删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

认知重评和表达抑制情绪调节策略的脑网络分析:来自EEG和ERP的证据

本站小编 Free考研考试/2022-01-01

孙岩(), 薄思雨, 吕娇娇
辽宁师范大学心理学院, 大连 116029
收稿日期:2018-09-21出版日期:2020-01-25发布日期:2019-11-21
通讯作者:孙岩E-mail:sunyan@lnnu.edu.cn

基金资助:* 教育部人文社会科学规划基金项目(17YJA190011);辽宁省教育厅项目(WJ2019015)

Brain network analysis of cognitive reappraisal and expressive inhibition strategies: Evidence from EEG and ERP

SUN Yan(), BO Siyu, LV Jiaojiao
School of Psychology, Liaoning Normal University, Dalian 116029, China
Received:2018-09-21Online:2020-01-25Published:2019-11-21
Contact:SUN Yan E-mail:sunyan@lnnu.edu.cn






摘要/Abstract


摘要: 本文旨在对认知重评和表达抑制两种常用情绪调节策略的自发脑网络特征及认知神经活动进行深入探讨。研究采集36名在校大学生的静息态和任务态脑电数据, 经过源定位和图论分析发现节点效率与两种情绪调节显著相关的脑区, 以及脑区之间的功能连接。研究结果表明, 在使用认知重评进行情绪调节时会激活前额叶皮质、前扣带回、顶叶、海马旁回和枕叶等多个脑区, 在使用表达抑制进行情绪调节时会激活前额叶皮质、顶叶、海马旁回、枕叶、颞叶和脑岛等多个脑区。因此, 这些脑区的节点效率或功能连接强度可能成为评估个体使用认知重评和表达抑制调节情绪效果的指标。



图1情绪调节任务的实验过程(以表达抑制任务为例)
图1情绪调节任务的实验过程(以表达抑制任务为例)


表1theta频带下相位滞后同步与CR和ES评分相关显著的功能连接脑区
情绪调节策略 脑区 r p
CR 顶叶(中央后回)-额叶(额下回/额中回) (1R-46R) 0.63*** 0.00049
ES 海马旁回-额下回/额中回/脑岛(35L-47R) 0.61*** 0.00012
海马旁回-顶叶(顶下回) (37L-40L) 0.60*** 0.00014
额下回/额中回/脑岛-海马旁回(47L-36R) 0.56*** 0.00046
海马旁回-额下回/额中回/脑岛(28L-47R) 0.55*** 0.00063
额下回/额中回/脑岛-海马旁回(47L-35R) 0.54*** 0.00082

表1theta频带下相位滞后同步与CR和ES评分相关显著的功能连接脑区
情绪调节策略 脑区 r p
CR 顶叶(中央后回)-额叶(额下回/额中回) (1R-46R) 0.63*** 0.00049
ES 海马旁回-额下回/额中回/脑岛(35L-47R) 0.61*** 0.00012
海马旁回-顶叶(顶下回) (37L-40L) 0.60*** 0.00014
额下回/额中回/脑岛-海马旁回(47L-36R) 0.56*** 0.00046
海马旁回-额下回/额中回/脑岛(28L-47R) 0.55*** 0.00063
额下回/额中回/脑岛-海马旁回(47L-35R) 0.54*** 0.00082



图2theta频带下相位滞后同步与CR和ES心理估计变量(即情绪调节两个分量表评分)相关显著的功能连接脑区(p < 0.001, Bonferroni校正)。左图表示在theta频带下EEG信号与被试的CR得分相关显著的功能连接脑区; 右图表示在该频带下EEG信号与被试的ES得分相关显著的功能连接脑区。红色线表示连接的两个布鲁德曼脑区之间功能上的同步性与情绪调节得分呈显著正相关。
图2theta频带下相位滞后同步与CR和ES心理估计变量(即情绪调节两个分量表评分)相关显著的功能连接脑区(p < 0.001, Bonferroni校正)。左图表示在theta频带下EEG信号与被试的CR得分相关显著的功能连接脑区; 右图表示在该频带下EEG信号与被试的ES得分相关显著的功能连接脑区。红色线表示连接的两个布鲁德曼脑区之间功能上的同步性与情绪调节得分呈显著正相关。


表2theta频带下节点效率与CR和ES评分相关显著的脑区
CR ES
脑区 r p 脑区 r p
前额中央后回(4R) -0.51** 0.0016 额下回/额中回/脑岛(47R) 0.36* 0.034
顶叶中央后回(3R) -0.43* 0.010 前额叶皮层(6L) -0.34* 0.044
前扣带回(25L) -0.35* 0.041 内侧前额叶皮层(11R) -0.34* 0.049

表2theta频带下节点效率与CR和ES评分相关显著的脑区
CR ES
脑区 r p 脑区 r p
前额中央后回(4R) -0.51** 0.0016 额下回/额中回/脑岛(47R) 0.36* 0.034
顶叶中央后回(3R) -0.43* 0.010 前额叶皮层(6L) -0.34* 0.044
前扣带回(25L) -0.35* 0.041 内侧前额叶皮层(11R) -0.34* 0.049



图3theta频带下节点效率与CR和ES心理估计变量(即情绪调节两个分量表评分)相关显著的脑区(p < 0.05, Bonferroni校正)。左图表示theta频带下节点效率与被试的CR得分相关显著的脑区, 右图表示theta频带下节点效率与被试的ES得分相关显著的脑区。图中圆点位置表示对应的布鲁德曼脑区, 圆点大小表示相关的显著性程度, 越大表示两者相关越显著。
图3theta频带下节点效率与CR和ES心理估计变量(即情绪调节两个分量表评分)相关显著的脑区(p < 0.05, Bonferroni校正)。左图表示theta频带下节点效率与被试的CR得分相关显著的脑区, 右图表示theta频带下节点效率与被试的ES得分相关显著的脑区。图中圆点位置表示对应的布鲁德曼脑区, 圆点大小表示相关的显著性程度, 越大表示两者相关越显著。



图4观看中性、观看负性、重评负性和抑制负性条件下, 在F3、Fz、F4、C3、Cz、C4、P3、Pz和P4上诱发脑电的总平均图。
图4观看中性、观看负性、重评负性和抑制负性条件下, 在F3、Fz、F4、C3、Cz、C4、P3、Pz和P4上诱发脑电的总平均图。


表3LPP波幅和theta频带下相位滞后同步相关显著的脑区
CR ES
脑区 r p 脑区 r p
颞下回(20L)-额上回(8R) 0.66*** 0.000016
海马旁回(37L)-海马旁回(37R) -0.72*** 0.0000014 海马旁回(35L)-海马旁回(36L) 0.64*** 0.000036
顶上回(5L)-海马旁回(34L) 0.63*** 0.000057
额内侧回\额上回\额下回(10L)-内侧
前额叶皮层(11R)
-0.60*** 0.00015 海马旁回(36L)-额上回(8R) 0.57*** 0.00034
中央后回(3R)-额上回(8R) 0.57*** 0.00038
顶上回(5L)-海马旁回(28L) 0.56*** 0.00043
额上回(8L)-颞下回(20L) 0.55*** 0.00060

表3LPP波幅和theta频带下相位滞后同步相关显著的脑区
CR ES
脑区 r p 脑区 r p
颞下回(20L)-额上回(8R) 0.66*** 0.000016
海马旁回(37L)-海马旁回(37R) -0.72*** 0.0000014 海马旁回(35L)-海马旁回(36L) 0.64*** 0.000036
顶上回(5L)-海马旁回(34L) 0.63*** 0.000057
额内侧回\额上回\额下回(10L)-内侧
前额叶皮层(11R)
-0.60*** 0.00015 海马旁回(36L)-额上回(8R) 0.57*** 0.00034
中央后回(3R)-额上回(8R) 0.57*** 0.00038
顶上回(5L)-海马旁回(28L) 0.56*** 0.00043
额上回(8L)-颞下回(20L) 0.55*** 0.00060


表4LPP波幅和theta频带下节点效率相关显著的脑区
CR ES
脑区 r p 脑区 r p
顶叶中央后回(1L) 0.44** 0.0088 额上回(8R) 0.37* 0.031
海马旁回(37L) -0.41* 0.013
枕下回(17L) -0.35* 0.040 枕下回(17L) -0.34* 0.043

表4LPP波幅和theta频带下节点效率相关显著的脑区
CR ES
脑区 r p 脑区 r p
顶叶中央后回(1L) 0.44** 0.0088 额上回(8R) 0.37* 0.031
海马旁回(37L) -0.41* 0.013
枕下回(17L) -0.35* 0.040 枕下回(17L) -0.34* 0.043



图5LPP波幅和theta频带下相位滞后同步相关显著的脑区(p < 0.001, Bonferroni校正)。左图表示在theta频带下EEG信号与被试的CR条件下LPP波幅相关显著的功能连接脑区; 右图表示在该频带下EEG信号与被试的ES条件下LPP波幅相关显著的功能连接脑区。红色线表示连接的两个布鲁德曼脑区之间功能上的同步性与情绪调节得分呈显著正相关。蓝色线表示连接的两个布鲁德曼脑区之间功能上的同步性与情绪调节得分呈显著负相关。
图5LPP波幅和theta频带下相位滞后同步相关显著的脑区(p < 0.001, Bonferroni校正)。左图表示在theta频带下EEG信号与被试的CR条件下LPP波幅相关显著的功能连接脑区; 右图表示在该频带下EEG信号与被试的ES条件下LPP波幅相关显著的功能连接脑区。红色线表示连接的两个布鲁德曼脑区之间功能上的同步性与情绪调节得分呈显著正相关。蓝色线表示连接的两个布鲁德曼脑区之间功能上的同步性与情绪调节得分呈显著负相关。



图6LPP波幅和theta频带下节点效率相关显著的脑区(p < 0.05, Bonferroni校正)。左图表示theta频带下节点效率与被试的CR条件下LPP波幅相关显著的脑区, 右图表示theta频带下节点效率与被试的ES条件下LPP波幅相关显著的脑区。图中圆点位置表示对应的布鲁德曼脑区, 圆点大小表示相关的显著性程度, 越大表示两者相关越显著。
图6LPP波幅和theta频带下节点效率相关显著的脑区(p < 0.05, Bonferroni校正)。左图表示theta频带下节点效率与被试的CR条件下LPP波幅相关显著的脑区, 右图表示theta频带下节点效率与被试的ES条件下LPP波幅相关显著的脑区。图中圆点位置表示对应的布鲁德曼脑区, 圆点大小表示相关的显著性程度, 越大表示两者相关越显著。







[1] Alizadeh A., Fatemizadeh E., & Deevband M. R . ( 2014, November) Investigation of Brain Default Network's activation in autism spectrum disorders Using Group Independent Component Analysis. 21st Iranian Conference on Biomedical Engineering (ICBME 2014), Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
[2] Amrhein C., Mühlberger A., Pauli P., & Wiedemann G . ( 2004). Modulation of event-related brain potentials during affective picture processing: A complement to startle reflex and skin conductance response? International Journal of Psychophysiology, 54( 3), 231-240.
doi: 10.1016/j.ijpsycho.2004.05.009URLpmid: 15331214
[3] Arnold A. E. G. F., Protzner A. B., Bray S., Levy R. M., & Iaria G . ( 2014). Neural network configuration and efficiency underlies individual differences in spatial orientation ability. Journal of Cognitive Neuroscience, 26( 2), 380-394.
doi: 10.1162/jocn_a_00491URL
[4] Badre D., & Wagner A. D . ( 2004). Selection, integration, and conflict monitoring: Assessing the nature and generality of prefrontal cognitive control mechanisms. Neuron, 41( 3), 473-487.
doi: 10.1016/S0896-6273(03)00851-1URL
[5] Balconi M., Grippa E., & Vanutelli M. E . ( 2015). What hemodynamic (FNIRs), electrophysiological (EEG) and autonomic integrated measures can tell us about emotional processing. Brain and Cognition, 95, 67-76.
doi: 10.1016/j.bandc.2015.02.001URLpmid: 25721430
[6] Barch D., Braver T., Akbudak E., & Ollinger J . ( 2000). Anterior cingulate cortex and response conflict: Effects of response modality and processing domain. Neuroimage, 11( 5), S104-S104.
doi: 10.1371/journal.pone.0017635URLpmid: 21408006
[7] Batut A. C., Gounot D., Namer I. J., Hirsch E., Kehrli P., & Metz-Lutz M. N . ( 2006). Neural responses associated with positive and negative emotion processing in patients with left versus right temporal lobe epilepsy. Epilepsy & Behavior, 9( 3), 415-423.
doi: 10.21101/cejph.a5765URLpmid: 31901191
[8] Bradley M. M., & Lang P. J . ( 1994). Measuring emotion: The self-assessment manikin and the semantic differential. Journal of Behavior Therapy and Experimental Psychiatry, 25( 1), 49-59.
doi: 10.1016/0005-7916(94)90063-9URLpmid: 7962581
[9] Braver T. S., Barch D. M., Gray J. R., Molfese D. L., & Snyder A . ( 2001). Anterior cingulate cortex and response conflict: Effects of frequency, inhibition and errors. Cerebral Cortex, 11( 9), 825-836.
doi: 10.1093/cercor/11.9.825URLpmid: 11532888
[10] Buchanan T. W., Tranel D., & Adolphs R . ( 2006). Memories for emotional autobiographical events following unilateral damage to medial temporal lobe. Brain, 129( 1), 115-127.
doi: 10.1093/brain/awh672URLpmid: 16291807
[11] Buhle J. T., Silvers J. A., Wager T. D., Lopez R., Onyemekwu C., Kober H., … Ochsner. K. N . ( 2014). Cognitive reappraisal of emotion: A meta-analysis of human neuroimaging studies. Cerebral Cortex, 24( 11), 2981-2990.
doi: 10.1093/cercor/bht154URL
[12] Bush G., Luu P., & Posner M. I . ( 2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4( 6), 215-222.
doi: 10.1016/s1364-6613(00)01483-2URLpmid: 10827444
[13] Butler E. A., Egloff B., Wlhelm F. H., Smith N. C., Erickson E. A., & Gross J. J . ( 2003). The social consequences of expressive suppression. Emotion, 3( 1), 48-67.
doi: 10.1037/1528-3542.3.1.48URLpmid: 12899316
[14] Canuet L., Ishii R., Pascual-Marqui R. D., Iwase M., Kurimoto R., Aoki Y., … Takeda M . ( 2011). Resting-state EEG source localization and functional connectivity in schizophrenia-like psychosis of epilepsy. PLOS ONE, 6( 11), e27863.
doi: 10.1371/journal.pone.0027863URLpmid: 22125634
[15] Canuet L., Tellado I., Couceiro V., Fraile C., Fernandez- Novoa L., Ishii R., … Cacabelos R . ( 2012). Resting-state network disruption and APOE genotype in Alzheimer’s disease: A lagged functional connectivity study. PLOS ONE, 7( 9), e46289.
doi: 10.1371/journal.pone.0046289URLpmid: 23050006
[16] Cauda F., Costa T., Torta D. M., Sacco K., D'Agata F., & Duca S., … Vercelli A . ( 2012). Meta-analytic clustering of the insular cortex: Characterizing the meta-analytic connectivity of the insula when involved in active tasks. Neuroimage, 62( 1), 343-355.
doi: 10.1016/j.neuroimage.2012.04.012URL
[17] Cheng L., Yuan J. J., He Y. Y., & Li H . ( 2009). Emotion regulation strategies: Cognitive reappraisal is more effective than expressive suppression. Advances in Psychological Science, 17( 4), 730-735.
[ 程利, 袁加锦, 何媛媛, 李红 . ( 2009). 情绪调节策略: 认知重评优于表达抑制. 心理科学进展, 17( 4), 730-735.]
[18] Cui X. J., Lu C. J., Guo Y. F., & Shi H. M .( 2012). The relationship between emotion regulation and depression of college students. China Journal of Health Psychology, 20( 3), 431-433.
[ 崔向军, 逯春洁, 郭永芳, 石贺敏 . ( 2012). 大学生情绪调节与抑郁的相关研究. 中国健康心理学杂志, 20( 3), 431-433.]
[19] D’ Avanzato C., Joormann J., Siemer M., & Gotlib I. H . ( 2013). Emotion regulation in depression and anxiety: Examining diagnostic specificity and stability of strategy use. Cognitive Therapy and Research, 37( 5), 968-980.
doi: 10.1007/s10608-013-9537-0URL
[20] Deak A., Bodrogi B., Biro B., Perlaki G., Orsi G., & Bereczkei T . ( 2017). Machiavellian emotion regulation in a cognitive reappraisal task: An fMRI study. Cognitive, Affective, & Behavioral Neuroscience, 17( 3), 528-541.
[21] Dennis T. A . ( 2007). Interactions between emotion regulation strategies and affective style: Implications for trait anxiety versus depressed mood. Motivation and Emotion, 31( 3), 200-207.
doi: 10.1007/s11031-007-9069-6URL
[22] Dennis T. A., & Hajcak G . ( 2009). The late positive potential: A neurophysiological marker for emotion regulation in children. Journal of Child Psychology and Psychiatry, 50( 11), 1373-1383.
doi: 10.1111/j.1469-7610.2009.02168.xURLpmid: 19754501
[23] Dolcos F., Labar K. S., & Cabeza R . ( 2004). Interaction between the amygdala and the medial temporal lobe memory system predicts better memory for emotional events. Neuron, 42( 5), 855-863.
doi: 10.1016/S0896-6273(04)00289-2URL
[24] Dougal S., Phelps E. A., & Davachi L . ( 2007). The role of medial temporal lobe in item recognition and source recollection of emotional stimuli. Cognitive Affective & Behavioral Neuroscience, 7( 3), 233-242.
doi: 10.1002/mgg3.1050URLpmid: 31899609
[25] Drabant E. M., Mcrae K., Manuck S. B., Hariri A. R., & Gross J. J . ( 2008). Individual differences in typical reappraisal use predict amygdala and prefrontal responses. Biological Psychiatry, 65( 5), 367-373.
doi: 10.1016/j.biopsych.2008.09.007URLpmid: 18930182
[26] Duncan J., & Owen A. M ., ( 2000). Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends in Neurosciences, 23( 10), 475-483.
doi: 10.1016/s0166-2236(00)01633-7URLpmid: 11006464
[27] Egner T., Etkin A., Gale S., & Hirsch J . ( 2008). Dissociable neural systems resolve conflict from emotional versus nonemotional distracters. Cerebral Cortex, 18( 6), 1475-1484.
doi: 10.1093/cercor/bhm179URLpmid: 17940084
[28] Egner T., & Hirsch J . ( 2005). Cognitive control mechanisms resolve conflict through cortical amplification of task- relevant information. Nature Neuroscience, 8, 1784-1790.
doi: 10.1038/nn1594URLpmid: 16286928
[29] Ertl M., Hildebrandt M., Ourina K., Leicht G., & Mulert C . ( 2013). Emotion regulation by cognitive reappraisal - The role of frontal theta oscillations. NeuroImage, 81( 11), 412-421.
doi: 10.1016/j.neuroimage.2013.05.044URLpmid: 23689018
[30] Etkin A., Egner T., Peraza D. M., Kandel E. R., & Hirsch J . ( 2006). Resolving emotional conflict: A role for the rostral anterior cingulate cortex in modulating activity in the amygdala. Neuron, 51( 6), 871-882.
doi: 10.1016/j.neuron.2006.07.029URLpmid: 16982430
[31] Foti D., & Hajcak G . ( 2008). Deconstructing reappraisal: Descriptions preceding arousing pictures modulate the subsequent neural response. Journal of Cognitive Neuroscience, 20 ( 6), 977-988.
doi: 10.1162/jocn.2008.20066URLpmid: 18211235
[32] Fraga González G., Van der Molen M., Žarić G., Bonte M., Tijms J., Blomert L., … Van der Molen M. W . ( 2016). Graph analysis of EEG resting state functional networks in dyslexic readers. Clinical Neurophysiology, 127( 9), 3165-3175.
doi: 10.1016/j.clinph.2016.06.023URLpmid: 27476025
[33] Frank D. W., Dewitt M., Hudgens-Haney M., Schaeffer D. J., Ball B. H., Schwarz N. F., … Sabatinelli D . ( 2014). Emotion regulation: Quantitative meta-analysis of functional activation and deactivation. Neuroscience & Biobehavioral Reviews, 45, 202-211.
doi: 10.1111/ejn.14671URLpmid: 31901174
[34] Gan T., Luo Y. J., & Zhang Z. J . ( 2009). The Influence of Emotion on Time Perception. Journal of Psychological Science, 32( 4), 836-839.
[ 甘甜, 罗跃嘉, 张志杰 . ( 2009). 情绪对时间知觉的影响. 心理科学, 32( 4), 836-839.]
[35] Garnefski N., & Kraaij V . ( 2007). The Cognitive Emotion Regulation Questionnaire: Psychometric features and prospective relationships with depression and anxiety in adults. European Journal of Psychological Assessment, 23, 141-149.
doi: 10.1027/1015-5759.23.3.141URL
[36] Giuliani N. R., Drabant E. M., Bhatnagar R., & Gross J. J . ( 2011a). Emotion regulation and brain plasticity: Expressive suppression use predicts anterior insula volume. Neuroimage, 58( 1), 10-15.
doi: 10.1016/j.neuroimage.2011.06.028URLpmid: 21704173
[37] Giuliani N. R., Drabant E. M., & Gross J. J . ( 2011b). Anterior cingulate cortex volume and emotion regulation: Is bigger better? Biological Psychology, 86( 3), 379-382.
doi: 10.1016/j.biopsycho.2010.11.010URLpmid: 21138751
[38] Goldin P. R., McRae K., Ramel W., & Gross J. J . ( 2008). The neural bases of emotion regulation: Reappraisal and suppression of negative emotion. Biological Psychiatry, 63( 6), 577-586.
doi: 10.1016/j.biopsych.2007.05.031URLpmid: 17888411
[39] Gross J. J . ( 1998). The emerging field of emotion regulation: An integrative review. Review of General Psychology, 2( 3), 271-299.
doi: 10.3389/fpsyt.2015.00093URLpmid: 26191007
[40] Gross J. J . ( 2002). Emotion regulation: Affective, cognitive, and social consequences. Psychophysiology, 39( 3), 281-291.
doi: 10.1017/s0048577201393198URLpmid: 12212647
[41] Gross J. J . ( 2015). Emotion regulation: Current status and future prospects. Psychological Inquiry, 26( 1), 1-26.
doi: 10.1080/1047840X.2014.940781URL
[42] Gross J. J., & John O.P . ( 2003). Individual differences in two emotion regulation processes: Implications for affect, relationships, and well-being. Journal of Personality and Social Psychology, 85( 2), 348-362.
doi: 10.1037/0022-3514.85.2.348URLpmid: 12916575
[43] Gu H., Chen Q., Xing X., Zhao J., & Li X . ( 2019). Facial emotion recognition in deaf children: Evidence from event-related potentials and event-related spectral perturbation analysis. Neuroscience Letters, 703, 198-204.
doi: 10.1016/j.neulet.2019.01.032URLpmid: 30677434
[44] Haga S. M., Kraft P., & Corby E. K . ( 2009). Emotion regulation: Antecedents and well-being outcomes of cognitive reappraisal and expressive suppression in cross-cultural samples. Journal of Happiness Studies, 10( 3), 271-291.
doi: 10.1007/s10902-007-9080-3URL
[45] Hajcak G., & Nieuwenhuis S . ( 2006). Reappraisal modulates the electrocortical response to unpleasant pictures. Cognitive, Affective, & Behavioral Neuroscience, 6( 4), 291-297.
doi: 10.3758/cabn.6.4.291URLpmid: 17458444
[46] Hamann S., . ( 2001). Cognitive and neural mechanisms of emotional memory. Trends in Cognitive Sciences, 5( 9), 394-400.
doi: 10.1016/s1364-6613(00)01707-1URLpmid: 11520704
[47] Hermann A., Bieber A., Keck T., Vaitl D., & Stark R . ( 2014). Brain structural basis of cognitive reappraisal and expressive suppression. Social Cognitive & Affective Neuroscience, 9( 9), 1435-1442.
doi: 10.1007/s10802-019-00607-5URLpmid: 31900836
[48] Hermann A., Leutgeb V., Scharmüller W., Vaitl D., & Stark R . ( 2013). Individual differences in cognitive reappraisal usage modulate the time course of brain activation during symptom provocation in specific phobia. Biology of Mood and Anxiety Disorders, 3( 1), 16.
doi: 10.1186/2045-5380-3-20URLpmid: 24517388
[49] Hofmann S. G., Heering S., Sawyer A. T., & Asnaani A . ( 2009). How to handle anxiety: The effects of reappraisal, acceptance, and suppression strategies on anxious arousal. Behaviour Research and Therapy, 47( 5), 389-394.
doi: 10.1016/j.brat.2009.02.010URL
[50] Karamacoska D., Barry R. J., & Steiner G. Z . ( 2017). Resting state intrinsic EEG impacts on go stimulus-response processes. Psychophysiology, 54( 6), 894-903.
doi: 10.1111/psyp.12851URLpmid: 28258583
[51] Karamacoska D., Barry R. J., Steiner G. Z., Coleman E. P., & Wilson E. J . ( 2018). Intrinsic EEG and task-related changes in EEG affect go/nogo task performance. International Journal of Psychophysiology, S0167876017306864.
doi: 10.1016/j.ijpsycho.2018.01.015URLpmid: 29409782
[52] Krach S., Jansen A., Krug A., Markov V., Thimm M., Sheldrick A. J., … Kircher T . ( 2010). Comt genotype and its role on hippocampal-prefrontal regions in declarative memory. Neuroimage, 53( 3), 978-984.
doi: 10.1016/j.neuroimage.2009.12.090URLpmid: 20060911
[53] Samuelson K. W . ( 2011). Post-traumatic stress disorder and declarative memory functioning: A review. Dialogues in Clinical Neuroscience, 13( 3), 346-351.
URLpmid: 22033732
[54] Langer N., Pedroni A., Gianotti L. R. R., Hänggi J., Knoch D., & Jäncke L . ( 2012). Functional brain network efficiency predicts intelligence. Human Brain Mapping, 33( 6), 1393-1406.
doi: 10.1002/hbm.21297URL
[55] Langner C. A., Epel E., Matthews K., Moskowitz J. T., & Adler N . ( 2012). Social hierarchy and depression: The role of emotion suppression. Journal of Psychology, 146( 4), 417-436.
doi: 10.1080/00223980.2011.652234URL
[56] Langeslag S. J. E., Jansma B. M., Franken I. H. A., & Strien J. W. V . ( 2007). Event-related potential responses to love-related facial stimuli. Biological Psychology, 76( 1-2), 109-115.
doi: 10.1016/j.biopsycho.2007.06.007URLpmid: 17681417
[57] Langeslag S. J. E., & van Strien J. W . ( 2017). Preferential processing of task-irrelevant beloved-related information and task performance: Two event-related potential studies. Neuropsychologia, S002839321730341X.
doi: 10.1016/j.neuropsychologia.2019.107328URLpmid: 31887313
[58] Lee T. W., Dolan R. J., & Critchley H. D . ( 2008). Controlling emotional expression: Behavioral and neural correlates of nonimitative emotional responses. Cerebral Cortex, 18( 1), 104-113.
doi: 10.1093/cercor/bhm035URLpmid: 17483530
[59] Li X., Lu J., Li B., Li H., Jin L., & Qiu J . ( 2017). The role of ventromedial prefrontal cortex volume in the association of expressive suppression and externally oriented thinking. Journal of Affective Disorders, 222, 112-119.
doi: 10.1016/j.jad.2017.06.054URLpmid: 28688264
[60] Li Z. Q., Wang L., Zhang H. C., & Liu H. C . ( 2010). Personality traits and subjective well-being: The mediating role of emotion regulation. Journal of Psychological Science, 33( 1), 165-167.
[ 李中权, 王力, 张厚粲, 柳恒超 . ( 2010). 人格特质与主观幸福感: 情绪调节的中介作用. 心理科学, 33( 1), 165-167.]
[61] Liu X., Banich M. T., Jacobson B. L., & Tanabe J. L . ( 2004). Common and distinct neural substrates of attentional control in an integrated Simon and spatial Stroop task as assessed by event-related fMRI. Neuroimage, 22( 3), 1097-1106.
doi: 10.1016/j.neuroimage.2004.02.033URL
[62] Lou Y. X., Cai A. Y., Yang J. M., & Yuan J. J . ( 2014). The impact of introversion-extraversion on emotion regulations and the neurophysiological underpinnings. Advances in Psychological Science, 22( 12), 1855-1866.
doi: 10.3724/SP.J.1042.2014.01855URL
[ 娄熠雪, 蔡阿燕, 杨洁敏, 袁加锦 . ( 2014). 内-外倾人格对情绪调节的影响及神经机制. 心理科学进展, 22(12), 1855-1866.]
[63] Makris N., Goldstein J. M., Kennedy D., Hodge S. M., Caviness V. S., & Faraone S. V., … Seidmancdfi L. J . ( 2006). Decreased volume of left and total anterior insular lobule in schizophrenia. Schizophrenia Research, 83( 2-3), 155-171.
doi: 10.1016/j.schres.2005.11.020URLpmid: 16448806
[64] Mcrae K., Hughes B., Chopra S., Gabrieli J. D. E., Gross J. J., & Ochsner K. N . ( 2010). The neural bases of distraction and reappraisal. Journal of Cognitive Neuroscience, 22( 2), 248-262.
doi: 10.1162/jocn.2009.21243URLpmid: 19400679
[65] Miller E. K., & Cohen J. D . ( 2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167-202.
doi: 10.1146/annurev.neuro.24.1.167URLpmid: 11283309
[66] Moore S. A., Zoellner L. A., & Mollenholt N . ( 2008). Are expressive suppression and cognitive reappraisal associated with stress-related symptoms?. Behaviour Research and Therapy, 46( 9), 993-1000.
doi: 10.1016/j.brat.2008.05.001URL
[67] Moser J. S., Hajcak G., Bukay E., & Simons R. F . ( 2006). Intentional modulation of emotional responding to unpleasant pictures: An ERP study. Psychophysiology, 43( 3), 292-296.
doi: 10.1111/j.1469-8986.2006.00402.xURLpmid: 16805868
[68] Nallasamy N., & Tsao D. Y . ( 2011). Functional connectivity in the brain: Effects of anesthesia. The Neuroscientist, 17( 1), 94-106.
doi: 10.1177/1073858410374126URLpmid: 21343409
[69] Nelson B. D., Fitzgerald D. A., Klumpp H., Shankman S. A., & Phan K. L . ( 2015). Prefrontal engagement by cognitive reappraisal of negative faces. Behavioural Brain Research, 279, 218-225.
doi: 10.1016/j.bbr.2014.11.034URLpmid: 25433095
[70] Ochsner K. N., Bunge S. A., Gross J. J., & Gabrieli J. D. E . ( 2002). Rethinking feelings: An FMRI study of the cognitive regulation of emotion. Journal of Cognitive Neuroscience, 14( 8), 1215-1229.
doi: 10.1162/089892902760807212URLpmid: 12495527
[71] Ochsner K. N., Hughes B., Robertson E. R., Cooper J. C., & Gabrieli J. D. E . ( 2009). Neural systems supporting the control of affective and cognitive conflicts. Journal of Cognitive Neuroscience, 21( 9), 1841-1854.
doi: 10.1162/jocn.2009.21129URLpmid: 18823233
[72] Ohira H., Nomura M., Ichikawa N., Isowa T., Iidaka T., Sato A., … Yamada J .( 2006). Association of neural and physiological responses during voluntary emotion suppression. NeuroImage, 29( 3), 721-733.
doi: 10.1016/j.neuroimage.2006.11.048URLpmid: 17239620
[73] Ohmatsu S., Nakano H., Tominaga T., Terakawa Y., Murata T., & Morioka S . ( 2014). Activation of the serotonergic system by pedaling exercise changes anterior cingulate cortex activity and improves negative emotion. Behavioural Brain Research, 270, 112-117.
doi: 10.1016/j.bbr.2014.04.017URL
[74] Pagani M., Di Lorenzo G., Verardo A. R., Nicolais G., Monaco L., & Lauretti G., … Siracusano A . ( 2012). Neurobiological correlates of EMDR monitoring - An EEG study. PLOS ONE, 7( 9), e45753.
doi: 10.1371/journal.pone.0045753URLpmid: 23049852
[75] Pan J., Zhan L., Hu C. L., Yang J., Wang C., Gu L., … Wu X . ( 2018). Emotion regulation and complex brain networks: Association between expressive suppression and efficiency in the fronto-parietal network and default-mode network. Frontiers in Human Neuroscience, 12, 70.
doi: 10.3389/fnhum.2018.00070URLpmid: 29662443
[76] Pannu H. J., Morey R. A., Petty C. M., Srishti S., Smoski M. J., Gregory M. C., & Labar K. S . ( 2010). Staying cool when things get hot: Emotion regulation modulates neural mechanisms of memory encoding. Frontiers in Human Neuroscience, 4, 230.
doi: 10.3389/fnhum.2010.00230URLpmid: 21212840
[77] Pascual-Marqui R. D., Lehmann D., Koukkou M., Kochi K., Anderer P., Saletu B., … Kinoshita T . ( 2011) Assessing interactions in the brain with exact low resolution electromagnetic tomography. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369, 3768-3784.
doi: 10.1098/rsta.2011.0081URLpmid: 21893527
[78] Pei X., Wang J., Deng B., Wei X., & Yu H . ( 2014). Wlpvg approach to the analysis of eeg-based functional brain network under manual acupuncture. Cognitive Neurodynamics, 8( 5), 417-428.
doi: 10.1007/s11571-014-9297-xURL
[79] Phan K. L., Fitzgerald D. A., Nathan P. J., Moore G. J., Uhde T. W., & Tancer M. E . ( 2005). Neural substrates for voluntary suppression of negative affect: A functional magnetic resonance imaging study. Biological Psychiatry, 57( 3), 210-219.
doi: 10.1016/j.biopsych.2004.10.030URLpmid: 15691521
[80] Qian L., Xi C., Tom H., Duo X., Frederick C., & James B. R . ( 2014). Theta band activity in response to emotional expressions and its relationship with gamma band activity as revealed by MEG and advanced beamformer source imaging. Frontiers in Human Neuroscience, 7, 940.
doi: 10.3389/fnhum.2013.00940URLpmid: 24550804
[81] Scult M. A., Knodt A. R., Swartz J. R., Brigidi B. D., & Hariri A. R . ( 2017). Thinking and feeling: Individual differences in habitual emotion regulation and stress- related mood are associated with prefrontal executive control. Clinical Psychological Science, 5( 1), 150-157.
doi: 10.1177/2167702616654688URLpmid: 28191365
[82] Sheline Y. I., Price J. L., Yan Z., & Mintun M. A . ( 2010). Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proceedings of the National Academy of Sciences, 107( 24), 11020-11025.
doi: 10.1073/pnas.1000446107URLpmid: 20534464
[83] Shigeto H., Ishiguro J., & Nittono H . ( 2011). Effects of visual stimulus complexity on event-related brain potentials and viewing duration in a free-viewing task. Neuroscience Letters, 497( 2), 85-89.
doi: 10.1016/j.neulet.2011.04.035URLpmid: 21540078
[84] Stam C. J., Nolte G., & Daffertshofer A . ( 2007). Phase lag index: Assessment of functional connectivity from multichannel EEG and MEG with diminished bias from common sources. Human Brain Mapping, 28( 11), 1178-1193.
doi: 10.1002/hbm.20346URLpmid: 17266107
[85] Szaflarski J. P., Allendorfer J. B., Heyse H., Mendoza L., Szaflarski B. A., & Cohen N . ( 2014). Functional mri of facial emotion processing in left temporal lobe epilepsy. Epilepsy & Behavior, 32, 92-99.
doi: 10.21101/cejph.a5765URLpmid: 31901191
[86] Urbain C., Sato J., Pang E. W., & Taylor M. J . ( 2017). The temporal and spatial brain dynamics of automatic emotion regulation in children. Developmental Cognitive Neuroscience, 26, 62-68.
doi: 10.1016/j.dcn.2017.05.004URLpmid: 28527986
[87] van den Heuvel M. P., Stam C. J., Kahn R. S., & Hulshoff Pol H. E . ( 2009). Efficiency of functional brain networks and intellectual performance. Journal of Neuroscience, 29( 23), 7619-7624.
doi: 10.1523/JNEUROSCI.1443-09.2009URLpmid: 19515930
[88] van den Heuvel, M. P., & Hulshoff Pol, H. E . ( 2010). Exploring the brain network: A review on resting-state fMRI functional connectivity. European Neuropsychopharmacology, 20( 8), 519-534.
doi: 10.1016/j.euroneuro.2010.03.008URL
[89] Vanderhasselt M. A., Kuhn S., & De Raedt R . ( 2013). "Put on your poker face": Neural systems supporting the anticipation for expressive suppression and cognitive reappraisal. Social Cognitive and Affective Neuroscience, 8( 8), 903-910.
doi: 10.1093/scan/nss090URLpmid: 22956675
[90] van Diessen E., Numan T., van Dellen E., van der Kooi A.W., Boersma M., Hofman D., … Stam C. J . ( 2015). Opportunities and methodological challenges in EEG and MEG resting state functional brain network research. Clinical Neurophysiology, 126( 8), 1468-1481.
doi: 10.1016/j.clinph.2014.11.018URLpmid: 25511636
[91] Varnum M. E. W., & Hampton R. S . ( 2016). Cultures differ in the ability to enhance affective neural responses. Social Neuroscience, 12( 5), 1-10.
doi: 10.1080/17470919.2016.1209239URLpmid: 27420406
[92] Viviani R . ( 2014). Neural correlates of emotion regulation in the ventral prefrontal cortex and the encoding of subjective value and economic utility. Frontiers in Psychiatry, 5.
doi: 10.3389/fpsyt.2014.00187URLpmid: 25691873
[93] Wagner M., Fuchs M., & Kastner J . ( 2004). Evaluation of sLORETA in the presence of noise and multiple sources. Brain Topography, 16( 4), 277-280.
doi: 10.1023/B:BRAT.0000032865.58382.62URL
[94] Wang J. X., Wang C. M., Xie F., Chang M., & Zhang K . ( 2015). The effect of cognitive reappraisal and distraction in regulating negative emotion: ERPs study. Journal of Psychological Science, 38( 5), 1039-1044.
[ 王敬欣, 王春梅, 谢芳, 常敏, 张阔 . ( 2015). 负性情绪调节中认知重评和分心策略的作用: ERPs研究. 心理科学, 38( 5), 1039-1044.]
[95] Wang J., Wang X., Xia M., Liao X., Evans A., & He Y . ( 2015). Gretna: A graph theoretical network analysis toolbox for imaging connectomics. Frontiers in Human Neuroscience, 9.
doi: 10.2147/NDT.S135426URLpmid: 28652747
[96] Wang J., Zuo X., & He Y . ( 2010). Graph-based network analysis of resting-state functional MRI. Frontiers in Systems Neuroscience, 4.
doi: 10.3389/fnsys.2010.00162URLpmid: 21283555
[97] Wang K., Huang H., Chen L., Hou X., Zhang Y., Yang J., … Qiu J . ( 2017). MRI correlates of interaction between gender and expressive suppression among the Chinese population. Neuroscience, 347, 76-84.
doi: 10.1016/j.neuroscience.2017.01.042URLpmid: 28188856
[98] Wang L., Liu H. C., Li Z. Q., & Du W .( 2007). Reliability and validity of emotion regulation questionnaire Chinese revised version. China Journal of Health Psychology, 15( 6), 503-505.
[ 王力, 柳恒超, 李中权, 杜卫 . ( 2007). 情绪调节问卷中文版的信效度研究. 中国健康心理学杂志, 15( 6), 503-505.]
[99] Wang Y. N., Zhou L. M., Qu C., & Luo Y. J . ( 2007). Implicitly processing of affective connotation of chinese words evidence from event-related brain potential. Journal of Beijing Normal University (Natural Science), 43( 4), 466-470.
[ 王一牛, 周立明, 曲琛, 罗跃嘉 . ( 2007). 感情色彩双字词内隐加工的ERP研究. 北京师范大学学报(自然科学版), 43( 4), 466-470.]
[100] Xing M., Tadayonnejad R., MacNamara A., Ajilore O., Phan K. L., Klumpp H., & Leow A . ( 2016). EEG based functional connectivity reflects cognitive load during emotion regulation. IEEE International Symposium on Biomedical Imaging. IEEE.
[101] Zhang W., Li X., Liu X., Duan X., Wang D., & Shen J . ( 2013). Distraction reduces theta synchronization in emotion regulation during adolescence. Neuroscience Letters, 550, 81-86.
doi: 10.1016/j.neulet.2013.05.070URLpmid: 23827226
[102] Zhao L.Y., Tian J., Wang W., Qin W., Shi J., Li Q., … Lu L . ( 2012). The role of dorsal anterior cingulate cortex in the regulation of craving by reappraisal in smokers. PLOS ONE, 7( 8), e43598.
doi: 10.1371/journal.pone.0043598URLpmid: 22928000
[103] Zhou Y., Yu C., Zheng H., Liu Y., Song M., Qin W., … Jiang T . ( 2010). Increased neural resources recruitment in the intrinsic organization in major depression. Journal of Affective Disorders, 121( 3), 220-230.
doi: 10.1016/j.jad.2009.05.029URLpmid: 19541369




[1]程瑞, 卢克龙, 郝宁. 愤怒情绪对恶意创造力的影响及调节策略[J]. 心理学报, 2021, 53(8): 847-860.
[2]蔡惠燕, 苗心, 王鹏飞, 林志为, 王孟成, 杨文登, 麻彦坤, 曾红. 长期戒断海洛因成瘾者冲动性相关脑区的结构及功能特征[J]. 心理学报, 2021, 53(8): 861-874.
[3]袁加锦, 张祎程, 陈圣栋, 罗利, 茹怡珊. 中国情绪调节词语库的初步编制与试用[J]. 心理学报, 2021, 53(5): 445-455.
[4]莫李澄, 郭田友, 张岳瑶, 徐锋, 张丹丹. 激活右腹外侧前额叶提高抑郁症患者对社会疼痛的情绪调节能力:一项TMS研究[J]. 心理学报, 2021, 53(5): 494-504.
[5]崔芳, 杨佳苗, 古若雷, 刘洁. 右侧颞顶联合区及道德加工脑网络的功能连接预测社会性框架效应:来自静息态功能磁共振的证据[J]. 心理学报, 2021, 53(1): 55-66.
[6]华艳, 李明霞, 王巧婷, 冯彩霞, 张晶. 左侧眶额皮层在自动情绪调节下注意选择中的作用:来自经颅直流电刺激的证据[J]. 心理学报, 2020, 52(9): 1048-1056.
[7]孙岩, 吕娇娇, 兰帆, 张丽娜. 自我关注重评和情境关注重评情绪调节策略及对随后认知控制的影响[J]. 心理学报, 2020, 52(12): 1393-1406.
[8]童丹丹, 李文福, 禄鹏, 杨文静, 杨东, 张庆林, 邱江. 科学发明情境中问题提出的脑机制再探[J]. 心理学报, 2020, 52(11): 1253-1265.
[9]孙俊才,寻凤娇,刘萍,张文海. 高善良特质在情绪调节行动控制中的内隐优势[J]. 心理学报, 2019, 51(7): 781-794.
[10]李红,杨小光,郑文瑜,王超. 抑郁倾向对个体情绪调节目标的影响——来自事件相关电位的证据[J]. 心理学报, 2019, 51(6): 637-647.
[11]彭婉晴,罗帏,周仁来. 工作记忆刷新训练改善抑郁倾向大学生情绪调节能力的HRV证据[J]. 心理学报, 2019, 51(6): 648-661.
[12]江琦, 侯璐璐, 邱江, 李长燃, 王焕贞. 尾状核-眶部内侧前额叶的功能连接与反应性攻击的关系:基于静息态功能磁共振研究[J]. 心理学报, 2018, 50(6): 655-666.
[13]叶婉青, 李晓彤, 王大华. 老年人对夫妻间负性事件的认知性情绪调节策略及其与婚姻满意度的关系:交叉滞后分析[J]. 心理学报, 2018, 50(4): 426-435.
[14]杨青青, 胡娜, 陈旭, 牛娟, 翟晶. 恋人亲密情景下的回避型与安全型 依恋个体情绪调节电生理差异[J]. 心理学报, 2018, 50(3): 306-316.
[15]吕梦思, 席居哲, 罗一睿. 不同心理弹性者的日常情绪特征: 结合体验采样研究的证据[J]. 心理学报, 2017, 49(7): 928-940.





PDF全文下载地址:

http://journal.psych.ac.cn/xlxb/CN/article/downloadArticleFile.do?attachType=PDF&id=4601
相关话题/心理 信号 中央 科学 频带