删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

科学发明情境中问题提出的脑机制再探

本站小编 Free考研考试/2022-01-01

童丹丹1,2, 李文福3, 禄鹏1, 杨文静2, 杨东2, 张庆林2(), 邱江2()
1西北师范大学心理学院, 甘肃省行为与心理重点实验室, 兰州 730030
2西南大学心理学部, 认知与人格教育部重点实验室, 重庆 北碚 400715
3济宁医学院精神卫生学院, 山东 济宁 272067
收稿日期:2019-12-20出版日期:2020-11-25发布日期:2020-09-22
通讯作者:张庆林,邱江E-mail:zhangql@swu.edu.cn;qiuj318@swu.edu.cn

基金资助:* 国家自然科学基金项目(31470981);国家自然科学基金项目(31771231);教育部人文社会科学研究项目(19XJC190001);甘肃省社科规划项目(19YB026);山东省高等学校“青创科技计划”项目(2019RWF003)

The neural basis of scientific innovation problem finding

TONG DanDan1,2, LI WenFu3, LU Peng1, YANG WenJing2, YANG Dong2, ZHANG QingLin2(), QIU Jiang2()
1School of Psychology, Northwest Normal University, Key Laboratory of Behavioral and Mental Health of Gansu Province, Lanzhou 730070, China
2School of Psychology, Southwest University, Chongqing 400715, China
3Department of Mental Health, Jining Medical University, Jining 272067, China
Received:2019-12-20Online:2020-11-25Published:2020-09-22
Contact:ZHANG QingLin,QIU Jiang E-mail:zhangql@swu.edu.cn;qiuj318@swu.edu.cn






摘要/Abstract


摘要: 以高生态学效度的科学发明问题情境作为实验材料, 采用静息态功能磁共振成像技术, 基于低频振幅(ALFF)和静息态功能连接(RSFC)的分析方法, 探讨创造性科学问题提出的脑机制。结果发现, 在控制了被试性别、年龄后, 提出新颖有效性问题的比率越高, 左内侧前额叶(Left media prefrontal cortex, L-mPFC)和右小脑前叶(Right cerebellum)的ALFF值越高。进一步功能连接分析发现, 提出新颖有效性问题的比率与mPFC和楔叶(Cuneus)之间的功能连接强度呈显著正相关。结果强调mPFC对于科学发明情境中问题提出的重要作用, 且更高比率的新颖有效性问题的提出是通过mPFC与其它脑区的协同联结来实现的。



图1实验流程图
图1实验流程图


表1创造性科学问题提出比率的平均数和标准差
测量指标 平均数 95% CI 标准差 最小值 最大值 得分
范围
新颖性问题 0.89 0.86 ~ 0.91 0.14 0.11 1.00 0.89
有效性问题 0.33 0.28 ~ 0.38 0.26 0.00 0.89 0.89

表1创造性科学问题提出比率的平均数和标准差
测量指标 平均数 95% CI 标准差 最小值 最大值 得分
范围
新颖性问题 0.89 0.86 ~ 0.91 0.14 0.11 1.00 0.89
有效性问题 0.33 0.28 ~ 0.38 0.26 0.00 0.89 0.89


表2ALFF和新颖有效性问题提出比率显著相关的脑区
脑区 半球 MNI t
(最大点)
体素
个数
(Voxels)
效应量
f 2
X Y Z
ALFF与新颖有效性问题提出比率显著正相关
腹内侧前额叶 -6 12 -18 3.51 74 0.19
小脑前叶 9 -42 -30 4.53 124 0.25

表2ALFF和新颖有效性问题提出比率显著相关的脑区
脑区 半球 MNI t
(最大点)
体素
个数
(Voxels)
效应量
f 2
X Y Z
ALFF与新颖有效性问题提出比率显著正相关
腹内侧前额叶 -6 12 -18 3.51 74 0.19
小脑前叶 9 -42 -30 4.53 124 0.25



图2ALFF值和新颖有效性问题提出比率显著相关的脑区。左图代表左侧腹内侧前额叶, 右侧小脑的ALFF值与新颖有效性问题提出比率的显著相关。右图表示将与新颖有效性问题提出比率有显著相关的大脑区域的ALFF值提取出来, 并与新颖有效性问题提出比率进行Pearson相关分析。
图2ALFF值和新颖有效性问题提出比率显著相关的脑区。左图代表左侧腹内侧前额叶, 右侧小脑的ALFF值与新颖有效性问题提出比率的显著相关。右图表示将与新颖有效性问题提出比率有显著相关的大脑区域的ALFF值提取出来, 并与新颖有效性问题提出比率进行Pearson相关分析。



图3与种子点组成的功能连接网络能够预测提出新颖有效性问题提出的脑区。左图表示以右内侧前额叶为种子点, 与新颖有效性问题提出比率显著正相关的连接为左侧楔叶, 右侧表示将与提出新颖有效性问题比率有显著相关的内侧额叶-楔叶功能连接值提取出来并与新颖有效性问题提出比率进行Pearson相关分析。
图3与种子点组成的功能连接网络能够预测提出新颖有效性问题提出的脑区。左图表示以右内侧前额叶为种子点, 与新颖有效性问题提出比率显著正相关的连接为左侧楔叶, 右侧表示将与提出新颖有效性问题比率有显著相关的内侧额叶-楔叶功能连接值提取出来并与新颖有效性问题提出比率进行Pearson相关分析。







[1] Alabbasi, A. M. A., & Cramond, B. (2018). The creative problem finding hierarchy: A suggested model for understanding problem finding. Creativity. Theories-Research-Applications, 5(2), 197-229.
[2] Alabbasi, A. M. A., Paek, S. H., Cramond, B., & Runco, M. A.(2020). Problem finding and creativity: A meta-analytic review. Psychology of Aesthetics, Creativity, and the Arts, 14(1), 3-14
[3] Andreasen, N. C., Ramchandran, K.(2012). Creativity in art and science: Are there two cultures? Dialogues in Clinical Neuroscience, 14(1), 49-54.
URLpmid: 22577304
[4] Au Duong, M. V., Boulanouar, K., Audoin, B., Treseras, S., Ibarrola, D., Malikova, I., ... Cozzone, P. J.(2005). Modulation of effective connectivity inside the working memory network in patients at the earliest stage of multiple sclerosis. Neuroimage, 24(2), 533-538.
URLpmid: 15627595
[5] Aziz-Zadeh, L., Kaplan J. T., & Iacoboni, M.(2009). “Aha!”: The neural correlates of verbal insight solutions. Human Brain Mapping, 30(3), 908-916.
URLpmid: 18344174
[6] Bai, X. J., Gong, Y. B., Hu, W. P., Han, Q., & Yao, H. J.(2014). The inhibitory mechanism of individuals with different scientific creativity. Studies of Psychology and Behavior, 12(2), 151-155.
[ 白学军, 巩彦斌, 胡卫平, 韩琴, 姚海娟.(2014). 不同科学创造力个体干扰抑制机制的比较. 心理与行为研究, 12(2), 151-155.]
[7] Beaty, R. E., Benedek, M., Wilkins R. W., Jauk, E., Fink, A., Silvia P. J., ... Neubauer, A. C.(2014). Creativity and the default network: A functional connectivity analysis of the creative brain at rest. Neuropsychologia, 64C(2), 92.
[8] Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S.(2010). Functional connectivity in the motor cortex of resting human brain using echo-planar mri. Magnetic Resonance in Medicine, 34(4), 537-541.
URLpmid: 8524021
[9] Buckner, R. L.(2012). The serendipitous discovery of the brain's default network. Neuroimage, 62(2), 1137-1145.
URLpmid: 22037421
[10] Cairo, T. A., Liddle, P. F., Woodward, T. S., & Ngan, E. T.(2004). The influence of working memory load on phase specific patterns of cortical activity. Brain Research Cognitive Brain Research, 21(3), 377.
URLpmid: 15511653
[11] Chen, B. R., Hu, W. P., & Plucker, J. A.(2016). The effect of mood on problem finding in scientific creativity. The Journal of Creative Behavior, 50(4), 308-320.
[12] Chen, L. J., Zhang, Q. L., & Cai. Z., (2006). The effect of the stimuli-presenting mode on children's problem-finding in different fields. Journal of Psychological Science, (02), 43-46.
[ 陈丽君, 张庆林, 蔡治.(2006). 材料呈现方式对儿童不同领域问题发现的影响. 心理科学, (02), 43-46.]
[13] Chen, L. J., & Zheng, X.(2011). The exploratory study of cognitive stages in problem-finding process. Psychological Exploration, 31(4), 332-337.
[ 陈丽君, 郑雪.(2011). 问题发现过程认知阶段划分的探索性研究. 心理学探新, 31(4), 332-337.]
[14] Chen, Q. L., Yang, W. J., Li, W. F., Wei, D. T., Li, H. J., Lei, Q., ... Qiu, J.(2014). Association of creative achievement with cognitive flexibility by a combined voxel-based morphometry and resting-state functional connectivity study. Neuroimage, 102, 474-483.
URLpmid: 25123973
[15] Cheng, L. F., Hu, W. P., Jia X. J., & Runco, M. A.(2016). The different role of cognitive inhibition in early versus late creative problem finding. Psychology of Aesthetics Creativity & the Arts, 10(1), 32-41.
[16] Chumbley, J. R., & Friston K. J.(2009). False discovery rate revisited: FDR and topological inference using Gaussian random fields. Neuroimage, 44(1), 62-70.
[17] Darsaud, A., Wagner, U., Balteau, E., Desseilles, M., Sterpenich, V., Vandewalle, G., ... Maquet, P.(2011). Neural precursors of delayed insight. Journal of Cognitive Neuroscience, 23(8), 1900-1910.
doi: 10.1162/jocn.2010.21550URLpmid: 20666600
[18] Dietrich, A., & Kanso, R. (2010). A review of EEG, ERP, and neuroimaging studies of creativity and insight. Psychological Bulletin, 136(5), 822.
URLpmid: 20804237
[19] Fan, L. Y., Fan, X. F., Luo, W. C., Wu, G. H., Yan, X., Yin, D. Z., … Xu, D. R.(2014). An explorative fMRI study of human creative thinking using a specially designed iCAD system. Acta Psychologica Sinica, 46(4), 427-436.
[ 范亮艳, 范晓芳, 罗位超, 吴功航, 严序, 尹大志, … 徐冬溶.(2014). 艺术设计中创造性思维的fMRI研究: 一项基于智能CAD的探索. 心理学报, 46(4), 427-436.]
[20] Faul, F., Erdfelder, E., Buchner, A., & Lang, A. G.(2009). Statistical power analyses using g*power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149-1160.
doi: 10.3758/BRM.41.4.1149URLpmid: 19897823
[21] Feist, G. J.(1998). A meta-analysis of personality in scientific and artistic creativity. Personality and Social Psychology Review, 2(4), 290-309.
URLpmid: 15647135
[22] Ferstl, E. C., & Yves von Cramon, D.(2001). The role of coherence and cohesion in text comprehension: An event- related fMRI study. Cognitive Brain Research, 11, 325-340.
[23] Fink, A., Grabner, R. H., Gebauer, D., Reishofer, G., Koschutnig, K., & Ebner, F.(2010). Enhancing creativity by means of cognitive stimulation: Evidence from an fmri study. NeuroImage, 52(4), 1687-1695.
URLpmid: 20561898
[24] Fink, A., Koschutnig, K., Hutterer, L., Steiner, E., Benedek, M., Weber, B., ... Weiss, E. M.(2014). Gray matter density in relation to different facets of verbal creativity. Brain Structure and Function, 219(4), 1263-1269.
URLpmid: 23636224
[25] Fulwiler, C. E., King J. A., & Zhang, N.(2012). Amygdala- orbitofrontal resting-state functional connectivity is associated with trait anger. Neuroreport, 23(10), 606-610.
[26] Gansler, D. A., Moore, D. W., Susmaras, T. M., Jerram, M. W., Sousa, J., & Heilman, K. M.(2011). Cortical morphology of visual creativity. Neuropsychologia, 49(9), 2527-2532.
doi: 10.1016/j.neuropsychologia.2011.05.001URLpmid: 21600905
[27] Getzels, J. W.(2011). Problem-finding and the inventiveness of solutions. Journal of Creative Behavior, 9(1), 12-18.
[28] Gilbert, S. J., Zamenopoulos, T., Alexiou, K., & Johnson, J. F.(2010). Involvement of right dorsolateral prefrontal cortex in ill-structured design cognition: An fMRI study. Brain Research, 1312(2), 79-88.
doi: 10.1016/0006-8993(68)90116-9URLpmid: 4176329
[29] Gilhooly, K. J., Fioratou, E., & Henretty, N.(2011). Verbalization and problem solving: Insight and spatial factors. British Journal of Psychology, 101(1), 81-93.
[30] Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V.(2003). Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 100(1), 253-258.
URLpmid: 12506194
[31] Hahn, A., Stein, P., Windischberger, C., Weissenbacher, A., Spindelegger, C., Moser, E., ... Lanzenberger, R.(2011). Reduced resting-state functional connectivity between amygdala and orbitofrontal cortex in social anxiety disorder. Neuroimage, 56(3), 881-889.
URLpmid: 21356318
[32] Han, Q., Hu, W. P., Liu, J., Jia X. J., & Adey, P.(2013). The influence of peer interaction on students creative problem- finding ability. Creativity Research Journal, 25(3), 248-258.
[33] Hao, X., Cui, S., Li, W. F., Yang, W. J., Qiu, J., & Zhang, Q. L.(2013). Enhancing insight in scientific problem solving by highlighting the functional features of prototypes: An fMRI study. Brain Research, 1534: 46-54.
[34] He, Y., Wang, L., Zang, Y. F., Tian, L., Zhang X. Q., Li, K., & Jiang, T.(2007). Regional coherence changes in the early stages of Alzheimer's disease: A combined structural and resting-state functional MRI study. Neuroimage, 35(2), 488-500.
URLpmid: 17254803
[35] Hennessey, B. A., & Amabile, T. M.(2010). Creativity. Social Science Electronic Publishing, 61(1), 569-598.
[36] Holman, D. M.(2018). What am I supposed to do? Problem Finding and its impact on Problem Solving. UC Merced.
[37] Houk, J. C.(2005). Agenss of the mind. Biological Cybernetics, 92(6), 427-437.
doi: 10.1007/s00422-005-0569-8URLpmid: 15915357
[38] Howard-Jones, P. A., Sarah-Jayne Blakemore, Samuel, E. A., Summers, I. R., & Claxton, G.(2005). Semantic divergence and creative story generation: An fMRI investigation. Brain Res Cogn Brain Res, 25(1), 240-250.
doi: 10.1016/j.cogbrainres.2005.05.013URLpmid: 15993573
[39] Hu, W. P., & Adey, P.(2002). A scientific creativity test for secondary school students. International Journal of Science Education, 24(4), 389-403.
[40] Hu, W. P., Cheng, L. F., Jia, X. J., Han, M., & Chen., Y. H.(2015). The influence of Cognitive inhibition to Creative Scientific Problem Finding: Mediating effect of field cognitive style. Studies of Psychology and Behavior, 13(6), 721-728.
[ 胡卫平, 程丽芳, 贾小娟, 韩蒙, 陈英和.(2015). 认知抑制对创造性科学问题提出的影响: 认知风格的中介作用. 心理与行为研究, 13(6), 721-728.]
[41] , Hu, W. P., & Han, K. K.(2015). Theoretical research and practical exploration of adolescents'scientific creativity. Psychological Development and Education. 31(1), 44-50.
[ 胡卫平, 韩葵葵.(2015). 青少年科学创造力的理论研究与实践探索. 心理发展与教育, 31(1), 44-50.]
[42] Hu, W. P., Shi, Q. Z., Han, Q., Wang, X. Q., & Adey, P.(2010). Creative scientific problem finding and its developmental trend. Creativity Research Journal, 22(1), 46-52.
[43] Hu, W. P., & Zhou, P. (2010). The influences of motivation on creative scientific problem finding ability of first year students in high school. Psychological Development and Education, (1), 34-39.
[ 胡卫平, 周蓓.(2010). 动机对高一学生创造性的科学问题提出能力的影响. 心理发展与教育, (1), 34-39.]
[44] Huang, F., Fan, J., & Luo, J.(2015). The neural basis of novelty and appropriateness in processing of creative chunk decomposition. Neuroimage, 113, 122-132.
[45] Jia, X. J., Hu, W. P., Cai, F. C., Wang, H. H., Li, J., Runco, M. A., & Chen, Y. H.(2017). The influence of teaching methods on creative problem finding. Thinking Skills and Creativity, 24, 86-94.
[46] Jung-Beeman, M., Bowden, E. M., Haberman, J., Frymiare, J. L., Arambel-Liu, S., Greenblatt, R., ... Kounios, J.(2004). Neural activity when people solve verbal problems with insight. PLoS biology, 2(4), e97.
URLpmid: 15094802
[47] Jung, R. E., Mead, B. S., Carrasco, J., & Flores, R. A.(2013). The structure of creative cognition in the human brain. Frontiers in Human Neuroscience, 7(2), 330.
[48] Jung, R. E., Segall, J. M., Bockholt, J. H., Flores, R. A., Smith, S. M., Chavez, R. S., & Haier, R. J.(2010). Neuroanatomy of creativity. Human Brain Mapping. 31, 398-409.
[49] Kaplan, C. A., & Simon H. A.(1990). In search of insight. Cognitive psychology, 22(3), 374-419.
[50] Kounios, J., & Beeman M.(2013). The cognitive neuroscience of insight. Annual Review of Psychology, 65(1), 71-93.
[51] Kounios, J., Frymiare, J. L., Bowden, E. M., Fleck, J. I., Subramaniam, K., Parrish, T. B., & Jung-Beeman, M.(2006). The prepared mind neural activity prior to problem presentation predicts subsequent solution by sudden insight. Psychological Science, 17(10), 882-890.
URLpmid: 17100789
[52] Lang, S., Kanngieser, N., Ja?kowski, P., Haider, H., Rose, M., & Verleger, R.(2006). Precursors of insight in event-related brain potentials. Journal of Cognitive Neuroscience, 18(12), 2152.
URLpmid: 17129197
[53] Lee, H., & Cho Y.(2007). Factors affecting problem finding depending on degree of structure of problem situation. Journal of Educational Research, 101(2), 113-123.
[54] Li, H. Y., Hu, W. P., & Shen, J. L.(2010). School environment effects on the relations between adolescents' personality and creative scientific problem finding. Journal of Psychological Science, (5), 132-136.
[ 李海燕, 胡卫平, 申继亮.(2010). 学校环境对初中生人格特征与创造性科学问题提出能力关系的影响. 心理科学, (5), 132-136.]
[55] Li, W. F.(2014). The neural basis of creativity via multi-modal brain imaging investigation. Unpublished doctor's thesis. China: Southwest University.
[ 李文福.(2014). 创造性的脑机制——来自多模态磁共振成像的探索. 博士学位论文. 西南大学.]
[56] Li, W. F., Tong, D. D., Qiu, J., & Zhang, Q. L.(2016). The neural basis of scientific innovation problems solving. Acta Psychologica Sinica, 48(4), 331-342.
[ 李文福, 童丹丹, 邱江, 张庆林.(2016). 科学发明问题解决的脑机制再探. 心理学报, 48(4), 331-342.]
[57] Limb, C. J., & Braun A. R.(2008) Neural substrates of spontaneous musical performance: An fMRI Study of Jazz improvisation. PLoS ONE, 3(2), e1679.
URLpmid: 18301756
[58] Lundstrom, B. N., Ingvar, M., & Petersson, K. M.(2005). The role of precuneus and left inferior frontal cortex during source memory episodic retrieval. Neuroimage, 27(4), 824-834.
URLpmid: 15982902
[59] Luo, J., & Niki, K.(2003). Function of hippocampus in “insight” of problem solving. Hippocampus, 13(3), 316-323.
[60] Luo, J., & Zhang, X. L.(2006). From the impasse to the breakthrough: The brain basis for insightful problem solving. Advances of Psychological Science, 14(4):484-489.
[ 罗劲, 张秀玲.(2006). 从困境到超越: 顿悟的脑机制研究. 心理科学进展, 14(4), 484-489.]
[61] Luo, J. L., Li, W. F., Qiu, J., Wei, D. T., Liu, Y. J., & Zhang, Q. L.(2013). Neural basis of scientific innovation induced by heuristic prototype. PLoS ONE, 8(1), e49231.
URLpmid: 23372641
[62] Luo, Y. M., Li, B. L., Liu, J., Bi, C. Z., & Huang, X. T.(2015). Amplitude of low-frequency fluctuations in happiness: A resting-state fMRI study. Chinese Science Bulletin, 60(2), 170-178.
[ 罗扬眉, 李宝林, 刘杰, 毕重增, 黄希庭.(2015). 幸福感的静息态功能磁共振成像低频振幅. 科学通报, 60(2), 170-178.]
[63] Mennes, M., Kelly, C., Zuo, X. N., Martino, A. D., Biswal, B. B., Castellanos, F. X., & Milham, M. P.(2010). Inter- individual differences in resting-state functional connectivity predict task-induced BOLD activity. Neuroimage, 50(4), 1690-1701.
URLpmid: 20079856
[64] Moore, D. W., Bhadelia, R. A., Billings, R. L., Fulwiler, C., Heilman, K. M., Rood, K. M. J., & Gansler, D. A.(2009). Hemispheric connectivity and the visual-spatial divergent-thinking component of creativity. Brain & Cognition, 70(3), 267-272.
URLpmid: 19356836
[65] O'Boyle, M. W., Cunnington, R., Silk, T. J., Vaughan, D., Jackson, G., Syngeniotis, A., & Egan, G. F.(2005). Mathematically gifted male adolescents activate a unique brain network during mental rotation. Cognitive Brain Research, 25(2), 583-587.
doi: 10.1016/j.cogbrainres.2005.08.004URLpmid: 16150579
[66] Okuda, S. M., Runco, M. A., & Berger, D. E.(1991). Creativity and the finding and solving of real-world problems. Journal of Psychoeducational Assessment, 9(1), 45-53.
doi: 10.1177/073428299100900104URL
[67] Paletz, S. B. F., & Peng, K.(2009). Problem finding and contradiction: Examining the relationship between naive dialectical thinking, ethnicity, and creativity. Creativity Research Journal, 21(2-3), 139-151.
[68] Qian, Z. H.(1999). A brief discussion of scientific problems. Journal of Jiangsu University (Social Science Edition), (2), 9-12.
[ 钱兆华.(1999). 简论科学问题. 江苏理工大学学报(社会科学版), (2), 9-12]
[69] Qiu, J., Li, H., Jou, J., Liu, J., Luo, Y., Feng, T., ... Zhang, Q.(2010). Neural correlates of the “Aha” experiences: Evidence from an fMRI study of insight problem solving. Cortex, 46(3), 397-403.
URLpmid: 19656506
[70] Reiter-Palmon, R., & Robinson, E. J.(2009). Problem identification and construction: What do we know, what is the future? Psychology of Aesthetics Creativity & the Arts, 3(1), 43-47.
[71] Runco, M. A., Illies, J. J., & Reiter-palmon, R.(2005). Explicit instructions to be creative and original: A comparison of strategies and criteria as targets with three types of divergent thinking tests. Korean Journal of Thinking & Problem Solving, 15(1), 5-15.
[72] Runco, M. A., & Okuda, S. M.(1988). Problem discovery, divergent thinking, and the creative process. Journal of Youth and Adolescence, 17(3), 211-220.
doi: 10.1007/BF01538162URLpmid: 24277636
[73] Shamay-Tsoory, S. G., Adler, N., Aharon-Peretz, J., Perry, D., & Mayseless, N.(2011). The origins of originality: The neural bases of creative thinking and originality. Neuropsychologia, 49(2), 178-185.
URLpmid: 21126528
[74] Shen, J. L., Hu, W. P., & Lin, C. D.(2002). Constructing of the scientific creativity test for adolescent. Psychological Development and Education, 16(4), 76-81.
[ 申继亮, 胡卫平, 林崇德.(2002). 青少年科学创造力测验的编制. 心理发展与教育, 16(4), 76-81.]
[75] Shen, W. B., Liu, C., & Wang, Y. J.(2010). Neurophysiological basis of artistic creativity. Advances in Psychological Science, 18(10), 520-1528.
[ 沈汪兵, 刘昌, 王永娟.(2010). 艺术创造力的脑神经生理基础. 心理科学进展, 18(10), 520-1528.]
[76] Shen, W. B., Luo, J., Liu, C., & Yuan, Y.(2012). One decade for insightful brain: New advances on neural correlates of insight (in Chinese). Chinese Science Bulletin, 57(21), 1948-1963.
[ 沈汪兵, 罗劲, 刘昌, 袁媛.(2012). 顿悟脑的10年: 人类顿悟脑机制研究进展. 科学通报, 57(21), 1948-1963.]
[77] Song, X. W., Dong, Z. Y., Long, X. Y., Li, S. F., Zuo, X. N., Zhu, C. Z., ... Zang, Y. F.(2011). REST: A toolkit for resting-state functional magnetic resonance imaging data processing. Plos One, 6(9), e25031.
doi: 10.1371/journal.pone.0025031URLpmid: 21949842
[78] Sternberg, R. J., & Lubart, T. I.(1993). Investing in creativity. Psychological Inquiry, 4(3), 229-232.
[79] Subramaniam, K. (2008). The behavioral and neural basis for the facilitation of insight problem-solving by a positive mood. Northwestern University.
[80] Takeuchi, H., Taki, Y., Hashizume, H., Sassa, Y., Nagase, T., Nouchi, R., & Kawashima, R.(2012). The association between resting functional connectivity and creativity. Cerebral Cortex, 22(12), 2921-2929.
doi: 10.1093/cercor/bhr371URLpmid: 22235031
[81] Takeuchi, H., Taki, Y., Sassa, Y., Hashizume, H., Sekiguchi, A., Fukushima, A., & Kawashima, R.(2010). White matter structures associated with creativity: Evidence from diffusion tensor imaging. Neuroimage, 51(1), 11.
doi: 10.1016/j.neuroimage.2010.02.035URLpmid: 20171286
[82] Talati, A., & Hirsch, J. (2005). Functional specialization within the medial frontal gyrus for perceptual go/no-go decisions based on “what, ” “when, ” and “where” related information: An fMRI study. Journal of Cognitive Neuroscience, 17(7), 981-993.
URLpmid: 16102231
[83] Tong, D. D.(2017). The study of cognitive neural mechanisms of creative scientific problems. Unpublished doctor's thesis. China: Southwest University.
[ 童丹丹.(2017). 创造性科学问题提出的认知神经机制. 博士学位论文. 西南大学.]
[84] Tong, D. D., Dai, T. E., Li, W. F., Qiu, J., & Zhang, Q. L.(2013). An fMRI study for problem-finding in scientific inventional situation. Acta Psychologica Sinica, 45(7), 740-751.
[ 童丹丹, 代天恩, 李文福, 邱江, 张庆林.(2013). 科学发明情境中问题提出的fMRI研究. 心理学报, 45(7), 740-751.]
[85] Tong, D. D., Li, W. F., Dai, T. E., Nusbaum, H. C., Qiu, J., & Zhang, Q. L.(2013). Brain mechanisms of valuable scientific problem finding inspired by heuristic knowledge. Experimental Brain Research. 228, 437-443.
URLpmid: 2286243
[86] Torrance, E. P.(1966). The torrance tests of creative thinking- norms-technical manual research edition-verbal tests, Forms A and B-Figural Tests, Forms A and B. Princeton, NJ: Personnel Press.
[87] Wang, B. T.(2013). Effects of hemispheric interaction on creative scientific problem finding ability. Unpublished master's thesis. Shanxi Normal University, China.
URLpmid: 29033479
[ 王博韬.(2013). 大脑半球互动水平对创造性科学问题提出能力的影响. 硕士学位论文, 山西师范大学.]
pmid: 29033479
[88] Wang, B. T., Duan, H. J., Han, Q., & Hu, W. P.(2017). The influence of inter-hemispheric interaction on creative scientific problem finding ability. Studies of Psychology and Behavior, 15(2), 92-102.
[ 王博韬, 段海军, 韩琴, 胡卫平.(2017). 大脑半球互动对创造性科学问题提出能力的影响. 心理与行为研究, 15(2), 92-102.]
[89] Wang, Z. Q., Yan, C. G., Zhao, C., Qi, Z. G., Zhou, W., Lu, J., ... Li, Q.(2011). Spatial patterns of intrinsic brain activity in mild cognitive impairment and alzheimer's disease: A resting-state functional MRI study. Human Brain Mapping, 32(10), 1720-1740.
doi: 10.1002/hbm.21140URLpmid: 21077137
[90] Ward, T. B.(2007). Creative cognition as a window on creativity. Methods, 42(1), 28.
doi: 10.1016/j.ymeth.2006.12.002URLpmid: 17434413
[91] Wei, D. T., Yang, J. Y., Li, W. F., Wang, K. C., Zhang, Q. L., & Qiu, J.(2014). Increased resting functional connectivity of the medial prefrontal cortex in creativity by means of cognitive stimulation. Cortex, 51(1), 92-102.
doi: 10.1016/j.cortex.2013.09.004URL
[92] Wei, L. Q., Duan, X. J., Zheng C. Y., Wang S. S., Gao, Q., Zhang Z. Q., … Chen, H. F.(2013). Specific frequency bands of amplitude low-frequency oscillation encodes personality. Human Brain Mapping, 35(1), 331-339.
doi: 10.1002/hbm.22176URLpmid: 22987723
[93] Whitfield-Gabrieli, S., & Nieto-Castanon A. (2012). A functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect, 2(3), 125-141.
doi: 10.1089/brain.2012.0073URLpmid: 22642651
[94] Wu, L. L., Knoblich, G., & Luo, J.(2013). The role of chunk tightness and chunk familiarity in problem solving: Evidence from ERPs and FMRI. Human Brain Mapping, 34(5), 1173-1186.
doi: 10.1002/hbm.21501URLpmid: 22328466
[95] Wu, Z. Z., Qiu, J., & Zhang, Q. L.(2008). Exploring the mechanism for prototype elicitation effect in insight. Psychological Development and Education. 24(1), 31-35.
[ 吴真真, 邱江, 张庆林.(2008). 顿悟的原型启发效应机制探索. 心理发展与教育, 24(1), 31-35.]
[96] Wu, Z. Z., & Zhang, Q. L.(2005). Effects of familiarity of fields and questioning-constrained on the creativity of question- asking of undergraduates. Chinese Journal of Clinical Rehabilitation. (44), 61-63.
[ 吴真真, 张庆林.(2005). 领域熟悉度和提问限制对大学生提问创造性的影响. 中国临床康复, (44), 61-63.]
[97] Xue, H., Lu, K. L., & Hao, N.(2018). Cooperation makes two less-creative individuals turn into a highly-creative pair. Neuroimage, 172, 527-537.
doi: 10.1016/j.neuroimage.2018.02.007URLpmid: 29427846
[98] Yan, C. G., & Zang, Y. F.(2010). DPARSF: A MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Frontiers in Systems Neuroscience, 4, 13.
URLpmid: 20577591
[99] Yang, W. J., Jin, Y. L., Qiu, J., & Zhang, Q. L.(2018). The effect of prototype difficulty and semantic similarity on the prototype activation. Acta Psychologica Sinica, 50(3), 260-269.
[ 杨文静, 靳玉乐, 邱江, 张庆林.(2018). 问题先导下语义相似性和原型难度对原型启发的影响. 心理学报, 50(3), 260-269.]
[100] Zang, Y. F., He, Y., Zhu, C. Z., Cao, Q. J., Sui M. Q., Liang, M., ... Wang, Y. F.(2007). Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain & Development, 29(2), 83-91.
doi: 10.1016/j.braindev.2006.07.002URLpmid: 16919409
[101] Zeng, L. L., Shen, H., Liu, L., Wang L. B., Li, B. J., Fang, P., ... Hu, D. W.(2012). Identifying major depression using whole-brain functional connectivity: A multivariate pattern analysis. Brain A Journal of Neurology, 135(Pt 5), 1498.
URLpmid: 22418737
[102] Zhang, Q. L., Tian, Y., Qiu, J.(2012). Automatic activation of prototype representation in insight: The sources of inspiration. Journal of Southwest University (Natural Science Edition), 34(9), 144-149.
[ 张庆林, 田燕, 邱江.(2012). 顿悟中原型激活的大脑自动响应机制: 灵感机制初探. 西南大学学报(自然科学版), 34(9), 1-10.]
[103] Zhao, Q. B., Zhou, Z. J., Xu, H. B., Chen, S., Xu, F., Fan, W. L., & Han, L.(2013). Dynamic neural network of insight: A functional magnetic resonance imaging study on solving chinese riddles. Plos One, 8(3), e59351.
doi: 10.1371/journal.pone.0059351URLpmid: 23555020
[104] Zhou, D ., & Shi, J. N.(2005). Creative process: From the information processing perspective. Advances in Psychological Science, 13(6), 721-727.
[ 周丹, 施建农.(2005). 从信息加工的角度看创造力过程. 心理科学进展, 13(6), 721-727.]
[105] Zhou, H.(2015). Research on the difference of novelty evaluation process of college students with different creative science problem finding ability. Unpublished master's thesis. Shaanxi Normal University, China.
[ 周寰.(2015). 不同创造性科学问题提出能力大学生新颖性评价过程的差异研究.硕士学位论文. 陕西师范大学.]
[106] Zhu, D., Luo, J. L., Zhu, H. X., Qiu, J., & Zhang, Q. L.(2011). The effect of prototype inspiration in the process of scientific innovation thinking. Journal of Southwest University (Social Sciences Edition), 37(5), 144-149.
[ 朱丹, 罗俊龙, 朱海雪, 邱江, 张庆林.(2011). 科学发明创造思维过程中的原型启发效应. 西南大学学报 (社会科学版), 37(5), 144-149.]
[107] Zou, Q. H., Ross, T. J., Gu, H., Geng, X. J., Zuo, X. N., Elliot Hong, L., ... Yang Y. H.(2013). Intrinsic resting-state activity predicts working memory brain activation and behavioral performance. Human Brain Mapping, 34(12), 3204-3215.
doi: 10.1002/hbm.22136URLpmid: 22711376
[108] Zuo, X. N., Martino, A. D., Kelly, C., Shehzad, Z. E., Gee, D. G., Klein, D. F., ... Milham, M. P.(2010). The oscillating brain: Complex and reliable. Neuroimage, 49(2), 1432-1445.
URLpmid: 19782143




[1]崔芳, 杨佳苗, 古若雷, 刘洁. 右侧颞顶联合区及道德加工脑网络的功能连接预测社会性框架效应:来自静息态功能磁共振的证据[J]. 心理学报, 2021, 53(1): 55-66.
[2]周衡, 何华, 于薇, 王爱君, 张明. 老年人声音诱发闪光错觉的大脑静息态低频振幅[J]. 心理学报, 2020, 52(7): 823-834.
[3]孙岩,薄思雨,吕娇娇. 认知重评和表达抑制情绪调节策略的脑网络分析:来自EEG和ERP的证据[J]. 心理学报, 2020, 52(1): 12-25.
[4]江琦,侯璐璐,邱江,李长燃,王焕贞. 尾状核-眶部内侧前额叶的功能连接与反应性攻击的关系:基于静息态功能磁共振研究[J]. 心理学报, 2018, 50(6): 655-666.
[5]杨文静, 靳玉乐, 邱江, 张庆林. 问题先导下语义相似性和原型难度 对原型启发的影响[J]. 心理学报, 2018, 50(3): 260-269.
[6]白学军,姚海娟. 高低创造性思维水平者的认知抑制能力:行为和生理的证据[J]. 心理学报, 2018, 50(11): 1197-1211.
[7]刘敏, 张庆林, 余薇, 张华. 市场信息整合的创造性思维机制初探[J]. 心理学报, 2018, 50(1): 82-90.
[8]赵庆柏;柯娓;童彪;周治金; 周宗奎. 网络语言的创造性加工过程:新颖N400与LPC[J]. 心理学报, 2017, 49(2): 143-154.
[9]赵庆柏, 魏琳琳, 李瑛, 周治金, 赵黎莉, 唐磊. 新颖语义联结形成的右半球优势效应[J]. 心理学报, 2017, 49(11): 1370-1382.
[10]王琼;王玮文;李曼;杜伟;邵枫. 阻断内侧前额叶皮质TrkB受体对大鼠认知和海马BDNF表达的影响[J]. 心理学报, 2016, 48(5): 509-517.
[11]李文福;童丹丹;邱江;张庆林. 科学发明问题解决的脑机制再探[J]. 心理学报, 2016, 48(4): 331-342.
[12]谷传华;王亚丽;吴财付;谢祥龙;崔承珠;王亚娴;王婉贞;胡碧颖;周宗奎. 社会创造性的脑机制:状态与特质的EEG α波活动特点[J]. 心理学报, 2015, 47(6): 765-773.
[13]范亮艳;范晓芳;罗位超;吴功航;严序;尹大志;吕岳;朱君明;徐冬溶. 艺术设计中创造性思维的fMRI研究:一项基于智能CAD的探索[J]. 心理学报, 2014, 46(4): 427-436 .
[14]王永丽;张智宇;何颖. 工作-家庭支持对员工创造力的影响探讨[J]. 心理学报, 2012, 44(12): 1651-1662.
[15]田燕,罗俊龙,李文福,邱江,张庆林. 原型表征对创造性问题解决过程中的启发效应的影响[J]. 心理学报, 2011, 43(06): 619-628.





PDF全文下载地址:

http://journal.psych.ac.cn/xlxb/CN/article/downloadArticleFile.do?attachType=PDF&id=4822
相关话题/心理 科学 种子 创造力 网络