删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

未意识到错误影响错误后调整的电生理证据

本站小编 Free考研考试/2022-01-01

王丽君, 索涛(), 赵国祥()
河南大学教育科学学院, 认知、脑与健康研究所, 心理与行为研究所, 开封 475004
收稿日期:2019-11-25出版日期:2020-10-25发布日期:2020-08-24
通讯作者:索涛,赵国祥E-mail:suotao810815@163.com;zhaogx@henu.edu.cn

基金资助:* 河南省博士后科研启动项目(001802013);河南省教育厅人文社科项目(2019ZDJH493)

The influence of unaware errors on post-error adjustment: Evidence from electrophysiological analysis

WANG Lijun, SUO Tao(), ZHAO Guoxiang()
School of Education, Henan University; Institute of Cognition, Brain and Health; Institute of Psychology and Behavior, Kaifeng 475004, China
Received:2019-11-25Online:2020-10-25Published:2020-08-24
Contact:SUO Tao,ZHAO Guoxiang E-mail:suotao810815@163.com;zhaogx@henu.edu.cn






摘要/Abstract


摘要: 现有研究一致认为意识到错误可引起错误后调整, 但是未意识到错误能否促使个体进行错误后调整尚存争议。本实验采用基于go/no-go范式的错误意识任务考察上述问题, 并根据被试对自己按键反应正误主观报告将no-go错误反应分为意识到错误和未意识到错误。行为结果发现, 意识到错误和未意识到错误后正确率均显著高于正确击中试次(正确go试次)后正确率; 但是, 意识到错误后试次反应时显著快于正确击中后反应时, 未意识到错误后反应时显著慢于正确击中后反应时。该结果表明两类错误均优化了错误后行为表现, 但是意识到错误后被试调整速度加快, 未意识到错误后被试调整速度减慢。进而, 时频分析发现意识到错误相较于未意识到错误诱发显著更强的alpha波能量。并且, 前者在错误意识主观报告前已诱发alpha波, 后者在错误意识主观报告反应后诱发alpha波。该结果表明意识到错误一直处于持续的注意监控中, 而未意识到错误是任务引起的暂时注意控制。因此, 本实验说明错误意识影响错误后调整, 意识到错误可能采用类似主动性控制的策略调节错误后行为, 而未意识到错误可能采用类似反应性控制的策略调节错误后行为。



图1实验流程图
图1实验流程图



图2错误后调整效应在反应时和正确率上的表现 注:图a分别呈现意识到错误、未意识到错误以及正确击中后正确试次在反应时上的结果。图b分别呈现意识到错误、未意识到错误以及正确击中后试次正确率结果。**p < 0.01, *p < 0.05。
图2错误后调整效应在反应时和正确率上的表现 注:图a分别呈现意识到错误、未意识到错误以及正确击中后正确试次在反应时上的结果。图b分别呈现意识到错误、未意识到错误以及正确击中后试次正确率结果。**p < 0.01, *p < 0.05。



图3意识到错误和未意识到错误时频分析结果 注:图a分别呈现意识到和未意识到错误在枕顶部(Pz、P3、P4、POz、PO3和PO4)的频谱图、两者的差异频谱图以及相应的差异p值图p < 0.05(FDR矫正)。白色矩形框中为选定的时频感兴趣区alpha波频带(8~14 Hz, -500~500 ms)。图b分别呈现在时频感兴趣区内的意识到错误和未意识到错误的头部地形图及两者的差异地形图。图c呈现意识到错误和未意识到错误在时频感兴趣区内的统计结果。**p < 0.01。
图3意识到错误和未意识到错误时频分析结果 注:图a分别呈现意识到和未意识到错误在枕顶部(Pz、P3、P4、POz、PO3和PO4)的频谱图、两者的差异频谱图以及相应的差异p值图p < 0.05(FDR矫正)。白色矩形框中为选定的时频感兴趣区alpha波频带(8~14 Hz, -500~500 ms)。图b分别呈现在时频感兴趣区内的意识到错误和未意识到错误的头部地形图及两者的差异地形图。图c呈现意识到错误和未意识到错误在时频感兴趣区内的统计结果。**p < 0.01。



图4意识到错误和未意识到错误激活的alpha能量变化时间进程
图4意识到错误和未意识到错误激活的alpha能量变化时间进程







[1] Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. Annual Review of Neuroscience, 28(1), 403-450.
doi: 10.1146/annurev.neuro.28.061604.135709URL
[2] Braboszcz, C., & Delorme, A. (2011). Lost in thoughts: Neural markers of low alertness during mind wandering. Neuroimage, 54(4), 3040-3047.
URLpmid: 20946963
[3] Braver, T. S. (2012). The variable nature of cognitive control: A dual mechanisms framework. Trends in Cognitive Sciences, 16(2), 106-113.
doi: 10.1016/j.tics.2011.12.010URL
[4] Carp, J., & Compton, R. J. (2009). Alpha power is influenced by performance errors. Psychophysiology, 46(2), 336-343.
doi: 10.1111/j.1469-8986.2008.00773.xURLpmid: 19207203
[5] Cavanagh, J. F., & Frank, M. J. (2014). Frontal theta as a mechanism for cognitive control. Trends in Cognitive Sciences, 18(8), 414-421.
URLpmid: 24835663
[6] Chang, A., Ide, J. S., Li, H.-H., Chen, C.-C., & Li, C.-S. R. (2017). Proactive control: Neural oscillatory correlates of conflict anticipation and response slowing. Eneuro, 4( 3).
doi: 10.1523/ENEURO.0269-17.2017URLpmid: 29302615
[7] Cheyne, J. A., Carriere, J. S. A., Solman, G. J. F., & Smilek, D. (2011). Challenge and error: Critical events and attention- related errors. Cognition, 121(3), 437-446.
doi: 10.1016/j.cognition.2011.07.010URL
[8] Cohen, M. X., & Cavanagh, J. F. (2011). Single-Trial Regression Elucidates the Role of Prefrontal Theta Oscillations in Response Conflict. Frontiers in Psychology, 2, 30.
doi: 10.3389/fpsyg.2011.00030URLpmid: 21713190
[9] Coleman, J. R., Watson, J. M., & Strayer, D. L. (2018). Working memory capacity and task goals modulate error‐related ERPs. Psychophysiology, 55(3), e12805.
doi: 10.1111/psyp.2018.55.issue-3URL
[10] Cooper, P. S., Wong, A. S. W., Fulham, W. R., Thienel, R., Mansfield, E., Michie, P. T., & Karayanidis, F. (2015). Theta frontoparietal connectivity associated with proactive and reactive cognitive control processes. Neuroimage, 108, 354-363.
doi: 10.1016/j.neuroimage.2014.12.028URLpmid: 25528657
[11] Di Gregorio, F., Steinhauser, M., & Maier, M. E. (2016). Error-related brain activity and error awareness in an error classification paradigm. Neuroimage, 139, 202-210.
URLpmid: 27296011
[12] Endrass, T., Reuter, B., & Kathmann, N. (2007). ERP correlates of conscious error recognition: Aware and unaware errors in an antisaccade task. European Journal of Neuroscience, 26(6), 1714-1720.
doi: 10.1111/j.1460-9568.2007.05785.xURLpmid: 17880402
[13] Godefroid, E., Pourtois, G., & Wiersema, J. R. (2015). Joint effects of sensory feedback and interoceptive awareness on conscious error detection: Evidence from event related brain potentials. Biological Psychology, 114, 49-60.
doi: 10.1016/j.biopsycho.2015.12.005URLpmid: 26738634
[14] Hajcak, G., McDonald, N., & Simons, R. F. (2003). To err is autonomic: Error‐related brain potentials, ANS activity, and post‐error compensatory behavior. Psychophysiology, 40(6), 895-903.
doi: 10.1111/1469-8986.00107URLpmid: 14986842
[15] Hester, R., Foxe, J. J., Molholm, S., Shpaner, M., & Garavan, H. (2005). Neural mechanisms involved in error processing: A comparison of errors made with and without awareness. Neuroimage, 27(3), 602-608.
doi: 10.1016/j.neuroimage.2005.04.035URLpmid: 16024258
[16] Hoonakker, M., Doignon-Camus, N., & Bonnefond, A. (2016). Performance monitoring mechanisms activated before and after a response: A comparison of aware and unaware errors. Biological Psychology, 120, 53-60.
doi: 10.1016/j.biopsycho.2016.08.009URLpmid: 27568326
[17] Hwang, K., Ghuman, A. S., Manoach, D. S., Jones, S. R., & Luna, B. (2016). Frontal preparatory neural oscillations associated with cognitive control: A developmental study comparing young adults and adolescents. Neuroimage, 136, 139-148.
URLpmid: 27173759
[18] Leunissen, I., Coxon, J. P., & Swinnen, S. P. (2016). A proactive task set influences how response inhibition is implemented in the basal ganglia. Human Brain Mapping, 37(12), 4706-4717.
doi: 10.1002/hbm.23338URLpmid: 27489078
[19] Liu, P. D., Yang, W. J., Chen, J., Huang, X. T., & Chen, A. (2013). Alertness modulates conflict adaptation and feature integration in an opposite way. PloS One, 8(11), e79146.
doi: 10.1371/journal.pone.0079146URLpmid: 24250824
[20] Maier, M. E., Ernst, B., & Steinhauser, M. (2019). Error-related pupil dilation is sensitive to the evaluation of different error types. Biological Psychology, 141, 25-34.
doi: 10.1016/j.biopsycho.2018.12.013URLpmid: 30597189
[21] Makeig, S., Debener, S., Onton, J., & Delorme, A. (2004). Mining event-related brain dynamics. Trends in Cognitive Sciences, 8(5), 204-210.
doi: 10.1016/j.tics.2004.03.008URL
[22] Mouraux, A., & Iannetti, G. D. (2008). Across-trial averaging of event-related EEG responses and beyond. Magnetic Resonance Imaging, 26(7), 1041-1054.
doi: 10.1016/j.mri.2008.01.011URL
[23] Murphy, P. R., Robertson, I. H., Allen, D., Hester, R., & O'Connell, R. G. (2012). An electrophysiological signal that precisely tracks the emergence of error awareness. Frontiers in Human Neuroscience, 6, 65.
doi: 10.3389/fnhum.2012.00065URLpmid: 22470332
[24] Murphy, P. R., Robertson, I. H., Harty, S., & O'Connell, R. G. (2015). Neural evidence accumulation persists after choice to inform metacognitive judgments. eLife, 4, e11946.
doi: 10.7554/eLife.11946URLpmid: 26687008
[25] Navarro-Cebrian, A., Knight, R. T., & Kayser, A. S. (2013). Error-monitoring and post-error compensations: Dissociation between perceptual failures and motor errors with and without awareness. The Journal of Neuroscience, 33(30), 12375-12383.
URLpmid: 23884943
[26] Nieuwenhuis, S., Ridderinkhof, K. R., Blom, J., Band, G. P. H, & Kok, A. (2001). Error‐related brain potentials are differentially related to awareness of response errors: Evidence from an antisaccade task. Psychophysiology, 38(5), 752-760.
URLpmid: 11577898
[27] O'Connell, R. G., Dockree, P. M., Bellgrove, M. A., Kelly, S. P., Hester, R., Garavan, H., ... Foxe, J. J. (2007). The role of cingulate cortex in the detection of errors with and without awareness: A high-density electrical mapping study. European Journal of Neuroscience, 25(8), 2571-2579.
URLpmid: 17445253
[28] Pfurtscheller, G., & Lopes da Silva, F. (1999). Event-related EEG/MEG synchronization and desynchronization: Basic principles. Clinical Neurophysiology, 110(11), 1842-1857.
URLpmid: 10576479
[29] Rabbitt, P. M. A. (1966). Errors and error correction in choice- response tasks. Journal of Experimental Psychology, 71(2), 264-272.
URLpmid: 5948188
[30] Regev, S., & Meiran, N. (2014). Post-error slowing is influenced by cognitive control demand. Acta Psychologica, 152, 10-18.
doi: 10.1016/j.actpsy.2014.07.006URL
[31] Sadaghiani, S., & Kleinschmidt, A. (2016). Brain networks and α-oscillations: Structural and functional foundations of cognitive control. Trends in Cognitive Sciences, 20(11), 805-817.
doi: 10.1016/j.tics.2016.09.004URLpmid: 27707588
[32] Shalgi, S., Barkan, I., & Deouell, L. Y. (2009). On the positive side of error processing: Error‐awareness positivity revisited. European Journal of Neuroscience, 29(7), 1522-1532.
URLpmid: 19519632
[33] Shalgi, S., O’connell, R. G., Deouell, L. Y., & Robertson, I. H. (2007). Absent minded but accurate: Delaying responses increases accuracy but decreases error awareness. Experimental Brain Research, 182(1), 119-124.
doi: 10.1007/s00221-007-1054-5URL
[34] Steinhauser, M., & Yeung, N. (2010). Decision processes in human performance monitoring. The Journal of Neuroscience, 30(46), 15643-15653.
doi: 10.1523/JNEUROSCI.1899-10.2010URLpmid: 21084620
[35] Steinhauser, M., & Yeung, N. (2012). Error awareness as evidence accumulation: Effects of speed-accuracy trade-off on error signaling. Frontiers in Human Neuroscience, 6, 240.
doi: 10.3389/fnhum.2012.00240URLpmid: 22905027
[36] Tang, D. D., Hu, L., & Chen, A. (2013). The neural oscillations of conflict adaptation in the human frontal region. Biological Psychology, 93(3), 364-372.
URLpmid: 23570676
[37] Ullsperger, M., Danielmeier, C., & Jocham, G. (2014). Neurophysiology of performance monitoring and adaptive behavior. Physiological Reviews, 94(1), 35-79.
doi: 10.1152/physrev.00041.2012URL
[38] van der Wel, P., & van Steenbergen, H. (2018). Pupil dilation as an index of effort in cognitive control tasks: A review. Psychonomic Bulletin & Review, 25(6), 2005-2015.
doi: 10.3758/s13423-018-1432-yURLpmid: 29435963
[39] Wang, L. J., Gu, Y., Zhao, G. X., & Chen, A. (2020). Error- related negativity and error awareness in a Go/No-go task. Scientific Reports, 10(1), 4026.
doi: 10.1038/s41598-020-60693-0URLpmid: 32132619
[40] Wang, L. J., Hu, X. P., Suo, T., Zhao, G. X., & Chen, A. T., (2019). Spontaneous neuronal activity in insula predicts post-error adjustments (in Chinese). Chinese Science Bulletin, 64(21), 2207-2215.
[ 王丽君, 胡学平, 索涛, 赵国祥, 陈安涛. (2019). 脑岛自发神经活动强度可预测个体错误后反应调整速度. 科学通报, 64(21), 2207-2215.]
[41] Wang, L. J., Liu, C. P., Hu, X. P., & Chen, A. T. (2016) The alertness level influences post-error adjustments (in Chinese). Chinses Science Bulletin, 61(34), 3708-3717.
[ 王丽君, 刘长平, 胡学平, 陈安涛. (2016). 警觉水平影响错误后行为适应. 科学通报, 61(34), 3708-3717.]
[42] Wang, L. J., Tang, D. D., Zhao, Y. F., Hitchman, G., Wu, S. S., Tan, J. F., & Chen, A. (2015). Disentangling the impacts of outcome valence and outcome frequency on the post-error slowing. Scientific Reports, 5(1), 8708.
doi: 10.1038/srep08708URL
[43] Wang, L. J., Xu, L., Wu, S. S., Tang, J. F., & Chen, A. T. (2013). Critical review on the theories of post-error slowing (in Chinese). Advances in Psychological Science, 21(3), 418-428.
doi: 10.3724/SP.J.1042.2013.00418URL
[ 王丽君, 徐雷, 伍姗姗, 谭金凤, 陈安涛. (2013). 错误后减慢理论模型述评. 心理科学进展, 21(3), 418-428.]
[44] Wessel, J. R. (2012). Error awareness and the error-related negativity: Evaluating the first decade of evidence. Frontiers in Human Neuroscience, 6, 88.
doi: 10.3389/fnhum.2012.00088URLpmid: 22529791
[45] Wessel, J. R., Danielmeier, C., & Ullsperger, M. (2011). Error awareness revisited: Accumulation of multimodal evidence from central and autonomic nervous systems. Journal of Cognitive Neuroscience, 23(10), 3021-3036.
URLpmid: 21268673




[1]胡娜,陈安涛,王宴庆,李晴,许珍珍,龙泉杉. 急性应激损伤错误监控与错误后调整[J]. 心理学报, 2020, 52(2): 162-172.
[2]崔诣晨, 王沛, 崔亚娟. 知觉冲突印象形成的认知控制策略:以刻板化信息与反刻板化信息为例[J]. 心理学报, 2019, 51(10): 1157-1170.
[3]徐雷;王丽君;赵远方;谭金凤;陈安涛. 阈下奖励调节认知控制的权衡[J]. 心理学报, 2014, 46(4): 459-466.





PDF全文下载地址:

http://journal.psych.ac.cn/xlxb/CN/article/downloadArticleFile.do?attachType=PDF&id=4807
相关话题/心理 实验 控制 错误 统计