图B为前1/4试次和后1/4试次中不同独子呈现条件下的反应时结果。 注:***p< 0.001, **p< 0.01, *p< 0.05, n.s.p> 0.05







[1] Awh, E., Belopolsky, A.V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: A failed theoretical dichotomy. Trends in Cognitive Sciences, 16(8),437-443.
doi: 10.1016/j.tics.2012.06.010URL
[2] Burnham, B.R., Harris, A.M., & Suda, M.T. (2011). Relationship between working memory capacity and contingent involuntary orienting. Visual Cognition, 19(8),983-1002.
doi: 10.1080/13506285.2011.603710URL
[3] Chun, M.M., & Jiang, Y.H. (1999). Top-down attentional guidance based on implicit learning of visual covariation. Psychological Science, 10(4),360-365.
doi: 10.1111/1467-9280.00168URL
[4] Eimer, M., & Kiss, M. (2008). Involuntary attentional capture is determined by task set: Evidence from event-related brain potentials. Journal of Cognitive Neuroscience, 20(8),1423-1433.
doi: 10.1162/jocn.2008.20099URL
[5] Failing, M., & Theeuwes, J. (2019). More capture, more suppression: Distractor suppression due to statistical regularities is determined by the magnitude of attentional capture. Psychonomic Bulletin & Review, 27(1),86-95.
doi: 10.3758/s13423-019-01672-zURL
[6] Failing, M., Wang, B., & Theeuwes, J. (2019). Spatial suppression due to statistical regularities is driven by distractor suppression not by target activation. Attention, Perception, & Psychophysics, 817(5),1405-1414.
[7] Ferrante, O., Patacca, A., Di Caro, V., Della Libera, C., Santandrea, E., & Chelazzi, L. (2018). Altering spatial priority maps via statistical learning of target selection and distractor filtering. Cortex, 102,67-95.
doi: S0010-9452(17)30334-9pmid: 29096874
[8] Folk, C.L., Remington, R.W., & Johnston, J.C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception & Performance, 18(4),1030-1044.
[9] Franconeri, S.L., & Simons, D.J. (2003). Moving and looming stimuli capture attention. Perception & Psychophysics, 65(7),999-1010.
doi: 10.3758/BF03194829URL
[10] Fukuda, K., & Vogel, E.K. (2011). Individual differences in recovery time from attentional capture. Psychological Science, 22(3),361-368.
doi: 10.1177/0956797611398493URL
[11] Gaspar, J.M., & McDonald, J.J. (2014). Suppression of salient objects prevents distraction in visual search. Journal of Neuroscience, 34(16),5658-5666.
doi: 10.1523/JNEUROSCI.4161-13.2014URL
[12] Gaspelin, N., Gaspar, J.M., & Luck, S.J. (2019). Oculomotor inhibition of salient distractors: Voluntary inhibition cannot override selection history. Visual Cognition, 27(3-4),227-246.
[13] Gaspelin, N., Leonard, C.J., & Luck, S.J. (2015). Direct evidence for active suppression of salient-but-irrelevant sensory inputs. Psychological Science, 26(11),1740-1750.
doi: 10.1177/0956797615597913URL
[14] Gaspelin, N., Leonard, C.J., & Luck, S.J. (2017). Suppression of overt attentional capture by salient-but-irrelevant color singletons. Attention, Perception, & Psychophysics, 79(1),45-62.
[15] Gaspelin, N., & Luck, S.J. (2018a). Combined electrophysiological and behavioral evidence for the suppression of salient distractors. Journal of Cognitive Neuroscience, 30(9),1265-1280.
doi: 10.1162/jocn_a_01279URL
[16] Gaspelin, N., & Luck, S.J. (2018b). The role of inhibition in avoiding distraction by salient stimuli. Trends in Cognitive Sciences, 22(1),79-92.
doi: 10.1016/j.tics.2017.11.001URL
[17] Gaspelin, N., & Luck, S.J. (2018c). Distinguishing among potential mechanisms of singleton suppression. Journal of Experimental Psychology: Human Perception & Performance, 44(4),626-644.
[18] Geng, J.J.& Behrmann, M. (2005). Spatial probability as an attentional cue in visual search. Perception & Psychophysics, 67(7),1252-1268.
doi: 10.3758/BF03193557URL
[19] Gong, M.Y., Jia, K., & Li, S. (2017). Perceptual competition promotes suppression of reward salience in behavioral selection and neural representation. Journal of Neuroscience, 37(26),6242-6252.
doi: 10.1523/JNEUROSCI.0217-17.2017URL
[20] Gong, M.Y., Jia, K., & Li, S. (2018). Reward learning drives modulation on visual attention. Chinese Journal of Applied Psychology, 24(2),99-112.
[ 龚梦园, 贾珂, 李晟. (2018). 奖赏学习对视觉注意的调控. 应用心理学>, 24(2),99-112.]
[21] Gong, M.Y., Li, S., & Yang, F.T. (2016). Reward association facilitates distractor suppression in human visual search. The European Journal of Neuroscience, 43(7),942-953.
doi: 10.1111/ejn.13174URL
[22] Gong, M.Y., & Liu, T.S. (2020). Biased neural representation of feature-based attention in the human frontoparietal network. Journal of Neuroscience, 40(43),8386-8395.
doi: 10.1523/JNEUROSCI.0690-20.2020URL
[23] Han, S.W., & Kim, M.S. (2009). Do the contents of working memory capture attention? Yes, but cognitive control matters. Journal of Experimental Psychology: Human Perception & Performance, 35(5),1292-1302.
[24] Harris, A.M., Jacoby, O., Remington, R.W., Becker, S.I., Mattingley, J.B. (2020). Behavioral and electrophysiological evidence for a dissociation between working memory capacity and feature-based attention. Cortex, 129,159-174.
[25] Hu, L.P., Ding, Y.L., & Qu, Z. (2019). Perceptual learning induces active suppression of physically nonsalient shapes. Psychophysiology, 56(9),e13393.
[26] Jannati, A., Gaspar, J.M., & McDonald, J.J. (2013). Tracking target and distractor processing in fixed-feature visual search: Evidence from human electrophysiology. Journal of Experimental Psychology: Human Perception and Performance, 39(6),1713-1730.
doi: 10.1037/a0032251URL
[27] Jiang, J.F., Summerfield, C., & Egner, T. (2013). Attention sharpens the distinction between expected and unexpected percepts in the visual brain. Journal of Neuroscience, 33(47),18438-18447.
doi: 10.1523/JNEUROSCI.3308-13.2013URL
[28] Kumada, T. (2001). Feature-based control of attention: evidence for two forms of dimension weighting. Perception & Psychophysics, 63(4),698-708.
doi: 10.3758/BF03194430URL
[29] Lee, J., Leonard, C.J., Luck, S.J., & Geng, J.J. (2018). Dynamics of feature-based attentional selection during color-shape conjunction search. Journal of Cognitive Neuroscience, 30(12),1773-1787.
doi: 10.1162/jocn_a_01318URL
[30] Louisa, K. (2017). The effect of stimulus size and eccentricity on attention shift latencies. Vision, 1(4),25-34.
doi: 10.3390/vision1040025URL
[31] Maunsell, J.H.R., & Treue, S. (2006). Feature-based attention in visual cortex. Trends in Neurosciences, 29(6),317-322.
doi: 10.1016/j.tins.2006.04.001URL
[32] Nissens, T., Failing, M., & Theeuwes, J. (2017). People look at the object they fear: Oculomotor capture by stimuli that signal threat. Cognition and Emotion, 31(8),1707-1714.
doi: 10.1080/02699931.2016.1248905URL
[33] Ono, F., & Kawahara, J.I. (2007). The subjective size of visual stimuli affects the perceived duration of their presentation. Perception & Psychophysics, 69(6),952-957.
doi: 10.3758/BF03193932URL
[34] Pronina, A., Grigoryan, R.K., & Kaplan, A.Y. (2018). Objective eye movements during typing in P300 BCI: The effect of stimuli size and spacing. Moscow University Psychology Bulletin, 4,120-134.
[35] Sàenz, M., Bura?as, G.T., & Boynton, G.M. (2002). Global effects of feature-based attention in human visual cortex. Nature Neuroscience, 5(7),631-632.
doi: 10.1038/nn876URL
[36] Sàenz, M., Bura?as, G.T., Boynton, G.M. (2003). Global feature-based attention for motion and color. Vision Research, 43(6),629-637.
doi: 10.1016/S0042-6989(02)00595-3URL
[37] Sawaki, R., Geng, J.J., & Luck, S.J. (2012). A common neural mechanism for preventing and terminating the allocation of attention. Journal of Neuroscience, 32(31),10725-10736.
doi: 10.1523/JNEUROSCI.1864-12.2012URL
[38] Sawaki, R., & Luck, S.J. (2010). Capture versus suppression of attention by salient singletons: Electrophysiological evidence for an automatic attend-to-me signal. Attention, Perception, & Psychophysics, 72(6),1455-1470.
[39] Sawaki, R., & Luck, S.J. (2011). Active suppression of distractors that match the contents of visual working memory. Visual Cognition, 19(7),956-972.
pmid: 22053147
[40] Sawaki, R., & Luck, S.J. (2013). Active suppression after involuntary capture of attention. Psychonomic Bulletin & Review, 20(2),296-301.
doi: 10.3758/s13423-012-0353-4URL
[41] Stilwell, B.T., Bahle, B., & Vecera, S.P. (2019). Feature-based statistical regularities of distractors modulate attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 45(3),419-433.
doi: 10.1037/xhp0000613URL
[42] Sun, M., Wang, E., Huang, J., Zhao, C.G., Guo, J.L., Li, D.W.,... Song, Y. (2018). Attentional selection and suppression in children and adults. Development Science, 21(6),e12684.
doi: 10.1111/desc.2018.21.issue-6URL
[43] Vatterott, D.B., Mozer, M.C., & Vecera, S.P. (2017). Rejecting salient distractors: Generalization from experience. Attention, Perception, & Psychophysics, 80,485-499.
doi: 10.3758/s13414-017-1465-8URL
[44] Vatterott, D.B., & Vecera, S.P. (2012). Experience-dependent attentional tuning of distractor rejection. Psychonomic Bulletin & Review, 19(5),871-878.
doi: 10.3758/s13423-012-0280-4URL
[45] Wang, B., Samara, I., & Theeuwes, J. (2019). Statistical regularities bias overt attention. Attention, Perception, & Psychophysics, 81,1813-1821.
[46] Wang, B.& Theeuwes, J. (2018a). Statistical regularities modulate attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 44(1),13-17.
doi: 10.1037/xhp0000472URL
[47] Wang, B., & Theeuwes, J. (2018b). How to inhibit a distractor location? Statistical learning versus active, top-down suppression. Attention, Perception, & Psychophysics, 80(4),860-870.
[48] Wang, B., & Theeuwes, J. (2018c). Statistical regularities modulate attentional capture independent of search strategy. Attention, Perception, & Psychophysics, 80(7),1763-1774.
[49] Wang H. Y., Sui, J., & Zhang M. (2018). Attentional capture is contingent on attentional control setting for semantic meaning: Evidence from modified spatial cueing paradigm. Acta Psychologica Sinica, 50(10),1071-1082.
doi: 10.3724/SP.J.1041.2018.01071URL
[ 王慧媛, 隋洁, 张明. (2018). 语义关联的注意捕获——来自线索化范式的证据. 心理学报>, 50(10),1071-1082.]
[50] Yantis, S., & Hillstrom, A.P. (1994). Stimulus-driven attentional capture: Evidence from equiluminant visual objects. Journal of Experimental Psychology: Human Perception and Performance, 20(1),95-107.
doi: 10.1037/0096-1523.20.1.95URL
[51] Yantis, S., & Jonides, J. (1984). Abrupt visual onsets and selective attention: evidence from visual search. Journal of Experimental Psychology: Human Perception and Performance, 10(5),601-621.
doi: 10.1037/0096-1523.10.5.601URL
[52] Zhao, J.Y., & Luo, Y. (2017). Statistical regularities guide the spatial scale of attention. Attention, Perception, & Psychophysics, 79(1),24-30.




[1]黄月胜, 张豹, 范兴华, 黄杰. 无关工作记忆表征的负性情绪信息能否捕获视觉注意?一项眼动研究[J]. 心理学报, 2021, 53(1): 26-37.





PDF全文下载地址:

http://journal.psych.ac.cn/xlxb/CN/article/downloadArticleFile.do?attachType=PDF&id=4952
相关话题/实验 序列 心理 统计 干扰