删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

奖赏通过增强信号监测提升认知控制

本站小编 Free考研考试/2022-01-01

王宴庆1, 陈安涛1,*, 胡学平2, 尹首航1
1 西南大学心理学部, 认知与人格教育部重点实验室, 重庆 400715
2 江苏师范大学语言科学与艺术学院, 江苏省语言与认知神经科学重点实验室, 语言能力协同创新中心, 徐州 221009
收稿日期:2018-03-05出版日期:2019-01-25发布日期:2018-11-26
通讯作者:陈安涛

基金资助:* 国家自然科学基金项目(61431013);* 国家自然科学基金项目(31771254);中央高校基本科研业务费(SWU1609106);中央高校基本科研业务费项目资助(SWU1709107)

Reward improves cognitive control by enhancing signal monitoring

WANG Yanqing1, CHEN Antao1,*, HU Xueping2, YIN Shouhang1
1 Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing 400715, China
2 School of Linguistics and Arts, and Collaborative Innovation Center for Language Competence, Jiangsu Normal University, Xuzhou 221009, China
Received:2018-03-05Online:2019-01-25Published:2018-11-26
Contact:CHEN Antao






摘要/Abstract


摘要: 认知控制是动态的、过程性的认知调控, 涉及监测和控制两个过程。先前研究表明奖赏可以提升认知控制, 但是奖赏是通过增强信号监测来提升认知控制的, 还是作用于控制过程来提升认知控制的, 是一个有待研究的重要问题。在本研究中, 我们设计了三个实验来调查这一问题。实验1采用Stop-Signal任务验证奖赏是否能提升认知控制; 实验2通过改变反应规则将Stop-Signal任务信号监测加工分离出来, 探讨实验1中奖赏的提升作用是否来源于奖赏对信号监测的增强; 实验3通过操纵注意资源损耗分析, 考察注意资源分配对信号监测的促进作用。实验1结果显示, 个体能更快地根据奖赏信息做出抑制反应。实验2结果表明, 在信号监测任务中, 个体能更加快速地监测到与当前抑制状态相冲突且和奖赏相关的反应信号, 据此可认为奖赏通过增强对相关信号的监测, 有助于个体更早地启动奖赏刺激信号所对应的反应, 更高效地控制冲突。实验3结果说明, 当任务难度增大, 注意资源损耗, 奖赏相关信号的反应时和正确率仍优于无奖赏信号, 说明注意资源的分配可以调节相关信号的监测速度。总体来看, 本研究通过一系列实验表明, 以目标为导向的行为发生过程中, 奖赏能有效提升认知控制效率, 其关键机制在于通过注意资源分配增强相关信号的监测。



图1实验流程图 A, 实验1中, 判断箭头朝向, 箭头上出现向上或向下的三角形(停止信号)时停止反应; B, 实验2中, 不对箭头反应, 箭头上出现向上或向下的三角形(Go信号)时判断箭头朝向; C, 实验3中, 不对箭头反应, 箭头上出现向下的三角形(停止信号)时不做反应, 箭头上出现向上的三角形(Go信号)时判断箭头朝向。
图1实验流程图 A, 实验1中, 判断箭头朝向, 箭头上出现向上或向下的三角形(停止信号)时停止反应; B, 实验2中, 不对箭头反应, 箭头上出现向上或向下的三角形(Go信号)时判断箭头朝向; C, 实验3中, 不对箭头反应, 箭头上出现向下的三角形(停止信号)时不做反应, 箭头上出现向上的三角形(Go信号)时判断箭头朝向。


表1实验1 Stop-Signal任务行为指标数据(M ± SD)
行为指标 无奖赏试次 奖赏试次
停止信号SSD (ms) 236 ± 85 247 ± 88
停止信号SSRT (ms) 233 ± 73 220 ± 73
停止信号正确率 0.51 ± 0.06 0.51 ± 0.07
Go试次反应时(ms) 493 ± 77 --
Go试次正确率 0.98 ± 0.02 --

表1实验1 Stop-Signal任务行为指标数据(M ± SD)
行为指标 无奖赏试次 奖赏试次
停止信号SSD (ms) 236 ± 85 247 ± 88
停止信号SSRT (ms) 233 ± 73 220 ± 73
停止信号正确率 0.51 ± 0.06 0.51 ± 0.07
Go试次反应时(ms) 493 ± 77 --
Go试次正确率 0.98 ± 0.02 --



图2实验结果图 A:实验2信号监测的反应时和正确率; B:实验2与实验3中Go试次的反应时和正确率
图2实验结果图 A:实验2信号监测的反应时和正确率; B:实验2与实验3中Go试次的反应时和正确率



图3实验结果图 A:实验3中Stop试次的正确率、Go试次的正确率和反应时; B:实验3早期组块和晚期组块Go试次的反应时、正确率和Stop试次的正确率。
图3实验结果图 A:实验3中Stop试次的正确率、Go试次的正确率和反应时; B:实验3早期组块和晚期组块Go试次的反应时、正确率和Stop试次的正确率。







[1] Arias-carrión O.&P?ppel E., ( 2007). Dopamine, learning, and reward-seeking behavior. Acta Neurobiologiae Experimentalis, 67( 4), 481-488.
URLpmid: 18320725
[2] Aron A. R., Robbins T. W., & Poldrack R. A . ( 2014). Inhibition and the right inferior frontal cortex: One decade on. Trends in Cognitive Sciences, 18( 4), 177-185.
[3] Anderson B. A., Laurent P. A., & Yantis S . ( 2011). Value-driven attentional capture. Proceedings of the National Academy of Sciences of the United States of America, 108( 25), 10367-10371.
doi: 10.1073/pnas.1104047108URL
[4] Barbaro L., Peelen M. V., & Hickey C . ( 2017). Valence, not utility, underlies reward-driven prioritization in human vision. Journal of Neuroscience, 37( 43), 1128-1117.
doi: 10.1523/JNEUROSCI.1128-17.2017URL
[5] Boehler C. N., Appelbaum L. G., Krebs R. M., Hopf J-M., & Woldorff M. G . ( 2012). The influence of different Stop- signal response time estimation procedures on behavior-behavior and brain-behavior correlations. Behavioural Brain Research, 229( 1), 123-130.
doi: 10.1016/j.bbr.2012.01.003URLpmid: 3306010
[6] Boehler C. N., Hopf J.-M., Stoppel C. M., & Krebs R. M . ( 2012). Motivating inhibition - reward prospect speeds up response cancellation. Cognition, 125( 3), 498-503.
doi: 10.1016/j.cognition.2012.07.018URLpmid: 22921189
[7] Boehler C. N., Müente T. F., Krebs R. M., Heinze H.-J., Schoenfeld M. A., & Hopf J. M . ( 2009). Sensory MEG responses predict successful and failed inhibition in a stop-signal task. Cerebral Cortex, 19( 1), 134-145.
doi: 10.1093/cercor/bhn063URLpmid: 18440947
[8] Boehler C. N., Schevernels H., Hopf J-M., Stoppel C. M., & Krebs R. M . ( 2014). Reward prospect rapidly speeds up response inhibition via reactive control. Cognitive Affective & Behavioral Neuroscience, 14( 2), 593-609.
doi: 10.3758/s13415-014-0251-5URLpmid: 24448735
[9] Botvinick M.&Braver T., ( 2015). Motivation and cognitive control: From behavior to neural mechanism. Annual Review of Psychology, 66( 1), 83-113.
doi: 10.1146/annurev-psych-010814-015044URLpmid: 25251491
[10] Braver T. S., Krug M. K., Chiew K. S., Kool W., Westbrook J. A., Clement N. J., .. Somerville L. H . ( 2014). Mechanisms of motivation-cognition interaction: Challenges and opportunities. Cognitive Affective & Behavioral Neuroscience, 14( 2), 443-472.
doi: 10.3758/s13415-014-0300-0URLpmid: 4986920
[11] Botvinick M., Nystrom L. E., Fissell K., Carter C. S., & Cohen J. D . ( 1999). Conflict monitoring versus selection- for-action in anterior cingulate cortex. Nature, 402( 785), 179-181.
doi: 10.1038/46035URLpmid: 10647008
[12] Botvinick M. M., Cohen J. D., & Carter C. S . ( 2004). Conflict monitoring and anterior cingulate cortex: An update. Trends in Cognitive Sciences, 8( 12), 539-546.
doi: 10.1016/j.tics.2004.10.003URLpmid: 15556023
[13] Carter C. S., Macdonald A. M., Botvinick M., Ross L. L., Stenger V. A., Noll D., & Cohen J. D . ( 2000). Parsing executive processes: Strategic vs. evaluative functions of the anterior cingulate cortex. Proceedings of the National Academy of Sciences of the United States of America, 97( 4), 1944-1948.
doi: 10.1073/pnas.97.4.1944URL
[14] Chikazoe J., Jimura K., Asari T., Yamashita K. L., Morimoto H., Hirose S., … Konishi S . ( 2009). Functional dissociation in right inferior frontal cortex during performance of go/no-go task. Cerebral Cortex, 19( 1), 146-152.
doi: 10.1093/cercor/bhn065URLpmid: 18445602
[15] Derntl B.&Habel U., ( 2016). Angry but not neutral faces facilitate response inhibition in schizophrenia patients. European Archives of Psychiatry and Clinical Neuroscience, 267( 7), 621-627.
doi: 10.1007/s00406-016-0748-8URLpmid: 27866272
[16] Egner T.&Hirsch J., ( 2005). Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information. Nature Neuroscience, 8( 12), 1784-1790
doi: 10.1038/nn1594URLpmid: 16286928
[17] Erika-Florence M., Leech R., & Hampshire A . ( 2014). A functional network perspective on response inhibition and attentional control. Nature Communications, 5( 5), 4073.
doi: 10.1038/ncomms5073URLpmid: 4059922
[18] Freeman S.M., & Aron A.R . ( 2016). Withholding a reward-driven action: Studies of the rise and fall of motor activation and the effect of cognitive depletion. Journal of Cognitive Neuroscience, 28( 2), 237-251.
doi: 10.1162/jocn_a_00893URLpmid: 5208043
[19] Freeman S. M., Razhas L., & Aron A. R . ( 2014). Top-down response suppression mitigates action tendencies triggered by a motivating stimulus. Current Biology, 24( 2), 212-216.
doi: 10.1016/j.cub.2013.12.019URLpmid: 4396623
[20] Hampshire A., & Sharp D.J . ( 2015). Contrasting network and modular perspectives on inhibitory control. Trends in Cognitive Sciences, 19( 8), 445-452.
doi: 10.1016/j.tics.2015.06.006URLpmid: 26160027
[21] Hickey C., & Peelen M.V . ( 2015). Neural mechanisms of incentive salience in naturalistic human vision. Neuron, 85( 3), 512-518.
doi: 10.1016/j.neuron.2014.12.049URLpmid: 25654257
[22] Jiang J., Xiang L., Zhang Q. L., & Chen A. T . ( 2014). Conflict adaptation is independent of consciousness: Behavioral and ERP evidence. Acta Psychologica Sinica, 46( 5), 581-592.
[ 蒋军, 向玲, 张庆林, 陈安涛 . ( 2014). 冲突适应独立于意识: 来自行为和ERP的证据. 心理学报,46( 5), 581-592.]
doi: 10.3724/SP.J.1041.2014.00581URL
[23] Kerns J. G., Cohen J. D., MacDonald Ⅲ, A. W.., Cho R. Y.., Stenger V. A., & Carter C. S . ( 2004). Anterior cingulate conflict monitoring and adjustments in control. Science, 303( 5660), 1023-1026.
doi: 10.1126/science.1089910URL
[24] Krawczyk D. C., Gazzaley A., & D'Esposito M . ( 2007). Reward modulation of prefrontal and visual association cortex during an incentive working memory task. Brain Research, 1141( 4), 168-177.
doi: 10.1016/j.brainres.2007.01.052URLpmid: 17320835
[25] Krebs R. M., Boehler C. N., Appelbaum L. G., & Woldorff M. G . ( 2013). Reward associations reduce behavioral interference by changing the temporal dynamics of conflict processing. PLoS One, 8( 1), e53894.
doi: 10.1371/journal.pone.0053894URLpmid: 3542315
[26] Krebs R. M., Boehler C. N., Egner T., & Woldorff M. G . ( 2011). The neural underpinnings of how reward associations can both guide and misguide attention. Journal of Neuroscience, 31( 26), 9752-9759.
doi: 10.1523/JNEUROSCI.0732-11.2011URLpmid: 3142621
[27] Krebs R. M., Boehler C. N., Roberts K. C., Song A. W., & Woldorff M. G . ( 2012). The involvement of the dopaminergic midbrain and cortico-striatal-thalamic circuits in the integration of reward prospect and attentional task demands. Cerebral Cortex, 22( 3), 607-615.
doi: 10.1093/cercor/bhr134URLpmid: 21680848
[28] Krebs R. M., Boehler C. N., & Woldorff M. G . ( 2010). The influence of reward associations on conflict processing in the Stroop task. Cognition, 117( 3), 341-347.
doi: 10.1016/j.cognition.2010.08.018URLpmid: 2967668
[29] Lee H. W., Lu M-S., Chen C-Y., Muggleton N. G., Hsu T-Y., & Juan C-H . ( 2016). Roles of the pre-SMA and rIFG in conditional stopping revealed by transcranial magnetic stimulation. Behavioural Brain Research, 296, 459-467.
doi: 10.1016/j.bbr.2015.08.024URLpmid: 26304720
[30] Leotti L.A., & , Wager T.D . ( 2010). Motivational influences on response inhibition measures. Journal of Experimental Psychology: Human Perception and Performance, 36( 2), 430-447.
doi: 10.1037/a0016802URLpmid: 3983778
[31] Logan G.D., & Cowan W.B . ( 1984). On the ability to inhibit thought and action: A theory of an act of control. Psychological Review, 91( 3), 295-327.
doi: 10.1037/0033-295x.91.3.295URL
[32] Navalpakkam V.&Treisman A., ( 2010). Optimal reward harvesting in complex perceptual environment. Proceedings of the National Academy of Sciences of the United States of America, 107( 11), 5232-5237.
doi: 10.1073/pnas.0911972107URLpmid: 20194768
[33] Pawliczek C. M., Derntl B., Kellermann T., Kohn N., Gur R. C., & Habel U . ( 2013). Inhibitory control and trait aggression: Neural and behavioral insights using the emotional stop signal task. Neuroimage, 79( 6), 264-274.
doi: 10.1016/j.neuroimage.2013.04.104URLpmid: 23660028
[34] Pessoa L. ( 2009). How do emotion and motivation direct executive control? Trends in Cognitive Sciences, 13( 4), 160-166.
doi: 10.1016/j.tics.2009.01.006URLpmid: 19285913
[35] Pessoa L., & Engelmann J.B . ( 2010). Embedding reward signals into perception and cognition. Frontiers in Neuroscience, 4( 17), 4-17.
doi: 10.3389/fnins.2010.00017URLpmid: 2940450
[36] Salinas E., & Stanford T.R . ( 2013). The countermanding task revisited: Fast stimulus detection is a key determinant of psychophysical performance. Journal of Neuroscience, 33( 13), 5668-5685.
doi: 10.1523/JNEUROSCI.3977-12.2013URLpmid: 3650622
[37] Schevernels H., Bombeke K., Van der Borght L., Hopf J-M., Krebs R. M., & Boehler C. N . ( 2015). Electrophysiological evidence for the involvement of proactive and reactive control in a rewarded stop-signal task. Neuroimage, 121, 115-125.
doi: 10.1016/j.neuroimage.2015.07.023URLpmid: 26188262
[38] Sharp D. J., Bonnelle V., De Boissezon X., Beckmann C. F., James S. G., Patel M. C., & Mehta M. A . ( 2010). Distinct frontal systems for response inhibition, attentional capture, and error processing. Proceedings of the National Academy of Sciences of the United States of America, 107( 13), 6106-6111.
doi: 10.1073/pnas.1000175107URLpmid: 20220100
[39] Tang D.D., & Chen A.T . ( 2013). Neural oscillation mechanisms of conflict adaptation. Scientia Sinica Vitae, 43( 11), 992-1002.
[ 唐丹丹, 陈安涛 . ( 2013). 冲突适应的神经振荡机制. 中国科学:生命科学, 43( 11), 992-1002.]
[40] van den Berg B., Krebs R. M., Lorist M. M., & Woldorff M. G . ( 2014). Utilization of reward-prospect enhances preparatory attention and reduces stimulus conflict. Cognitive Affective & Behavioral Neuroscience, 14( 2), 561-577.
doi: 10.3758/s13415-014-0281-zURLpmid: 24820263
[41] van Steenbergen H., Band G. P. H., & Hommel B . ( 2012). Reward valence modulates conflict-driven attentional adaptation: Electrophysiological evidence. Biological Psychology, 90( 3), 234-241.
doi: 10.1016/j.biopsycho.2012.03.018URLpmid: 22504294
[42] Verbruggen F., Chambers C. D., & Logan G. D . ( 2013). Fictitious inhibitory differences: How skewness and slowing distort the estimation of stopping latencies. Psychological Science, 24( 3), 352-362.
doi: 10.1177/0956797612457390URL
[43] Wang X. P., Zhao X. Y., Xue G., & Chen A. T . ( 2016). Alertness function of thalamus in conflict adaptation. Neuroimage, 132, 274-282.
doi: 10.1016/j.neuroimage.2016.02.048URLpmid: 26908318
[44] Westbrook A., & Braver T.S . ( 2016). Dopamine does double duty in motivating cognitive effort. Neuron, 89( 4), 695-710.
doi: 10.1016/j.neuron.2015.12.029URLpmid: 26889810
[45] Xu K. Z., Anderson B. A., Emeric E. E., Sali A. W., Stuphorn V., Yantis S., & Courtney S. M . ( 2017). Neural basis of cognitive control over movement inhibition: Human fMRI and primate electrophysiology evidence. Neuron, 96( 6), 1447-1458.
doi: 10.1016/j.neuron.2017.11.010URLpmid: 29224723




[1]张孟可, 李晴, 尹首航, 陈安涛. 冲突水平的变化诱发冲突适应[J]. 心理学报, 2021, 53(2): 128-138.
[2]黄月胜, 张豹, 范兴华, 黄杰. 无关工作记忆表征的负性情绪信息能否捕获视觉注意?一项眼动研究[J]. 心理学报, 2021, 53(1): 26-37.
[3]侯璐璐, 陈莅蓉, 周仁来. 经前期综合征与奖赏进程失调——来自脑电的证据[J]. 心理学报, 2020, 52(6): 742-757.
[4]李琎, 孙宇, 杨子鹿, 钟毅平. 社会价值取向对自我社会奖赏加工的影响——来自ERPs的证据[J]. 心理学报, 2020, 52(6): 786-800.
[5]孙岩, 吕娇娇, 兰帆, 张丽娜. 自我关注重评和情境关注重评情绪调节策略及对随后认知控制的影响[J]. 心理学报, 2020, 52(12): 1393-1406.
[6]杨玲,王斌强,耿银凤,姚东伟,曹华,张建勋,许琼英. 虚拟和真实金钱奖赏幅度对海洛因戒断者风险决策的影响[J]. 心理学报, 2019, 51(4): 507-516.
[7]崔诣晨, 王沛, 崔亚娟. 知觉冲突印象形成的认知控制策略:以刻板化信息与反刻板化信息为例[J]. 心理学报, 2019, 51(10): 1157-1170.
[8]张燕, 曹慧敏, 郑元杰, 任衍具. 自上而下的目标调节奖赏联结干扰子 的注意定向和脱离[J]. 心理学报, 2018, 50(4): 377-389.
[9]胡岑楼;张豹;黄赛. 无关长时记忆表征能否引导视觉注意选择?[J]. 心理学报, 2017, 49(5): 590-601.
[10]张豹;胡岑楼;黄赛. 认知控制在工作记忆表征引导注意中的作用:来自眼动的证据[J]. 心理学报, 2016, 48(9): 1105-1118.
[11]刘聪;焦鲁;孙逊;王瑞明. 语言转换对非熟练双语者不同认知控制成分的即时影响[J]. 心理学报, 2016, 48(5): 472-481.
[12]王佳莹; 缴润凯; 张明. 任务设置影响负相容效应的机制 ——自上而下认知控制对阈下启动信息加工的影响[J]. 心理学报, 2016, 48(11): 1370-1378.
[13]曾红;苏得权;姜醒;陈骐;叶浩生. 不同药物相关线索反应下感觉-运动脑区的激活及作用[J]. 心理学报, 2015, 47(7): 890-902.
[14]纪丽燕;陈宁轩;丁锦红;魏萍. 奖赏预期调节局部注意干扰效应[J]. 心理学报, 2015, 47(6): 721-733.
[15]刘晓瑜;何朝丹;陈俊;邓沁丽. 熟练粤-普双言者的双言认知控制机制 ——来自双任务切换范式的行为研究证据[J]. 心理学报, 2015, 47(4): 439-454.





PDF全文下载地址:

http://journal.psych.ac.cn/xlxb/CN/article/downloadArticleFile.do?attachType=PDF&id=4359
相关话题/实验 信号 心理 控制 信息