删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

有中介的调节模型的拓展及其效应量

本站小编 Free考研考试/2022-01-01

刘红云1,2, 袁克海3,4(), 甘凯宇1
1北京师范大学心理学部, 北京 100875
2北京师范大学心理学部应用实验心理北京市重点实验室, 北京 100875
3南京邮电大学理学院, 南京 210023
4美国圣母大学心理系, 印第安纳州46556, 美国
收稿日期:2020-06-25出版日期:2021-03-25发布日期:2021-01-27
通讯作者:袁克海E-mail:kyuan@nd.edu

基金资助:* 国家自然科学基金项目资助(31971029);国家自然科学基金项目资助(32071091)

Two-level mediated moderation models with single level data
and new measures of effect sizes

LIU Hongyun1,2, YUAN Ke-Hai3,4(), GAN Kaiyu1
1Faculty of Psychology, Beijing Normal University, Beijing 100875, China
2Beijing Key Laboratory of Applied Experimental Psychology, Faculty of Psychology, Beijing Normal University, Beijing 100875, China
3School of Science of Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
4Department of Psychology, University of Notre Dame, IN 46556, USA
Received:2020-06-25Online:2021-03-25Published:2021-01-27
Contact:YUAN Ke-Hai E-mail:kyuan@nd.edu






摘要/Abstract


摘要: 传统的有中介的调节(mediated moderation, meMO)模型关于误差方差齐性的假设经常被违背, 应用研究中也缺乏测量meMO效应大小的指标。对于单层数据, 本文借助于两层建模的思想, 提出了一种可用于处理方差非齐性的两层有中介的调节(2meMO)模型; 给出了用于测量meMO分析中总调节效应、直接调节效应和有中介调节效应大小的效应量。通过Monte Carlo模拟研究, 比较了meMO和2meMO模型在参数和效应量估计上的表现。并通过实际案例解释了2meMO模型的应用以及效应量的计算和解释。



图1有中介的调节效应的概念模型(粗体线表示有中介的调节效应)
图1有中介的调节效应的概念模型(粗体线表示有中介的调节效应)



图2拓展的有中介的调节(2meMO)分析对应的分层统计模型(粗体线表示有中介的调节路径)
图2拓展的有中介的调节(2meMO)分析对应的分层统计模型(粗体线表示有中介的调节路径)



图3拓展的有中介的调节(2meMO)分析对应的合并统计模型(粗体线表示有中介的调节路径)
图3拓展的有中介的调节(2meMO)分析对应的合并统计模型(粗体线表示有中介的调节路径)


表1模拟设计条件对应的效应量真值
${{\gamma }_{c1}}$ 0 0.2 0.4
$\sigma _{uc}^{2}$ 0 0.25 0.5 0 0.25 0.5 0 0.25 0.5
$\phi _{MO\_tot}^{\left( f \right)}$ 1 1 1 0.6622 0.6622 0.6622 0.4475 0.4475 0.4475
$\phi _{MO\_dir}^{\left( f \right)}$ 1 1 1 0.3378 0.3378 0.3378 0.1381 0.1381 0.1381
$\phi _{meMO}^{\left( f \right)}$ 0 0 0 0.0541 0.0541 0.0541 0.0884 0.0884 0.0884
${{\phi }_{MO\_tot}}$ 1 0.1379 0.7410 0.6622 0.2128 0.1268 0.4475 0.2402 0.1641
${{\phi }_{MO\_dir}}$ 1 0.1379 0.7410 0.3378 0.1086 0.0647 0.1381 0.0741 0.0507
${{\phi }_{meMO}}$ 0 0 0 0.0541 0.0174 0.0103 0.0884 0.0474 0.0324

表1模拟设计条件对应的效应量真值
${{\gamma }_{c1}}$ 0 0.2 0.4
$\sigma _{uc}^{2}$ 0 0.25 0.5 0 0.25 0.5 0 0.25 0.5
$\phi _{MO\_tot}^{\left( f \right)}$ 1 1 1 0.6622 0.6622 0.6622 0.4475 0.4475 0.4475
$\phi _{MO\_dir}^{\left( f \right)}$ 1 1 1 0.3378 0.3378 0.3378 0.1381 0.1381 0.1381
$\phi _{meMO}^{\left( f \right)}$ 0 0 0 0.0541 0.0541 0.0541 0.0884 0.0884 0.0884
${{\phi }_{MO\_tot}}$ 1 0.1379 0.7410 0.6622 0.2128 0.1268 0.4475 0.2402 0.1641
${{\phi }_{MO\_dir}}$ 1 0.1379 0.7410 0.3378 0.1086 0.0647 0.1381 0.0741 0.0507
${{\phi }_{meMO}}$ 0 0 0 0.0541 0.0174 0.0103 0.0884 0.0474 0.0324


表2两种模型得到的${{\gamma }_{meMO}}$的偏差, 均方误差, 95%可信区间覆盖率和拒绝率
评价指标 ${{\gamma }_{c1}}$ $\sigma _{uc}^{2}$ 真值 meMO 2meMO
100 200 500 1000 100 200 500 1000
Bias 0 0 0 0.002 0.001 0.000 -0.001 0.002 0.001 0.000 -0.001
0.25 0 -0.002 -0.001 0.000 0.001 -0.001 -0.001 0.000 0.001
0.5 0 0.003 0.000 0.001 -0.001 0.003 0.000 0.001 -0.001
0.2 0 0.08 -0.002 -0.002 0.000 0.001 -0.002 -0.002 0.000 0.001
0.25 0.08 -0.006 0.000 0.000 0.000 -0.006 0.000 0.000 0.000
0.5 0.08 -0.002 0.002 -0.002 0.001 -0.001 0.000 -0.002 0.002
0.4 0 0.16 0.000 0.001 0.001 0.000 0.000 0.001 0.001 0.000
0.25 0.16 -0.004 -0.001 0.002 0.000 -0.004 -0.001 0.002 0.000
0.5 0.16 -0.002 -0.004 0.000 0.002 -0.002 -0.003 0.001 0.002
MSE 0 0 0 0.002 0.001 0.000 0.000 0.002 0.001 0.000 0.000
0.25 0 0.003 0.001 0.001 0.000 0.003 0.001 0.001 0.000
0.5 0 0.004 0.002 0.001 0.000 0.004 0.002 0.001 0.000
0.2 0 0.08 0.002 0.001 0.000 0.000 0.002 0.001 0.000 0.000
0.25 0.08 0.004 0.002 0.001 0.000 0.003 0.002 0.001 0.000
0.5 0.08 0.005 0.002 0.001 0.001 0.005 0.002 0.001 0.000
0.4 0 0.16 0.004 0.002 0.001 0.000 0.004 0.002 0.001 0.000
0.25 0.16 0.005 0.002 0.001 0.000 0.005 0.002 0.001 0.000
0.5 0.16 0.006 0.003 0.001 0.001 0.005 0.003 0.001 0.001
覆盖率 0 0 0 0.952 0.942 0.942 0.942 0.952 0.956 0.944 0.940
0.25 0 0.908 0.920 0.918 0.872 0.940 0.956 0.942 0.932
0.5 0 0.912 0.874 0.852 0.870 0.948 0.952 0.936 0.948
0.2 0 0.08 0.962 0.950 0.966 0.924 0.968 0.954 0.972 0.926
0.25 0.08 0.920 0.918 0.922 0.908 0.930 0.944 0.956 0.946
0.5 0.08 0.894 0.882 0.884 0.882 0.928 0.946 0.936 0.944
0.4 0 0.16 0.960 0.948 0.958 0.950 0.962 0.950 0.958 0.946
0.25 0.16 0.935 0.937 0.930 0.933 0.960 0.948 0.942 0.962
0.5 0.16 0.926 0.928 0.896 0.882 0.946 0.954 0.940 0.940
拒绝率 0 0 0 0.048 0.058 0.058 0.058 0.048 0.044 0.056 0.060
0.25 0 0.092 0.080 0.082 0.129 0.060 0.044 0.058 0.068
0.5 0 0.088 0.126 0.148 0.130 0.052 0.048 0.064 0.052
0.2 0 0.08 0.438 0.762 0.998 1.000 0.399 0.760 0.996 1.000
0.25 0.08 0.390 0.650 0.970 1.000 0.314 0.606 0.950 1.000
0.5 0.08 0.362 0.600 0.882 0.994 0.269 0.488 0.838 0.990
0.4 0 0.16 0.938 1.000 1.000 1.000 0.926 1.000 1.000 1.000
0.25 0.16 0.834 0.996 1.000 1.000 0.808 0.952 1.000 1.000
0.5 0.16 0.794 0.970 1.000 1.000 0.730 0.964 1.000 1.000

表2两种模型得到的${{\gamma }_{meMO}}$的偏差, 均方误差, 95%可信区间覆盖率和拒绝率
评价指标 ${{\gamma }_{c1}}$ $\sigma _{uc}^{2}$ 真值 meMO 2meMO
100 200 500 1000 100 200 500 1000
Bias 0 0 0 0.002 0.001 0.000 -0.001 0.002 0.001 0.000 -0.001
0.25 0 -0.002 -0.001 0.000 0.001 -0.001 -0.001 0.000 0.001
0.5 0 0.003 0.000 0.001 -0.001 0.003 0.000 0.001 -0.001
0.2 0 0.08 -0.002 -0.002 0.000 0.001 -0.002 -0.002 0.000 0.001
0.25 0.08 -0.006 0.000 0.000 0.000 -0.006 0.000 0.000 0.000
0.5 0.08 -0.002 0.002 -0.002 0.001 -0.001 0.000 -0.002 0.002
0.4 0 0.16 0.000 0.001 0.001 0.000 0.000 0.001 0.001 0.000
0.25 0.16 -0.004 -0.001 0.002 0.000 -0.004 -0.001 0.002 0.000
0.5 0.16 -0.002 -0.004 0.000 0.002 -0.002 -0.003 0.001 0.002
MSE 0 0 0 0.002 0.001 0.000 0.000 0.002 0.001 0.000 0.000
0.25 0 0.003 0.001 0.001 0.000 0.003 0.001 0.001 0.000
0.5 0 0.004 0.002 0.001 0.000 0.004 0.002 0.001 0.000
0.2 0 0.08 0.002 0.001 0.000 0.000 0.002 0.001 0.000 0.000
0.25 0.08 0.004 0.002 0.001 0.000 0.003 0.002 0.001 0.000
0.5 0.08 0.005 0.002 0.001 0.001 0.005 0.002 0.001 0.000
0.4 0 0.16 0.004 0.002 0.001 0.000 0.004 0.002 0.001 0.000
0.25 0.16 0.005 0.002 0.001 0.000 0.005 0.002 0.001 0.000
0.5 0.16 0.006 0.003 0.001 0.001 0.005 0.003 0.001 0.001
覆盖率 0 0 0 0.952 0.942 0.942 0.942 0.952 0.956 0.944 0.940
0.25 0 0.908 0.920 0.918 0.872 0.940 0.956 0.942 0.932
0.5 0 0.912 0.874 0.852 0.870 0.948 0.952 0.936 0.948
0.2 0 0.08 0.962 0.950 0.966 0.924 0.968 0.954 0.972 0.926
0.25 0.08 0.920 0.918 0.922 0.908 0.930 0.944 0.956 0.946
0.5 0.08 0.894 0.882 0.884 0.882 0.928 0.946 0.936 0.944
0.4 0 0.16 0.960 0.948 0.958 0.950 0.962 0.950 0.958 0.946
0.25 0.16 0.935 0.937 0.930 0.933 0.960 0.948 0.942 0.962
0.5 0.16 0.926 0.928 0.896 0.882 0.946 0.954 0.940 0.940
拒绝率 0 0 0 0.048 0.058 0.058 0.058 0.048 0.044 0.056 0.060
0.25 0 0.092 0.080 0.082 0.129 0.060 0.044 0.058 0.068
0.5 0 0.088 0.126 0.148 0.130 0.052 0.048 0.064 0.052
0.2 0 0.08 0.438 0.762 0.998 1.000 0.399 0.760 0.996 1.000
0.25 0.08 0.390 0.650 0.970 1.000 0.314 0.606 0.950 1.000
0.5 0.08 0.362 0.600 0.882 0.994 0.269 0.488 0.838 0.990
0.4 0 0.16 0.938 1.000 1.000 1.000 0.926 1.000 1.000 1.000
0.25 0.16 0.834 0.996 1.000 1.000 0.808 0.952 1.000 1.000
0.5 0.16 0.794 0.970 1.000 1.000 0.730 0.964 1.000 1.000


表3两种模型得到的效应量$\phi _{meMO}^{(f)}$估计的偏差, 均方误差, 95%可信区间覆盖率
评价指标 ${{\gamma }_{c1}}$ $\sigma _{uc}^{2}$ 真值 moME 2moME
100 200 500 1000 100 200 500 1000
Bias 0.2 0 0.054 0.014 0.006 0.002 0.002 0.015 0.006 0.003 0.002
0.25 0.054 0.015 0.009 0.004 0.001 0.016 0.010 0.004 0.001
0.5 0.054 0.023 0.013 0.003 0.003 0.022 0.012 0.003 0.003
0.4 0 0.088 0.003 0.001 0.001 0.001 0.004 0.001 0.001 0.001
0.25 0.088 0.000 0.001 0.002 -0.001 0.000 0.001 0.002 -0.001
0.5 0.088 0.001 -0.002 0.002 0.001 0.002 -0.002 0.001 0.001
MSE 0.2 0 0.054 0.003 0.001 0.001 0.000 0.003 0.001 0.001 0.000
0.25 0.054 0.003 0.002 0.001 0.000 0.003 0.002 0.001 0.000
0.5 0.054 0.004 0.002 0.001 0.001 0.003 0.002 0.001 0.000
0.4 0 0.088 0.002 0.001 0.000 0.000 0.002 0.001 0.000 0.000
0.25 0.088 0.003 0.001 0.001 0.000 0.003 0.001 0.001 0.000
0.5 0.088 0.003 0.002 0.001 0.000 0.003 0.001 0.001 0.000
覆盖率 0.2 0 0.054 0.962 0.940 0.956 0.926 0.958 0.944 0.954 0.922
0.25 0.054 0.958 0.926 0.922 0.914 0.970 0.950 0.962 0.948
0.5 0.054 0.958 0.902 0.882 0.874 0.980 0.954 0.952 0.934
0.4 0 0.088 0.968 0.952 0.948 0.954 0.966 0.952 0.948 0.950
0.25 0.088 0.964 0.944 0.948 0.952 0.964 0.944 0.948 0.952
0.5 0.088 0.932 0.908 0.914 0.874 0.950 0.940 0.956 0.932

表3两种模型得到的效应量$\phi _{meMO}^{(f)}$估计的偏差, 均方误差, 95%可信区间覆盖率
评价指标 ${{\gamma }_{c1}}$ $\sigma _{uc}^{2}$ 真值 moME 2moME
100 200 500 1000 100 200 500 1000
Bias 0.2 0 0.054 0.014 0.006 0.002 0.002 0.015 0.006 0.003 0.002
0.25 0.054 0.015 0.009 0.004 0.001 0.016 0.010 0.004 0.001
0.5 0.054 0.023 0.013 0.003 0.003 0.022 0.012 0.003 0.003
0.4 0 0.088 0.003 0.001 0.001 0.001 0.004 0.001 0.001 0.001
0.25 0.088 0.000 0.001 0.002 -0.001 0.000 0.001 0.002 -0.001
0.5 0.088 0.001 -0.002 0.002 0.001 0.002 -0.002 0.001 0.001
MSE 0.2 0 0.054 0.003 0.001 0.001 0.000 0.003 0.001 0.001 0.000
0.25 0.054 0.003 0.002 0.001 0.000 0.003 0.002 0.001 0.000
0.5 0.054 0.004 0.002 0.001 0.001 0.003 0.002 0.001 0.000
0.4 0 0.088 0.002 0.001 0.000 0.000 0.002 0.001 0.000 0.000
0.25 0.088 0.003 0.001 0.001 0.000 0.003 0.001 0.001 0.000
0.5 0.088 0.003 0.002 0.001 0.000 0.003 0.001 0.001 0.000
覆盖率 0.2 0 0.054 0.962 0.940 0.956 0.926 0.958 0.944 0.954 0.922
0.25 0.054 0.958 0.926 0.922 0.914 0.970 0.950 0.962 0.948
0.5 0.054 0.958 0.902 0.882 0.874 0.980 0.954 0.952 0.934
0.4 0 0.088 0.968 0.952 0.948 0.954 0.966 0.952 0.948 0.950
0.25 0.088 0.964 0.944 0.948 0.952 0.964 0.944 0.948 0.952
0.5 0.088 0.932 0.908 0.914 0.874 0.950 0.940 0.956 0.932


表42meMO模型得到的效应量${{\phi }_{meMO}}$估计的偏差, 均方误差, 95%可信区间覆盖率
评价指标 ${{\gamma }_{c1}}$ $\sigma _{uc}^{2}$ 真值 100 200 500 1000
Bias 0 0 0 0.040 0.024 0.013 0.007
0.25 0 0.030 0.016 0.005 0.002
0.5 0 0.023 0.009 0.003 0.001
0.2 0 0.0541 -0.002 -0.005 -0.006 -0.004
0.25 0.0174 0.021 0.016 0.006 0.002
0.5 0.0104 0.020 0.010 0.002 0.002
0.4 0 0.0884 -0.009 -0.008 -0.005 -0.004
0.25 0.0474 0.013 0.011 0.006 0.002
0.5 0.0324 0.017 0.007 0.003 0.002
MSE 0 0 0 0.003 0.001 0.000 0.000
0.25 0 0.002 0.001 0.000 0.000
0.5 0 0.001 0.000 0.000 0.000
0.2 0 0.0541 0.002 0.001 0.000 0.000
0.25 0.0174 0.001 0.001 0.000 0.000
0.5 0.0104 0.001 0.001 0.000 0.000
0.4 0 0.0884 0.002 0.001 0.000 0.000
0.25 0.0474 0.002 0.001 0.000 0.000
0.5 0.0324 0.002 0.001 0.000 0.000
覆盖率 0.2 0 0.0541 0.932 0.936 0.948 0.922
0.25 0.0174 0.978 0.954 0.954 0.936
0.5 0.0104 0.976 0.964 0.940 0.948
0.4 0 0.0884 0.946 0.946 0.950 0.932
0.25 0.0474 0.962 0.946 0.936 0.936
0.5 0.0324 0.960 0.962 0.932 0.948

表42meMO模型得到的效应量${{\phi }_{meMO}}$估计的偏差, 均方误差, 95%可信区间覆盖率
评价指标 ${{\gamma }_{c1}}$ $\sigma _{uc}^{2}$ 真值 100 200 500 1000
Bias 0 0 0 0.040 0.024 0.013 0.007
0.25 0 0.030 0.016 0.005 0.002
0.5 0 0.023 0.009 0.003 0.001
0.2 0 0.0541 -0.002 -0.005 -0.006 -0.004
0.25 0.0174 0.021 0.016 0.006 0.002
0.5 0.0104 0.020 0.010 0.002 0.002
0.4 0 0.0884 -0.009 -0.008 -0.005 -0.004
0.25 0.0474 0.013 0.011 0.006 0.002
0.5 0.0324 0.017 0.007 0.003 0.002
MSE 0 0 0 0.003 0.001 0.000 0.000
0.25 0 0.002 0.001 0.000 0.000
0.5 0 0.001 0.000 0.000 0.000
0.2 0 0.0541 0.002 0.001 0.000 0.000
0.25 0.0174 0.001 0.001 0.000 0.000
0.5 0.0104 0.001 0.001 0.000 0.000
0.4 0 0.0884 0.002 0.001 0.000 0.000
0.25 0.0474 0.002 0.001 0.000 0.000
0.5 0.0324 0.002 0.001 0.000 0.000
覆盖率 0.2 0 0.0541 0.932 0.936 0.948 0.922
0.25 0.0174 0.978 0.954 0.954 0.936
0.5 0.0104 0.976 0.964 0.940 0.948
0.4 0 0.0884 0.946 0.946 0.950 0.932
0.25 0.0474 0.962 0.946 0.936 0.936
0.5 0.0324 0.960 0.962 0.932 0.948



图4家庭教育资源对社会经济地位与数学自我效能与数学成绩之间中介调节效应模型(粗体线表示有中介的调节效应)
图4家庭教育资源对社会经济地位与数学自我效能与数学成绩之间中介调节效应模型(粗体线表示有中介的调节效应)


表5meMO和2meMO模型参数估计结果
统计量 meMO 2meMO
后验均值 后验标准差 后验均值 后验标准差
路径系数
ESCS→HRES (${{\hat{\gamma }}_{M1}}$) 0.484*** 0.011 0.484*** 0.011
MEFF→MATH (${{\hat{\gamma }}_{c0}})$ 46.438*** 1.385 48.436*** 1.571
ESCS→MATH (${{\hat{\gamma }}_{d2}})$ 14.621*** 1.687 14.368*** 1.676
HRES→MATH (${{\hat{\gamma }}_{d1}})$ 3.492* 1.672 3.418* 1.644
ESCS×MEFF→MATH (${{\hat{\gamma }}_{c2}})$ -2.911* 1.501 -3.284* 1.640
HRES×MEFF→MATH (${{\hat{\gamma }}_{c1}})$ -4.171** 1.478 -4.471** 1.631
ESCS×MEFF→HRES×MEFF (${{\hat{\gamma }}_{M1}})$ 0.484*** 0.011 0.484*** 0.011
残差方差
$\sigma _{eM}^{2}$ 6197.923 160.921 5668.715 189.195
$\sigma _{eY}^{2}$ 0.749 0.019 0.749 0.019
$\sigma _{uc}^{2}$ - - 484.239 130.388
有中介调节meMO
${{\hat{\gamma }}_{M1}}{{\hat{\gamma }}_{c1}}$ -2.019 0.718 -2.165 0.791
效应量
${{\hat{\phi }}_{MO\_tot}}$ - - 0.059 0.032
${{\hat{\phi }}_{MO\_dir}}$ - - 0.025 0.022
${{\hat{\phi }}_{meMO}}$ - - 0.010 0.007
$\hat{\phi }_{MO\_tot}^{\left( f \right)}$ 0.623 0.193 0.637 0.192
$\hat{\phi }_{MO\_dir}^{\left( f \right)}$ 0.261 0.203 0.275 0.206
$\hat{\phi }_{meMO}^{\left( f \right)}$ 0.110 0.057 0.106 0.056

表5meMO和2meMO模型参数估计结果
统计量 meMO 2meMO
后验均值 后验标准差 后验均值 后验标准差
路径系数
ESCS→HRES (${{\hat{\gamma }}_{M1}}$) 0.484*** 0.011 0.484*** 0.011
MEFF→MATH (${{\hat{\gamma }}_{c0}})$ 46.438*** 1.385 48.436*** 1.571
ESCS→MATH (${{\hat{\gamma }}_{d2}})$ 14.621*** 1.687 14.368*** 1.676
HRES→MATH (${{\hat{\gamma }}_{d1}})$ 3.492* 1.672 3.418* 1.644
ESCS×MEFF→MATH (${{\hat{\gamma }}_{c2}})$ -2.911* 1.501 -3.284* 1.640
HRES×MEFF→MATH (${{\hat{\gamma }}_{c1}})$ -4.171** 1.478 -4.471** 1.631
ESCS×MEFF→HRES×MEFF (${{\hat{\gamma }}_{M1}})$ 0.484*** 0.011 0.484*** 0.011
残差方差
$\sigma _{eM}^{2}$ 6197.923 160.921 5668.715 189.195
$\sigma _{eY}^{2}$ 0.749 0.019 0.749 0.019
$\sigma _{uc}^{2}$ - - 484.239 130.388
有中介调节meMO
${{\hat{\gamma }}_{M1}}{{\hat{\gamma }}_{c1}}$ -2.019 0.718 -2.165 0.791
效应量
${{\hat{\phi }}_{MO\_tot}}$ - - 0.059 0.032
${{\hat{\phi }}_{MO\_dir}}$ - - 0.025 0.022
${{\hat{\phi }}_{meMO}}$ - - 0.010 0.007
$\hat{\phi }_{MO\_tot}^{\left( f \right)}$ 0.623 0.193 0.637 0.192
$\hat{\phi }_{MO\_dir}^{\left( f \right)}$ 0.261 0.203 0.275 0.206
$\hat{\phi }_{meMO}^{\left( f \right)}$ 0.110 0.057 0.106 0.056







[1] Aguinis, H., & Pierce, C. A. (1998). Heterogeneity of error variance and the assessment of moderating effects of categorical variables: A conceptual review. Organizational Research Methods, 1(3), 296-314.
[2] Aiken, L. S., West, S. G., & Reno, R. R. (1991). Multiple regression: Testing and interpreting interactions. London, UK: SAGE Publications.
[3] Alexander, R. A., & DeShon, R. P. (1994). Effect of error variance heterogeneity on the power of tests for regression slope differences. Psychological Bulletin, 115(2), 308-314.
[4] American Education Research, Association. (2006). Standards for reporting on empirical social science research in AERA publications. Educational Researcher, 35(6), 33-40.
[5] Asparouhov, T., & Muthén, B. (2020). Bayesian estimation of single and multilevel models with latent variable interactions. Structural Equation Modeling: A Multidisciplinary Journal, 1-15.
[6] Baron, R. M., & Kenny, D. A. (1986). The moderator- mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6), 1173-1182.
URLpmid: 3806354
[7] Brooks, S. P., & Gelman, A. (1998). General methods for monitoring convergence of iterative simulations. Journal of Computational and Graphical Statistics, 7(4), 434-455.
[8] Browne, W. J., & Draper, D. (2006). A comparison of Bayesian and likelihood-based methods for fitting multilevel models. Bayesian Analysis, 1, 473-514.
[9] Cain, M. K., & Zhang, Z. Y. (2019). Fit for a Bayesian: An evaluation of PPP and DIC for structural equation modeling. Structural Equation Modeling: A Multidisciplinary Journal, 26(1), 39-50.
[10] Cumming, G.(2014). The new statistics: Why and how. Psychological Science, 25(1), 7-29.
URLpmid: 24220629
[11] DeShon, R. P., & Alexander, R. A. (1996). Alternative procedures for testing regression slope homogeneity when group error variances are unequal. Psychological Methods, 1(3), 261.
[12] Edwards, J. R., & Lambert, L. S. (2007). Methods for integrating moderation and mediation: A general analytical framework using moderated path analysis. Psychological Methods, 12(1), 1-22.
doi: 10.1037/1082-989X.12.1.1URLpmid: 17402809
[13] Funder, D., Levine, J., Mackie, D., Morf, C., Sansone, C., West, S., & Vazire, S. (2013). Task force on publication and research practices, Retrieved from http://www.spsp.org.
[14] Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2004). Bayesian data analysis (2nd ed.). Boca Raton, FL, USA: Chapman & Hall/ CRC.
[15] Gilks, W. R., Richardson, S., & Spiegelhalter, D. J. (1996). Introducing Markov chain Monte Carlo. In Gilks, W. R., Richardson, S., & Spiegelhalter, D. J. (Eds.). Markov chain Monte Carlo in practice(pp. 1-20). London, UK: Chapman & Hall
URLpmid: 30217529
[16] Gonzalez-Mulé, E., Courtright, S. H., DeGeest, D., Seong, J. -Y., & Hong, D. -S. (2016). Channeled autonomy: The joint effects of autonomy and feedback on team performance through organizational goal clarity. Journal of Management, 42, 2018-2033.
[17] Grant, A. M., & Berry, J. W. (2011). The necessity of others is the mother of invention: Intrinsic and prosocial motivations, perspective taking, and creativity. Academy of Management Journal, 54(1), 73-96.
[18] Hayes, A. F. (2018). Partial, conditional, and moderated mediation: Quantification, inference, and interpretation. Communication Monographs, 85(1), 4-40.
[19] Hayes, A. F., & Preacher, K. J. (2013). Conditional process modeling: Using structural equation modeling to examine contingent causal processes.In G. R. Hancock & R. O. Mueller (Eds.), Quantitative methods in education and the behavioral sciences: Issues, research, and teaching. Structural equation modeling: A second course(pp. 219-266). IAP Information Age Publishing.
[20] Kelley, K., & Preacher, K. J. (2012). On effect size. Psychological Methods, 17(2), 137-152.
URLpmid: 22545595
[21] Kwan, J. L. Y., & Chan, W. Y. (2018). Variable system: An alternative approach for the analysis of mediated moderation. Psychological Methods, 23(2), 262-277.
doi: 10.1037/met0000160URLpmid: 29172615
[22] Lachowicz, M. J., Preacher, K. J., & Kelley, K. (2018). A novel measure of effect size for mediation analysis. Psychological Methods, 23(2), 244-261.
doi: 10.1037/met0000165URLpmid: 29172614
[23] Liang, S. G., & Chi, S. C. S. (2013). Transformational leadership and follower task performance: The role of susceptibility to positive emotions and follower positive emotions. Journal of Business and Psychology, 28, 17-29.
doi: 10.1007/s10869-012-9261-xURL
[24] Liu, D., Zhang, Z., & Wang, M.. (2012). Mono-level and multilevel mediated moderation and moderated mediation: Theorizing and test.In X. Chen, A. Tsui, & L. Farh (Eds.) Empirical methods in organization and management research [in Chinese] (2nd ed., pp. 545-579) Beijing, China: Peking University Press.
[25] Liu, H. Y., Yuan, K -H., & Liu, F. (2020). A two-level moderated latent variable model with single-level data. Multivariate Behavioral Research, 55, (6), 873-893. https://doi.org/10.1080/00273171.2019.1689350
URLpmid: 31782662
[26] Lunn, D., Jackson, C., Best, N., Spiegelhalter, D., & Thomas, A. (2012). The BUGS book: A practical introduction to Bayesian analysis. Boca Raton, FL, USA: Chapman and Hall/CRC.
[27] Lutz, J. G. (1983). A method for constructing data which illustrate three types of suppressor variables. Educational and Psychological Measurement, 43, 373-377.
[28] Maassen, G. H., & Bakker, A. B. (2001). Suppressor variables in path models: Definitions and interpretations. Sociological Methods & Research, 30, 241-270.
[29] Muller, D., Judd, C. M., & Yzerbyt, V. Y. (2005). When moderation is mediated and mediation is moderated. Journal of Personality and Social Psychology, 89(6), 852-863.
URLpmid: 16393020
[30] Muthén, B., & Asparouhov, T. (2012). Bayesian structural equation modeling: A more flexible representation of substantive theory. Psychological Methods, 17(3), 313-335.
doi: 10.1037/a0026802URLpmid: 22962886
[31] Muthén, L. K., & Muthén, B. O. (2017). Mplus: statistical analysis with latent variables: User’s guide(Version 8). Los Angeles, CA: Authors.
[32] Ng, J. C. K., Chan, W., Kwan, J. L. Y., & Chen, X. H. (2019). Unpacking structure-oriented cultural differences through a mediated moderation model: A tutorial with an empirical illustration. Journal of Cross-Cultural Psychology, 50(3), 358-380.
[33] Park, R., & Searcy, D. (2012). Job autonomy as a predictor of mental well-being: The moderating role of quality- competitive environment. Journal of Business and Psychology, 27, 305-316.
[34] Plummer, M. (2015). JAGS Version 4.0.0 User Manual. Retrieved from http://www.uvm.edu/~bbeckage/Teaching/ PBIO_294/Manuals/manual.jags.pdf
[35] Preacher, K. J., & Kelley, K. (2011). Effect size measures for mediation models: Quantitative strategies for communicating indirect effects. Psychological Methods, 16(2), 93-115. http://dx.doi.org/10.1037/a0022658
URLpmid: 21500915
[36] R Core, Team. (2016). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.r-project.org/
[37] Rozeboom, W. W. (1960). The fallacy of the null-hypothesis significance test. Psychological Bulletin, 57(5), 416-428.
[38] Song, X. -Y., & Lee, S. -Y. (2012). A tutorial on the Bayesian approach for analyzing structural equation models. Journal of Mathematical Psychology, 56(3), 135-148.
[39] Tang, C. Y. (2016). Accessed external knowledge, centrality of intra-team knowledge networks, and R&D employee creativity. R & D Management, 46(Suppl. 3), 992-1005.
[40] Tang, C. Y., & Naumann, S. E. (2016). Team diversity, mood, and team creativity: The role of team knowledge sharing in Chinese R&D teams. Journal of Management & Organization, 22, 420-434.
[41] Tzelgov, J., & Henik, A. (1991). Suppression situations in psychological research: Definitions, implications, and applications. Psychological Bulletin, 109, 524-536.
[42] van de Schoot, R., Winter, S. D., Ryan, O., Zondervan- Zwijnenburg, M., & Depaoli, S. (2017). A systematic review of Bayesian papers in psychology: The last 25 years. Psychological Methods, 22(2), 217-239.
URLpmid: 28594224
[43] Wang, L. J., & Preacher, K. J. (2015). Moderated mediation analysis using Bayesian methods. Structural Equation Modeling: A Multidisciplinary Journal, 22(2), 249-263.
[44] Wang, L. X., Zhang, L. Y., & Chang, S. M. (2019). The relationship between maternal rejection and peer rejection: A mediated moderation model. Journal of Psychological Science, 42(6), 1347-1353.
[ 王玲晓, 张丽娅, 常淑敏. (2019). 儿童母亲拒绝与同伴拒绝的关系— 一个有中介的调节模型. 心理科学, 42(6), 1347-1353.]
[45] Wen, Z. L., & Fan, X. T. (2015). Monotonicity of effect sizes: Questioning kappa-squared as mediation effect size measure. Psychological Methods, 20(2), 193-203.
URLpmid: 25664380
[46] Wen, Z. L., Marsh, H. W., & Hau, K. -T. (2010). Structural equation models of latent interactions: An appropriate standardized solution and its scale-free properties. Structural Equation Modeling, 17(1), 1-22.
[47] Wilkinson, L. Task Force on Statistical Inference, American Psychological Association, Science Directorate. (1999). Statistical methods in psychology journals: Guidelines and explanations. American Psychologist, 54(8), 594-604.
[48] Yang, W. S., Mu, J. Z., Li, B. W., & Wang, J. Y. (2019). Relationship between proactive personality and employee behaviors: The role of proactive socialization behavior and political skill. Journal of Psychological Science, 42(6), 1488-1454.
[ 杨文圣, 牟家增, 李博文, 王佳颖. (2019). 主动性人格与员工行为的关系:政治技能视角下有中介的调节模型. 心理科学, 42(6), 1488-1454.]
[49] Yang, M., & Yuan, K. -H. (2016). Robust methods for moderation analysis with a two-level regression model. Multivariate Behavioral Research, 51(6), 757-771.
doi: 10.1080/00273171.2016.1235965URLpmid: 27805835
[50] Yang, Y. C., Chen, L., Chen, G. H., & Zhang, W. X. (2020). Peer rejection, friendship support and adolescent depressive symptoms: A mediated moderation model. Chinese Journal of Clinical Psychology, 28(2), 348-353.
[ 杨逸群, 陈亮, 陈光辉, 张文新. (2020). 同伴拒绝、友谊支持对青少年抑郁的影响:有中介的调节模型. 中国临床心理学杂志, 28(2), 348-353.]
[51] Ye, B. J., & Wen, Z. L. (2013). A discussion on testing tethods for mediated moderation models: Discrimination and integration. Acta Psychological Sinica, 45(9), 1050-1060.
[ 叶宝娟, 温忠麟. (2013). 有中介的调节模型检验方法:甄别和整合. 心理学报, 45(9), 1050-1060.]
[52] Yuan, K. -H., Cheng, Y., & Maxwell, S. (2014). Moderation analysis using a two-level regression model. Psychometrika, 79(4), 701-732.
URLpmid: 24337935
[53] Yuan, Y., & MacKinnon, D. P. (2009). Bayesian mediation analysis. Psychological Methods, 14(4), 301-322.
doi: 10.1037/a0016972URLpmid: 19968395
[54] Zacher, H., Jimmieson, N. L., & Winter, G. (2012). Eldercare demands, mental health, and work performance: The moderating role of satisfaction with eldercare tasks. Journal of Occupational Health Psychology, 17, 52-64.
URLpmid: 21966930
[55] Zondervan-Zwijnenburg, M., Peeters, M., Depaoli, S., & van de Schoot, R. (2017). Where do priors come from? Applying guidelines to construct informative priors in small sample research. Research in Human Development, 14(4), 305-320.




[1]温忠麟;范息涛;叶宝娟;陈宇帅. 从效应量应有的性质看中介效应量的合理性[J]. 心理学报, 2016, 48(4): 435-443.
[2]温忠麟;叶宝娟. 有调节的中介模型检验方法:竞争还是替补?[J]. 心理学报, 2014, 46(5): 714-726.
[3]叶宝娟;温忠麟. 有中介的调节模型检验方法:甄别和整合[J]. 心理学报, 2013, 45(9): 1050-1060.
[4]温忠麟,张雷,侯杰泰. 有中介的调节变量和有调节的中介变量[J]. 心理学报, 2006, 38(03): 448-452.





PDF全文下载地址:

http://journal.psych.ac.cn/xlxb/CN/article/downloadArticleFile.do?attachType=PDF&id=4898
相关话题/心理 统计 数学 资源 设计