![](http://journal.psych.ac.cn/xlxb/images/email.png)
![](http://journal.psych.ac.cn/xlxb/images/email.png)
苏州大学心理学系, 心理与行为科学研究中心, 苏州 215123
收稿日期:
2020-08-05发布日期:
2021-04-25通讯作者:
王爱君,张明E-mail:psyzm@suda.edu.cn;ajwang@suda.edu.cn基金资助:
国家自然科学基金(31871092);国家自然科学基金(31700939);江苏省基础研究计划(BK20170333)The influence of feature-based statistical regularity of singletons on the attentional suppression effect
ZHANG Fan, WANG Aijun(![](http://journal.psych.ac.cn/xlxb/images/email.png)
![](http://journal.psych.ac.cn/xlxb/images/email.png)
Department of Psychology, Research Center for Psychology and Behavioral Sciences, Soochow University, Suzhou 215123, China
Received:
2020-08-05Published:
2021-04-25Contact:
WANG Aijun,ZHANG Ming E-mail:psyzm@suda.edu.cn;ajwang@suda.edu.cn摘要/Abstract
摘要: 采用经典的额外单例范式的变式, 通过操纵基于干扰物颜色的统计规则, 考察其对注意抑制效应的影响。结果发现:(1)当迫使被试采取特征探测策略时, 与无颜色独子的条件相比, 被试在所有呈现独子的条件中反应都显著较快; (2)与呈现低概率颜色独子条件相比, 呈现高概率颜色独子条件下被试的反应显著较快。研究表明, 统计规则对注意的影响不局限于刺激位置, 基于干扰物特征的统计规则也会影响注意抑制效应的大小。
图/表 3
![](http://journal.psych.ac.cn/xlxb/fileup/0439-755X/FIGURE/2021-53-6/Images/0439-755X-53-6-555/img_1.png)
图1实验1流程图。正式实验中, 要求被试搜索特定形状的靶子(菱形或圆形), 并既快又准地对其内部的线段朝向做出判断。搜索序列呈现时, 一半试次中所有刺激颜色一致(即无颜色独子呈现), 另一半试次中有一个颜色独子呈现(虚线圆圈标识, 彩图见电子版)。
![](http://journal.psych.ac.cn/xlxb/fileup/0439-755X/FIGURE/2021-53-6/Images/0439-755X-53-6-555/img_1.png)
![](http://journal.psych.ac.cn/xlxb/fileup/0439-755X/FIGURE/2021-53-6/Images/0439-755X-53-6-555/img_2.png)
图2实验1中不同独子呈现条件下的平均反应时结果。图A为实验1总的反应时结果, 图B为前1/4试次和后1/4试次中不同独子呈现条件下的反应时结果。 注:***p< 0.001, n.s.p > 0.05
![](http://journal.psych.ac.cn/xlxb/fileup/0439-755X/FIGURE/2021-53-6/Images/0439-755X-53-6-555/img_2.png)
![](http://journal.psych.ac.cn/xlxb/fileup/0439-755X/FIGURE/2021-53-6/Images/0439-755X-53-6-555/img_3.png)
图3实验2中不同独子呈现条件下的反应时。图A为实验2总的反应时结果, 图B为前1/4试次和后1/4试次中不同独子呈现条件下的反应时结果。 注:***p< 0.001, **p< 0.01, *p< 0.05, n.s.p> 0.05
![](http://journal.psych.ac.cn/xlxb/fileup/0439-755X/FIGURE/2021-53-6/Images/0439-755X-53-6-555/img_3.png)
参考文献 52
[1] | Awh, E., Belopolsky, A.V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: A failed theoretical dichotomy. Trends in Cognitive Sciences, 16(8),437-443. doi: 10.1016/j.tics.2012.06.010URL |
[2] | Burnham, B.R., Harris, A.M., & Suda, M.T. (2011). Relationship between working memory capacity and contingent involuntary orienting. Visual Cognition, 19(8),983-1002. doi: 10.1080/13506285.2011.603710URL |
[3] | Chun, M.M., & Jiang, Y.H. (1999). Top-down attentional guidance based on implicit learning of visual covariation. Psychological Science, 10(4),360-365. doi: 10.1111/1467-9280.00168URL |
[4] | Eimer, M., & Kiss, M. (2008). Involuntary attentional capture is determined by task set: Evidence from event-related brain potentials. Journal of Cognitive Neuroscience, 20(8),1423-1433. doi: 10.1162/jocn.2008.20099URL |
[5] | Failing, M., & Theeuwes, J. (2019). More capture, more suppression: Distractor suppression due to statistical regularities is determined by the magnitude of attentional capture. Psychonomic Bulletin & Review, 27(1),86-95. doi: 10.3758/s13423-019-01672-zURL |
[6] | Failing, M., Wang, B., & Theeuwes, J. (2019). Spatial suppression due to statistical regularities is driven by distractor suppression not by target activation. Attention, Perception, & Psychophysics, 817(5),1405-1414. |
[7] | Ferrante, O., Patacca, A., Di Caro, V., Della Libera, C., Santandrea, E., & Chelazzi, L. (2018). Altering spatial priority maps via statistical learning of target selection and distractor filtering. Cortex, 102,67-95. doi: S0010-9452(17)30334-9pmid: 29096874 |
[8] | Folk, C.L., Remington, R.W., & Johnston, J.C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception & Performance, 18(4),1030-1044. |
[9] | Franconeri, S.L., & Simons, D.J. (2003). Moving and looming stimuli capture attention. Perception & Psychophysics, 65(7),999-1010. doi: 10.3758/BF03194829URL |
[10] | Fukuda, K., & Vogel, E.K. (2011). Individual differences in recovery time from attentional capture. Psychological Science, 22(3),361-368. doi: 10.1177/0956797611398493URL |
[11] | Gaspar, J.M., & McDonald, J.J. (2014). Suppression of salient objects prevents distraction in visual search. Journal of Neuroscience, 34(16),5658-5666. doi: 10.1523/JNEUROSCI.4161-13.2014URL |
[12] | Gaspelin, N., Gaspar, J.M., & Luck, S.J. (2019). Oculomotor inhibition of salient distractors: Voluntary inhibition cannot override selection history. Visual Cognition, 27(3-4),227-246. |
[13] | Gaspelin, N., Leonard, C.J., & Luck, S.J. (2015). Direct evidence for active suppression of salient-but-irrelevant sensory inputs. Psychological Science, 26(11),1740-1750. doi: 10.1177/0956797615597913URL |
[14] | Gaspelin, N., Leonard, C.J., & Luck, S.J. (2017). Suppression of overt attentional capture by salient-but-irrelevant color singletons. Attention, Perception, & Psychophysics, 79(1),45-62. |
[15] | Gaspelin, N., & Luck, S.J. (2018a). Combined electrophysiological and behavioral evidence for the suppression of salient distractors. Journal of Cognitive Neuroscience, 30(9),1265-1280. doi: 10.1162/jocn_a_01279URL |
[16] | Gaspelin, N., & Luck, S.J. (2018b). The role of inhibition in avoiding distraction by salient stimuli. Trends in Cognitive Sciences, 22(1),79-92. doi: 10.1016/j.tics.2017.11.001URL |
[17] | Gaspelin, N., & Luck, S.J. (2018c). Distinguishing among potential mechanisms of singleton suppression. Journal of Experimental Psychology: Human Perception & Performance, 44(4),626-644. |
[18] | Geng, J.J.& Behrmann, M. (2005). Spatial probability as an attentional cue in visual search. Perception & Psychophysics, 67(7),1252-1268. doi: 10.3758/BF03193557URL |
[19] | Gong, M.Y., Jia, K., & Li, S. (2017). Perceptual competition promotes suppression of reward salience in behavioral selection and neural representation. Journal of Neuroscience, 37(26),6242-6252. doi: 10.1523/JNEUROSCI.0217-17.2017URL |
[20] | Gong, M.Y., Jia, K., & Li, S. (2018). Reward learning drives modulation on visual attention. Chinese Journal of Applied Psychology, 24(2),99-112. |
[ 龚梦园, 贾珂, 李晟. (2018). 奖赏学习对视觉注意的调控. 应用心理学>, 24(2),99-112.] | |
[21] | Gong, M.Y., Li, S., & Yang, F.T. (2016). Reward association facilitates distractor suppression in human visual search. The European Journal of Neuroscience, 43(7),942-953. doi: 10.1111/ejn.13174URL |
[22] | Gong, M.Y., & Liu, T.S. (2020). Biased neural representation of feature-based attention in the human frontoparietal network. Journal of Neuroscience, 40(43),8386-8395. doi: 10.1523/JNEUROSCI.0690-20.2020URL |
[23] | Han, S.W., & Kim, M.S. (2009). Do the contents of working memory capture attention? Yes, but cognitive control matters. Journal of Experimental Psychology: Human Perception & Performance, 35(5),1292-1302. |
[24] | Harris, A.M., Jacoby, O., Remington, R.W., Becker, S.I., Mattingley, J.B. (2020). Behavioral and electrophysiological evidence for a dissociation between working memory capacity and feature-based attention. Cortex, 129,159-174. |
[25] | Hu, L.P., Ding, Y.L., & Qu, Z. (2019). Perceptual learning induces active suppression of physically nonsalient shapes. Psychophysiology, 56(9),e13393. |
[26] | Jannati, A., Gaspar, J.M., & McDonald, J.J. (2013). Tracking target and distractor processing in fixed-feature visual search: Evidence from human electrophysiology. Journal of Experimental Psychology: Human Perception and Performance, 39(6),1713-1730. doi: 10.1037/a0032251URL |
[27] | Jiang, J.F., Summerfield, C., & Egner, T. (2013). Attention sharpens the distinction between expected and unexpected percepts in the visual brain. Journal of Neuroscience, 33(47),18438-18447. doi: 10.1523/JNEUROSCI.3308-13.2013URL |
[28] | Kumada, T. (2001). Feature-based control of attention: evidence for two forms of dimension weighting. Perception & Psychophysics, 63(4),698-708. doi: 10.3758/BF03194430URL |
[29] | Lee, J., Leonard, C.J., Luck, S.J., & Geng, J.J. (2018). Dynamics of feature-based attentional selection during color-shape conjunction search. Journal of Cognitive Neuroscience, 30(12),1773-1787. doi: 10.1162/jocn_a_01318URL |
[30] | Louisa, K. (2017). The effect of stimulus size and eccentricity on attention shift latencies. Vision, 1(4),25-34. doi: 10.3390/vision1040025URL |
[31] | Maunsell, J.H.R., & Treue, S. (2006). Feature-based attention in visual cortex. Trends in Neurosciences, 29(6),317-322. doi: 10.1016/j.tins.2006.04.001URL |
[32] | Nissens, T., Failing, M., & Theeuwes, J. (2017). People look at the object they fear: Oculomotor capture by stimuli that signal threat. Cognition and Emotion, 31(8),1707-1714. doi: 10.1080/02699931.2016.1248905URL |
[33] | Ono, F., & Kawahara, J.I. (2007). The subjective size of visual stimuli affects the perceived duration of their presentation. Perception & Psychophysics, 69(6),952-957. doi: 10.3758/BF03193932URL |
[34] | Pronina, A., Grigoryan, R.K., & Kaplan, A.Y. (2018). Objective eye movements during typing in P300 BCI: The effect of stimuli size and spacing. Moscow University Psychology Bulletin, 4,120-134. |
[35] | Sàenz, M., Bura?as, G.T., & Boynton, G.M. (2002). Global effects of feature-based attention in human visual cortex. Nature Neuroscience, 5(7),631-632. doi: 10.1038/nn876URL |
[36] | Sàenz, M., Bura?as, G.T., Boynton, G.M. (2003). Global feature-based attention for motion and color. Vision Research, 43(6),629-637. doi: 10.1016/S0042-6989(02)00595-3URL |
[37] | Sawaki, R., Geng, J.J., & Luck, S.J. (2012). A common neural mechanism for preventing and terminating the allocation of attention. Journal of Neuroscience, 32(31),10725-10736. doi: 10.1523/JNEUROSCI.1864-12.2012URL |
[38] | Sawaki, R., & Luck, S.J. (2010). Capture versus suppression of attention by salient singletons: Electrophysiological evidence for an automatic attend-to-me signal. Attention, Perception, & Psychophysics, 72(6),1455-1470. |
[39] | Sawaki, R., & Luck, S.J. (2011). Active suppression of distractors that match the contents of visual working memory. Visual Cognition, 19(7),956-972. pmid: 22053147 |
[40] | Sawaki, R., & Luck, S.J. (2013). Active suppression after involuntary capture of attention. Psychonomic Bulletin & Review, 20(2),296-301. doi: 10.3758/s13423-012-0353-4URL |
[41] | Stilwell, B.T., Bahle, B., & Vecera, S.P. (2019). Feature-based statistical regularities of distractors modulate attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 45(3),419-433. doi: 10.1037/xhp0000613URL |
[42] | Sun, M., Wang, E., Huang, J., Zhao, C.G., Guo, J.L., Li, D.W.,... Song, Y. (2018). Attentional selection and suppression in children and adults. Development Science, 21(6),e12684. doi: 10.1111/desc.2018.21.issue-6URL |
[43] | Vatterott, D.B., Mozer, M.C., & Vecera, S.P. (2017). Rejecting salient distractors: Generalization from experience. Attention, Perception, & Psychophysics, 80,485-499. doi: 10.3758/s13414-017-1465-8URL |
[44] | Vatterott, D.B., & Vecera, S.P. (2012). Experience-dependent attentional tuning of distractor rejection. Psychonomic Bulletin & Review, 19(5),871-878. doi: 10.3758/s13423-012-0280-4URL |
[45] | Wang, B., Samara, I., & Theeuwes, J. (2019). Statistical regularities bias overt attention. Attention, Perception, & Psychophysics, 81,1813-1821. |
[46] | Wang, B.& Theeuwes, J. (2018a). Statistical regularities modulate attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 44(1),13-17. doi: 10.1037/xhp0000472URL |
[47] | Wang, B., & Theeuwes, J. (2018b). How to inhibit a distractor location? Statistical learning versus active, top-down suppression. Attention, Perception, & Psychophysics, 80(4),860-870. |
[48] | Wang, B., & Theeuwes, J. (2018c). Statistical regularities modulate attentional capture independent of search strategy. Attention, Perception, & Psychophysics, 80(7),1763-1774. |
[49] | Wang H. Y., Sui, J., & Zhang M. (2018). Attentional capture is contingent on attentional control setting for semantic meaning: Evidence from modified spatial cueing paradigm. Acta Psychologica Sinica, 50(10),1071-1082. doi: 10.3724/SP.J.1041.2018.01071URL |
[ 王慧媛, 隋洁, 张明. (2018). 语义关联的注意捕获——来自线索化范式的证据. 心理学报>, 50(10),1071-1082.] | |
[50] | Yantis, S., & Hillstrom, A.P. (1994). Stimulus-driven attentional capture: Evidence from equiluminant visual objects. Journal of Experimental Psychology: Human Perception and Performance, 20(1),95-107. doi: 10.1037/0096-1523.20.1.95URL |
[51] | Yantis, S., & Jonides, J. (1984). Abrupt visual onsets and selective attention: evidence from visual search. Journal of Experimental Psychology: Human Perception and Performance, 10(5),601-621. doi: 10.1037/0096-1523.10.5.601URL |
[52] | Zhao, J.Y., & Luo, Y. (2017). Statistical regularities guide the spatial scale of attention. Attention, Perception, & Psychophysics, 79(1),24-30. |
相关文章 1
[1] | 黄月胜, 张豹, 范兴华, 黄杰. 无关工作记忆表征的负性情绪信息能否捕获视觉注意?一项眼动研究[J]. 心理学报, 2021, 53(1): 26-37. |
PDF全文下载地址:
http://journal.psych.ac.cn/xlxb/CN/article/downloadArticleFile.do?attachType=PDF&id=4952