江苏师范大学教育科学学院, 徐州 221116
收稿日期:
2019-09-15出版日期:
2021-07-15发布日期:
2021-05-24通讯作者:
王志丹E-mail:zwang19@jsnu.edu.cn基金资助:
江苏省高等学校自然科学研究项目资助(19KJB190002);2020年度江苏师范大学研究生科研创新项目(2020 XKT227)The neural mechanisms of developmental motor disorders in children with autism spectrum disorder
WANG Lin, WANG Zhidan(), WANG HongjingSchool of Education Science, Jiangsu Normal University, Xuzhou 221116, China
Received:
2019-09-15Online:
2021-07-15Published:
2021-05-24Contact:
WANG Zhidan E-mail:zwang19@jsnu.edu.cn摘要/Abstract
摘要: 动作发展障碍(Developmental motor disorders)是孤独症谱系障碍的常见特征。通过系统回顾孤独症儿童动作发展障碍的神经科学研究, 发现γ-氨基丁酸和5-羟色胺浓度的改变及γ-氨基丁酸相关蛋白和Shank蛋白的表达异常不仅会损害中枢神经系统的发育, 而且还能导致突触兴奋性与抑制性失衡, 进而改变孤独症儿童小脑和大脑皮层运动区的功能连接。孤独症儿童小脑、基底神经节和胼胝体结构的改变对全脑的连通性产生了负面影响。神经生化机制和脑结构的异常共同导致了脑功能的异常, 最终造成孤独症儿童的动作发展障碍。此外, 动作发展障碍与孤独症核心症状共同的神经基础主要包括镜像神经元系统紊乱, 丘脑、基底神经节和小脑异常以及SLC7A5和PTEN 基因突变。未来研究需要关注与运动密切相关的其他神经递质, 如乙酰胆碱和多巴胺; 探索动作发展障碍神经网络的动态机制及其形成; 剖析该障碍的神经机制和自闭症核心症状神经机制的相互作用。
图/表 1
图1孤独症儿童动作发展障碍的神经生化机制、脑结构基础和脑功能机制的有机关系
图1孤独症儿童动作发展障碍的神经生化机制、脑结构基础和脑功能机制的有机关系
参考文献 110
[1] | 安楠. (2011). 运动对成长期骨骼肌神经肌肉接头N乙酰胆碱受体表达的影响. 体育科学, 31(11), 56-60. |
[2] | 董奇, 陶沙. (2011). 动作与心理发展. 北京: 北京师范大学出版社. |
[3] | 李澄宇, 杨天明, 顾勇, 王立平, 徐宁龙, 崔翯, 王佐仁. (2016). 脑认知的神经基础. 中国科学院院刊, 31(7), 755-764. |
[4] | 林冲宇, 翁旭初. (2006). 运动, 语言和学习: 小脑的功能磁共振成像研究. 心理科学进展, 14(4), 532-539. |
[5] | 杨叶红, 王树明. (2018). 动作技能学习神经生理机制研究. 武汉体育学院学报, 52(8), 85-89. |
[6] | 原雅青, 刘洋, 丁佳宁. (2019). 布尼氏动作熟练度测试(BOT-2)在智力障碍儿童动作发展评估中的应用及对我国的启示. 中国体育科技, 55(6), 14-20. |
[7] | Adamaszek, M., D’Agata, F., Ferrucci, R., Habas, C., Keulen, S., Kirkby, K. C., ... Verhoeven, J. (2017). Consensus paper: Cerebellum and emotion. The Cerebellum, 16(2), 552-576. doi: 10.1007/s12311-016-0815-8URL |
[8] | Al Sagheer, T., Haida, O., Balbous, A., Francheteau, M., Matas, E., Fernagut, P.-O., & Jaber, M. (2018). Motor impairments correlate with social deficits and restricted neuronal loss in an environmental model of autism. International Journal of Neuropsychopharmacology, 21(9), 871-882. doi: 10.1093/ijnp/pyy043URL |
[9] | American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (DSM-5)(5th ed.). Washington, DC: American Psychiatric Publishing. |
[10] | Anzulewicz, A., Sobota, K., & Delafield-Butt, J. T. (2016). Toward the autism motor signature: Gesture patterns during smart tablet gameplay identify children with autism. Scientific Reports, 6(1), 1-13. doi: 10.1038/s41598-016-0001-8URL |
[11] | Azmitia, E. C., Singh, J. S., Hou, X. P., & Wegiel, J. (2011). Dystrophic serotonin axons in postmortem brains from young autism patients. The Anatomical Record, 294(10), 1653-1662. doi: 10.1002/ar.21243pmid: 21901837 |
[12] | Bacqué-Cazenave, J., Bharatiya, R., Barrière, G., Delbecque, J.-P., Bouguiyoud, N., di Giovanni, G., ... de Deurwaerdère, P. (2020). Serotonin in animal cognition and behavior. International Journal of Molecular Sciences, 21(5), 1649. doi: 10.3390/ijms21051649URL |
[13] | Barbeau, E. B., Meilleur, A.-A.S., Zeffiro, T. A., & Mottron, L. (2015). Comparing motor skills in autism spectrum individuals with and without speech delay. Autism Research, 8(6), 682-693. doi: 10.1002/aur.1483pmid: 25820662 |
[14] | Barter, J. W., Li, S., Lu, D., Bartholomew, R. A., Rossi, M. A., Shoemaker, C. T., ... Yin, H. H. (2015a). Beyond reward prediction errors: The role of dopamine in movement kinematics. Frontiers in Integrative Neuroscience, 9, 39. |
[15] | Barter, J. W., Li, S., Sukharnikova, T., Rossi, M. A., Bartholomew, R. A., & Yin, H. H. (2015b). Basal ganglia outputs map instantaneous position coordinates during behavior. Journal of Neuroscience, 35(6), 2703-2716. doi: 10.1523/JNEUROSCI.3245-14.2015URL |
[16] | Berdel, B., & Moryś, J. (2000). Expression of calbindin-D28k and parvalbumin during development of rat’s basolateral amygdaloid complex. International Journal of Developmental Neuroscience, 18(6), 501-513. pmid: 10884595 |
[17] | Biffi, E., Costantini, C., Ceccarelli, S. B., Cesareo, A., Marzocchi, G. M., Nobile, M., ... Crippa, A. (2018). Gait pattern and motor performance during discrete gait perturbation in children with autism spectrum disorders. Frontiers in Psychology, 9, 2530. doi: 10.3389/fpsyg.2018.02530URL |
[18] | Boeckers, T. M., Bockmann, J., Kreutz, M. R., & Gundelfinger, E. D. (2002). ProSAP/Shank proteins - A family of higher order organizing molecules of the postsynaptic density with an emerging role in human neurological disease. Journal of Neurochemistry, 81(5), 903-910. doi: 10.1046/j.1471-4159.2002.00931.xURL |
[19] | Bojanek, E. K., Wang, Z., White, S. P., & Mosconi, M. W. (2020). Postural control processes during standing and step initiation in autism spectrum disorder. Journal of Neurodevelopmental Disorders, 12(1), 1. doi: 10.1186/s11689-019-9305-xpmid: 31906846 |
[20] | Bonnin, A., & Levitt, P. (2011). Fetal, maternal, and placental sources of serotonin and new implications for developmental programming of the brain. Neuroscience, 197, 1-7. doi: 10.1016/j.neuroscience.2011.10.005pmid: 22001683 |
[21] | Booth, J. R., Wood, L., Lu, D., Houk, J. C., & Bitan, T. (2007). The role of the basal ganglia and cerebellum in language processing. Brain Research, 1133, 136-144. doi: 10.1016/j.brainres.2006.11.074URL |
[22] | Carper, R. A., Solders, S., Treiber, J. M., Fishman, I., & Müller, R. A. (2015). Corticospinal tract anatomy and functional connectivity of primary motor cortex in autism. Journal of the American Academy of Child & Adolescent Psychiatry, 54(10), 859-867. doi: 10.1016/j.jaac.2015.07.007URL |
[23] | Casanova, M. F., El-Baz, A., Elnakib, A., Switala, A. E., Williams, E. L., Williams, D. L., ... Conturo, T. E. (2011). Quantitative analysis of the shape of the corpus callosum in patients with autism and comparison individuals. Autism, 15(2), 223-238. doi: 10.1177/1362361310386506pmid: 21363871 |
[24] | Casanova, M. F., El-Baz, A., Mott, M., Mannheim, G., Hassan, H., Fahmi, R., ... Farag, A. (2009). Reduced gyral window and corpus callosum size in autism: Possible macroscopic correlates of a minicolumnopathy. Journal of Autism and Developmental Disorders, 39(5), 751-764. doi: 10.1007/s10803-008-0681-4pmid: 19148739 |
[25] | Chen, H., Uddin, L. Q., Zhang, Y. X., Duan, X. J., & Chen, H. F. (2016). Atypical effective connectivity of thalamo-cortical circuits in autism spectrum disorder. Autism Research, 9(11), 1183-1190. doi: 10.1002/aur.2016.9.issue-11URL |
[26] | Courchesne, E., Yeung-Courchesne, R., Hesselink, J. R., & Jernigan, T. L. (1988). Hypoplasia of cerebellar vermal lobules VI and VII in autism. New England Journal of Medicine, 318(21), 1349-1354. pmid: 3367935 |
[27] | Cupolillo, D., Hoxha, E., Faralli, A., de Luca, A., Rossi, F., Tempia, F., & Carulli, D. (2016). Autistic-like traits and cerebellar dysfunction in Purkinje cell PTEN knock-out mice. Neuropsychopharmacology, 41(6), 1457-1466. doi: 10.1038/npp.2015.339URL |
[28] | Dapretto, M., Davies, M. S., Pfeifer, J. H., Scott, A. A., Sigman, M., Bookheimer, S. Y., & Iacoboni, M. (2006). Understanding emotions in others: mirror neuron dysfunction in children with autism spectrum disorders. Nature Neuroscience, 9(1), 28-30. doi: 10.1038/nn1611URL |
[29] | da Silva, J. A., Tecuapetla, F., Paixão, V., & Costa, R. M. (2018). Dopamine neuron activity before action initiation gates and invigorates future movements. Nature, 554(7691), 244-248. doi: 10.1038/nature25457 |
[30] | Davidovitch, M., Levit-Binnun, N., Golan, D., & Manning- Courtney, P. (2015). Late diagnosis of autism spectrum disorder after initial negative assessment by a multidisciplinary team. Journal of Developmental & Behavioral Pediatrics, 36(4), 227-234. |
[31] | Dewey, D., Cantell, M., & Crawford, S. G. (2007). Motor and gestural performance in children with autism spectrum disorders, developmental coordination disorder, and/or attention deficit hyperactivity disorder. Journal of the International Neuropsychological Society, 13(2), 246-256. |
[32] | Di Martino, A., Yan, C. G., Li, Q., Denio, E., Castellanos, F. X., Alaerts, K., ... Deen, B. (2014). The autism brain imaging data exchange: Towards a large-scale evaluation of the intrinsic brain architecture in autism. Molecular Psychiatry, 19(6), 659-667. doi: 10.1038/mp.2013.78URL |
[33] | D'Mello, A. M., & Stoodley, C. J. (2015). Cerebro-cerebellar circuits in autism spectrum disorder. Frontiers in Neuroscience, 9, 408. |
[34] | El-Ansary, A., & Al-Ayadhi, L. (2014). GABAergic/glutamatergic imbalance relative to excessive neuroinflammation in autism spectrum disorders. Journal of Neuroinflammation, 11(1), 189. doi: 10.1186/s12974-014-0189-0URL |
[35] | Esposito, G., Venuti, P., Apicella, F., & Muratori, F. (2011). Analysis of unsupported gait in toddlers with autism. Brain and Development, 33(5), 367-373. doi: 10.1016/j.braindev.2010.07.006URL |
[36] | Fabbri-Destro, M., Gizzonio, V., & Avanzini, P. (2013). Autism, motor dysfunctions and mirror mechanism. Clinical Neuropsychiatry, 10(5), 177-187. |
[37] | Fingher, N., Dinstein, I., Ben-Shachar, M., Haar, S., Dale, A. M., Eyler, L., ... Courchesne, E. (2017). Toddlers later diagnosed with autism exhibit multiple structural abnormalities in temporal corpus callosum fibers. Cortex, 97, 291-305. doi: S0010-9452(17)30013-8pmid: 28202133 |
[38] | Fitzpatrick, P., Romero, V., Amaral, J. L., Duncan, A., Barnard, H., Richardson, M. J., & Schmidt, R. C. (2017). Social motor synchronization: Insights for understanding social behavior in autism. Journal of Autism and Developmental Disorders, 47(7), 2092-2107. doi: 10.1007/s10803-017-3124-2pmid: 28425022 |
[39] | Floris, D. L., Barber, A. D., Nebel, M. B., Martinelli, M., Lai, M.-C., Crocetti, D., ... Mostofsky, S. H. (2016). Atypical lateralization of motor circuit functional connectivity in children with autism is associated with motor deficits. Molecular Autism, 7(1), 35. doi: 10.1186/s13229-016-0096-6URL |
[40] | Fournier, K. A., Kimberg, C. I., Radonovich, K. J., Tillman, M. D., Chow, J. W., Lewis, M. H., ... Hass, C. J. (2010). Decreased static and dynamic postural control in children with autism spectrum disorders. Gait & Posture, 32(1), 6-9. doi: 10.1016/j.gaitpost.2010.02.007URL |
[41] | Gaetz, W., Bloy, L., Wang, D. J., Port, R. G., Blaskey, L., Levy, S. E., & Roberts, T. P. L. (2014). GABA estimation in the brains of children on the autism spectrum: measurement precision and regional cortical variation. Neuroimage, 86, 1-9. doi: 10.1016/j.neuroimage.2013.05.068pmid: 23707581 |
[42] | Gong, L. L., Liu, Y. J., Yi, L., Fang, J., Yang, Y. S., & Wei, K. L. (2020). Abnormal gait patterns in autism spectrum disorder and their correlations with social Impairments. Autism Research, 13(7).1215-1226. doi: 10.1002/aur.v13.7URL |
[43] | Green, D., Charman, T., Pickles, A., Chandler, S., Loucas, T., Simonoff, E., & Baird, G. (2009). Impairment in movement skills of children with autistic spectrum disorders. Developmental Medicine & Child Neurology, 51(4), 311-316. |
[44] | Hanaie, R., Mohri, I., Kagitani-Shimono, K., Tachibana, M., Azuma, J., Matsuzaki, J., ... Taniike, M. (2013). Altered microstructural connectivity of the superior cerebellar peduncle is related to motor dysfunction in children with autistic spectrum disorders. The Cerebellum, 12(5), 645-656. doi: 10.1007/s12311-013-0475-xURL |
[45] | Hanaie, R., Mohri, I., Kagitani-Shimono, K., Tachibana, M., Matsuzaki, J., Watanabe, Y., ... Taniike, M. (2014). Abnormal corpus callosum connectivity, socio-communicative deficits, and motor deficits in children with autism spectrum disorder: A diffusion tensor imaging study. Journal of Autism and Developmental Disorders, 44(9), 2209-2220. doi: 10.1007/s10803-014-2096-8pmid: 24710811 |
[46] | Hirata, S., Okuzumi, H., Kitajima, Y., Hosobuchi, T., Nakai, A., & Kokubun, M. (2014). Relationship between motor skill and social impairment in children with autism spectrum disorders. International Journal of Developmental Disabilities, 60(4), 251-256. doi: 10.1179/2047387713Y.0000000033URL |
[47] | Hocking, D. R., & Caeyenberghs, K. (2017). What is the nature of motor impairments in autism, are they diagnostically useful, and what are the implications for intervention? Current Developmental Disorders Reports, 4(2), 19-27. doi: 10.1007/s40474-017-0109-yURL |
[48] | Hough, L. H., & Segal, S. (2016). Effects of developmental hyperserotonemia on the morphology of rat dentate nuclear neurons. Neuroscience, 322, 178-194. doi: 10.1016/j.neuroscience.2016.02.021pmid: 26892293 |
[49] | Hussman, J. P. (2001). Suppressed GABAergic inhibition as a common factor in suspected etiologies of autism. Journal of Autism & Developmental Disorders, 31(2), 247-248. |
[50] | Isenhower, R. W., Marsh, K. L., Richardson, M. J., Helt, M., Schmidt, R. C., & Fein, D. (2012). Rhythmic bimanual coordination is impaired in young children with autism spectrum disorder. Research in Autism Spectrum Disorders, 6(1), 25-31. doi: 10.1016/j.rasd.2011.08.005URL |
[51] | Jaber, M. (2016). The cerebellum as a major player in motor disturbances related to autistic syndrome disorders. L'encephale, 43(2), 170-175. doi: 10.1016/j.encep.2016.03.018URL |
[52] | Jeong, J.-W., Tiwari, V. N., Behen, M. E., Chugani, H. T., & Chugani, D. C. (2014). In vivo detection of reduced purkinje cell fibers with diffusion MRI tractography in children with autistic spectrum disorders. Frontiers in Human Neuroscience, 8, 110. doi: 10.3389/fnhum.2014.00110pmid: 24592234 |
[53] | Jin, X., & Costa, R. M. (2015). Shaping action sequences in basal ganglia circuits. Current Opinion in Neurobiology, 33, 188-196. doi: 10.1016/j.conb.2015.06.011URL |
[54] | Johnson, B. P., Phillips, J. G., Papadopoulos, N., Fielding, J., Tonge, B., & Rinehart, N. J. (2013). Understanding macrographia in children with autism spectrum disorders. Research in Developmental Disabilities, 34(9), 2917-2926. doi: 10.1016/j.ridd.2013.06.003pmid: 23816627 |
[55] | Kaur, M., Srinivasan, S. M., & Bhat, A. N. (2018). Comparing motor performance, praxis, coordination, and interpersonal synchrony between children with and without autism spectrum disorder (ASD). Research in Developmental Disabilities, 72, 79-95. doi: 10.1016/j.ridd.2017.10.025URL |
[56] | Keary, C. J., Minshew, N. J., Bansal, R., Goradia, D., Fedorov, S., Keshavan, M. S., & Hardan, A. Y. (2009). Corpus callosum volume and neurocognition in autism. Journal of Autism and Developmental Disorders, 39(6), 834-841. doi: 10.1007/s10803-009-0689-4URL |
[57] | Khalil, R., Tindle, R., Boraud, T., Moustafa, A. A., & Karim, A. A. (2018). Social decision making in autism: On the impact of mirror neurons, motor control, and imitative behaviors. CNS Neuroscience & Therapeutics, 24(8), 669-676. |
[58] | Kindregan, D., Gallagher, L., & Gormley, J. (2015). Gait deviations in children with autism spectrum disorders: A review. Autism Research and Treatment, 2015, 741480. |
[59] | Lau, Y. C., Hinkley, L. B. N., Bukshpun, P., Strominger, Z. A., Wakahiro, M. L. J., Baron-Cohen, S., ... Marco, E. J. (2013). Autism traits in individuals with agenesis of the corpus callosum. Journal of Autism and Developmental Disorders, 43(5), 1106-1118. doi: 10.1007/s10803-012-1653-2URL |
[60] | Leblond, C. S., Nava, C., Polge, A., Gauthier, J., Huguet, G., Lumbroso, S., ... Bourgeron, T. (2014). Meta-analysis of SHANK mutations in autism spectrum disorders: A gradient of severity in cognitive impairments. PLoS Genet, 10(9), e1004580. doi: 10.1371/journal.pgen.1004580URL |
[61] | Lin, C. W., Lin, H. Y., Lo, Y. C., Chen, Y. J., Hsu, Y. C., Chen, Y. L., ... Gau, S. S. F. (2019). Alterations in white matter microstructure and regional volume are related to motor functions in boys with autism spectrum disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 90, 76-83. doi: 10.1016/j.pnpbp.2018.11.008URL |
[62] | Liu, T., & Breslin, C. M. (2013). Fine and gross motor performance of the MABC-2 by children with autism spectrum disorder and typically developing children. Research in Autism Spectrum Disorders, 7(10), 1244-1249. doi: 10.1016/j.rasd.2013.07.002URL |
[63] | Marko, M. K., Crocetti, D., Hulst, T., Donchin, O., Shadmehr, R., & Mostofsky, S. H. (2015). Behavioural and neural basis of anomalous motor learning in children with autism. Brain, 138(3), 784-797. doi: 10.1093/brain/awu394URL |
[64] | Martineau, J., Cochin, S., Magne, R., & Barthelemy, C. (2008). Impaired cortical activation in autistic children: Is the mirror neuron system involved? International Journal of Psychophysiology, 68(1), 35-40. doi: 10.1016/j.ijpsycho.2008.01.002pmid: 18313160 |
[65] | Masuda, F., Nakajima, S., Miyazaki, T., Yoshida, K., Tsugawa, S., Wada, M., ... Noda, Y. (2019). Motor cortex excitability and inhibitory imbalance in autism spectrum disorder assessed with transcranial magnetic stimulation: A systematic review. Translational Psychiatry, 9(1), 110. doi: 10.1038/s41398-019-0444-3pmid: 30846682 |
[66] | McBride, K. L., Varga, E. A., Pastore, M. T., Prior, T. W., Manickam, K., Atkin, J. F., & Herman, G. E. (2010). Confirmation study of PTEN mutations among individuals with autism or developmental delays/mental retardation and macrocephaly. Autism Research, 3(3), 137-141. doi: 10.1002/aur.132pmid: 20533527 |
[67] | McCleery, J. P., Akshoomoff, N., Dobkins, K. R., & Carver, L. J. (2009). Atypical face versus object processing and hemispheric asymmetries in 10-month-old infants at risk for autism. Biological Psychiatry, 66(10), 950-957. doi: 10.1016/j.biopsych.2009.07.031URL |
[68] | McNamara, I. M., Borella, A. W., Bialowas, L. A., & Whitaker-Azmitia, P. M. (2008). Further studies in the developmental hyperserotonemia model (DHS) of autism: social, behavioral and peptide changes. Brain Research, 1189, 203-214. doi: 10.1016/j.brainres.2007.10.063URL |
[69] | Ming, X., Brimacombe, M., & Wagner, G. C. (2007). Prevalence of motor impairment in autism spectrum disorders. Brain and Development, 29(9), 565-570. doi: 10.1016/j.braindev.2007.03.002URL |
[70] | Minshew, N. J., Sung, K., Jones, B. L., & Furman, J. M. (2004). Underdevelopment of the postural control system in autism. Neurology, 63(11), 2056-2061. pmid: 15596750 |
[71] | Moes, P., Schilmoeller, K., & Schilmoeller, G. (2009). Physical, motor, sensory and developmental features associated with agenesis of the corpus callosum. Child: Care, Health and Development, 35(5), 656-672. |
[72] | Mosconi, M. W., Mohanty, S., Greene, R. K., Cook, E. H., Vaillancourt, D. E., & Sweeney, J. A. (2015). Feedforward and feedback motor control abnormalities implicate cerebellar dysfunctions in autism spectrum disorder. Journal of Neuroscience, 35(5), 2015-2025. doi: 10.1523/JNEUROSCI.2731-14.2015URL |
[73] | Mostofsky, S. H., Powell, S. K., Simmonds, D. J., Goldberg, M. C., Caffo, B., & Pekar, J. J. (2009). Decreased connectivity and cerebellar activity in autism during motor task performance. Brain, 132(9), 2413-2425. doi: 10.1093/brain/awp088URL |
[74] | Nair, A., Treiber, J. M., Shukla, D. K., Shih, P., & Müller, R. A. (2013). Impaired thalamocortical connectivity in autism spectrum disorder: A study of functional and anatomical connectivity. Brain, 136(6), 1942-1955. doi: 10.1093/brain/awt079URL |
[75] | Nayate, A., Bradshaw, J. L., & Rinehart, N. J. (2005). Autism and Asperger's disorder: Are they movement disorders involving the cerebellum and/or basal ganglia? Brain Research Bulletin, 67(4), 327-334. doi: 10.1016/j.brainresbull.2005.07.011URL |
[76] | Nebel, M. B., Eloyan, A., Nettles, C. A., Sweeney, K. L., Ament, K., Ward, R. E., ... Mostofsky, S. H. (2016). Intrinsic visual-motor synchrony correlates with social deficits in autism. Biological Psychiatry, 79(8), 633-641. doi: 10.1016/j.biopsych.2015.08.029URL |
[77] | Nordahl, C. W., Iosif, A. M., Young, G. S., Perry, L. M., Dougherty, R., Lee, A., Amaral, D. G. (2015). Sex differences in the corpus callosum in preschool-aged children with autism spectrum disorder. Molecular Autism, 6(1), 26. doi: 10.1186/s13229-015-0005-4URL |
[78] | Oldehinkel, M., Mennes, M., Marquand, A., Charman, T., Tillmann, J., Ecker, C., ... Zwiers, M. P. (2019). Altered connectivity between cerebellum, visual, and sensory-motor networks in autism spectrum disorder: Results from the EU-AIMS longitudinal European autism project. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 4(3), 260-270. doi: 10.1016/j.bpsc.2018.11.010URL |
[79] | Paquet, A., Olliac, B., Bouvard, M. P., Golse, B., & Vaivre- Douret, L. (2016). The semiology of motor disorders in autism spectrum disorders as highlighted from a standardized neuro-psychomotor assessment. Frontiers in Psychology, 7, 1292. doi: 10.3389/fpsyg.2016.01292pmid: 27672371 |
[80] | Paquet, A., Olliac, B., Golse, B., & Vaivre-Douret, L. (2019). Nature of motor impairments in autism spectrum disorder: A comparison with developmental coordination disorder. Journal of Clinical and Experimental Neuropsychology, 41(1), 1-14. doi: 10.1080/13803395.2018.1483486URL |
[81] | Paul, L. K., Brown, W. S., Adolphs, R., Tyszka, J. M., Richards, L. J., Mukherjee, P., & Sherr, E. H. (2007). Agenesis of the corpus callosum: genetic, developmental and functional aspects of connectivity. Nature Reviews Neuroscience, 8(4), 287-299. |
[82] | Peter, S., Brinke, M. M. T., Stedehouder, J., Reinelt, C. M., Wu, B., Zhou, H., ... de Zeeuw, C. I. (2016). Dysfunctional cerebellar purkinje cells contribute to autism-like behaviour in Shank2-deficient mice. Nature Communications, 7(1), 12627. doi: 10.1038/ncomms12627URL |
[83] | Pizzarelli, R., & Cherubini, E. (2011). Alterations of GABAergic signaling in autism spectrum disorders. Neural Plasticity, 2011, 297153. doi: 10.1155/2011/297153pmid: 21766041 |
[84] | Prigge, M. B. D., Lange, N., Bigler, E. D., Merkley, T. L., Neeley, E. S., Abildskov, T. J., ... Lainhart, J. E. (2013). Corpus callosum area in children and adults with autism. Research in Autism Spectrum Disorders, 7(2), 221-234. pmid: 23130086 |
[85] | Puts, N. A. J., Wodka, E. L., Harris, A. D., Crocetti, D., Tommerdahl, M., Mostofsky, S. H., & Edden, R. A. E. (2017). Reduced GABA and altered somatosensory function in children with autism spectrum disorder. Autism Research, 10(4), 608-619. doi: 10.1002/aur.2017.10.issue-4URL |
[86] | Qiu, A., Adler, M., Crocetti, D., Miller, M. I., & Mostofsky, S. H. (2010). Basal ganglia shapes predict social, communication, and motor dysfunctions in boys with autism spectrum disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 49(6), 539-551.e4. |
[87] | Rizzolatti, G., Cattaneo, L., Fabbri-Destro, M., & Rozzi, S. (2014). Cortical mechanisms underlying the organization of goal-directed actions and mirror neuron-based action understanding. Physiological Reviews, 94(2), 655-706. doi: 10.1152/physrev.00009.2013URL |
[88] | Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Cognitive Brain Research, 3(2), 131-141. pmid: 8713554 |
[89] | Schuetze, M., Park, M. T. M., Cho, I. Y., MacMaster, F. P., Chakravarty, M. M., & Bray, S. L. (2016). Morphological alterations in the thalamus, striatum, and pallidum in autism spectrum disorder. Neuropsychopharmacology, 41(11), 2627-2637. doi: 10.1038/npp.2016.64URL |
[90] | Schwaller, B., Meyer, M., & Schiffmann, S. (2002). ‘New’ functions for ‘old’ proteins: The role of the calcium-binding proteins calbindin D-28k, calretinin and parvalbumin, in cerebellar physiology. Studies with knockout mice. The Cerebellum, 1(4), 241-258. doi: 10.1080/147342202320883551URL |
[91] | Sheng, M. J., Lu, D., Shen, Z.-M., & Poo, M. M. (2019). Emergence of stable striatal D1R and D2R neuronal ensembles with distinct firing sequence during motor learning. Proceedings of the National Academy of Sciences, 116(22), 11038-11047. doi: 10.1073/pnas.1901712116URL |
[92] | Shmuelof, L., & Krakauer, J. W. (2011). Are we ready for a natural history of motor learning? Neuron, 72(3), 469-476. doi: 10.1016/j.neuron.2011.10.017pmid: 22078506 |
[93] | Skefos, J., Cummings, C., Enzer, K., Holiday, J., Weed, K., Levy, E., ... Bauman, M. (2014). Regional alterations in purkinje cell density in patients with autism. PloS ONE, 9(2), e81255. doi: 10.1371/journal.pone.0081255URL |
[94] | Soghomonian, J.-J., Zhang, K., Reprakash, S., & Blatt, G. J. (2017). Decreased parvalbumin mRNA levels in cerebellar purkinje cells in autism. Autism Research, 10(11), 1787-1796. doi: 10.1002/aur.1835URL |
[95] | Stoit, A. M. B., van Schie, H. T., Slaats-Willemse, D. I. E., & Buitelaar, J. K. (2013). Grasping motor impairments in autism: Not action planning but movement execution is deficient. Journal of Autism and Developmental Disorders, 43(12),2793-2806. doi: 10.1007/s10803-013-1825-8URL |
[96] | Stoodley, C. J. (2016). The cerebellum and neurodevelopmental disorders. The Cerebellum, 15(1), 34-37. doi: 10.1007/s12311-015-0715-3URL |
[97] | Subramanian, K., Brandenburg, C., Orsati, F., Soghomonian, J. J., Hussman, J. P., & Blatt, G. J. (2017). Basal ganglia and autism-a translational perspective. Autism Research, 10(11), 1751-1775. doi: 10.1002/aur.1837pmid: 28730641 |
[98] | Tărlungeanu, D. C., Deliu, E., Dotter, C. P., Kara, M., Janiesch, P. C., Scalise, M., ... Novarino, G. (2016). Impaired amino acid transport at the blood brain barrier is a cause of autism spectrum disorder. Cell, 167(6), 1481-1494. doi: S0092-8674(16)31534-3pmid: 27912058 |
[99] | Umesawa, Y., Matsushima, K., Atsumi, T., Kato, T., Fukatsu, R., Wada, M., & Ide, M. (2020). Altered GABA concentration in brain motor area is associated with the severity of motor disabilities in individuals with autism spectrum disorder. Journal of Autism and Developmental Disorders, 50(8), 2710-2722. doi: 10.1007/s10803-020-04382-xpmid: 31997060 |
[100] | Uzunova, G., Pallanti, S., & Hollander, E. (2016). Excitatory/ inhibitory imbalance in autism spectrum disorders: Implications for interventions and therapeutics. The World Journal of Biological Psychiatry, 17(3), 174-186. doi: 10.3109/15622975.2015.1085597URL |
[101] | Valenti, M., Pino, M. C., Mazza, M., Panzarino, G., Di Paolantonio, C., & Verrotti, A. (2020). Abnormal structural and functional connectivity of the corpus callosum in autism spectrum disorders: A review. Review Journal of Autism and Developmental Disorders, 7, 46-62. doi: 10.1007/s40489-019-00176-9URL |
[102] | Vokaer, M., Bier, J. C., Elincx, S., Claes, T., Paquier, P., Goldman, S., ... Pandolfo, M. (2002). The cerebellum may be directly involved in cognitive functions. Neurology, 58(6), 967-970. pmid: 11914419 |
[103] | Wang, S. S. H., Kloth, A. D., & Badura, A. (2014). The cerebellum, sensitive periods, and autism. Neuron, 83(3), 518-532. doi: 10.1016/j.neuron.2014.07.016URL |
[104] | Wegiel, J., Flory, M., Kuchna, I., Nowicki, K., Ma, S. Y., Imaki, H., ... Brown, W. T. (2014). Stereological study of the neuronal number and volume of 38 brain subdivisions of subjects diagnosed with autism reveals significant alterations restricted to the striatum, amygdala and cerebellum. Acta Neuropathologica Communications, 2(1), 141. doi: 10.1186/s40478-014-0141-7URL |
[105] | Whyatt, C., & Craig, C. (2013). Sensory-motor problems in Autism. Frontiers in Integrative Neuroscience, 7, 51. |
[106] | Wöhr, M., Orduz, D., Gregory, P., Moreno, H., Khan, U., Vörckel, K. J., ... Schwaller, B. (2015). Lack of parvalbumin in mice leads to behavioral deficits relevant to all human autism core symptoms and related neural morphofunctional abnormalities. Translational Psychiatry, 5(3), e525. doi: 10.1038/tp.2015.19URL |
[107] | Wolff, J. J., Swanson, M. R., Elison, J. T., Gerig, G., Pruett, J. R., Styner, M. A., ... Network, I. (2017). Neural circuitry at age 6 months associated with later repetitive behavior and sensory responsiveness in autism. Molecular Autism, 8(1), 8. doi: 10.1186/s13229-017-0126-zURL |
[108] | Woodward, N. D., Giraldo-Chica, M., Rogers, B., & Cascio, C. J. (2017). Thalamocortical dysconnectivity in autism spectrum disorder: An analysis of the Autism Brain Imaging Data Exchange. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2(1), 76-84. doi: 10.1016/j.bpsc.2016.09.002URL |
[109] | Xavier, J., Gauthier, S., Cohen, D., Zahoui, M., Chetouani, M., Villa, F., ... Anzalone, S. (2018). Interpersonal synchronization, motor coordination, and control are impaired during a dynamic imitation task in children with autism spectrum disorder. Frontiers in Psychology, 9, 1467. doi: 10.3389/fpsyg.2018.01467pmid: 30233439 |
[110] | Yang, M., Bozdagi, O., Scattoni, M. L., Wöhr, M., Roullet, F. I., Katz, A. M., ... Crawley, J. N. (2012). Reduced excitatory neurotransmission and mild autism-relevant phenotypes in adolescent Shank3 null mutant mice. Journal of Neuroscience, 32(19), 6525-6541. doi: 10.1523/JNEUROSCI.6107-11.2012URL |
相关文章 15
[1] | 王辉, 李广政. 儿童手势及其与学习的关系[J]. 心理科学进展, 2021, 29(9): 1617-1627. |
[2] | 王学思, 李静雅, 王美芳. 父母婚姻冲突对儿童发展的影响及其机制[J]. 心理科学进展, 2021, 29(5): 875-884. |
[3] | 张照, 张力为, 龚然. 视觉工作记忆的过滤效能[J]. 心理科学进展, 2021, 29(4): 635-651. |
[4] | 周爱保, 胡砚冰, 周滢鑫, 李玉, 李文一, 张号博, 郭彦麟, 胡国庆. 听而不“闻”?人声失认症的神经机制[J]. 心理科学进展, 2021, 29(3): 414-424. |
[5] | 赵小红, 童薇, 陈桃林, 吴冬梅, 张蕾, 陈正举, 方晓义, 龚启勇, 唐小蓉. 敬畏的心理模型及其认知神经机制[J]. 心理科学进展, 2021, 29(3): 520-530. |
[6] | 魏真瑜, 邓湘树, 赵治瀛. 亲社会行为中的从众效应[J]. 心理科学进展, 2021, 29(3): 531-539. |
[7] | 岳童, 黄希庭, 傅安国. 人们何以能够“舍生取义”?基于保护性价值观认知神经机制的解释[J]. 心理科学进展, 2021, 29(3): 540-548. |
[8] | 王祯. 儿童的性别刻板印象威胁及其干预[J]. 心理科学进展, 2021, 29(2): 276-285. |
[9] | 王葛彤, 席洁, 陈霓虹, 黄昌兵. 双眼视差的神经机制与知觉学习效应[J]. 心理科学进展, 2021, 29(1): 56-69. |
[10] | 郭滢, 龚先旻, 王大华. 错误记忆产生的认知与神经机制:信息加工视角[J]. 心理科学进展, 2021, 29(1): 79-92. |
[11] | 刘启鹏, 赵小云, 王翠艳, 徐艺雅, 王淑燕. 反刍思维与注意脱离损坏的关系及其神经机制[J]. 心理科学进展, 2021, 29(1): 102-111. |
[12] | 翁纯纯, 王宁. 时距知觉的动物研究范式及相关神经机制[J]. 心理科学进展, 2020, 28(9): 1478-1492. |
[13] | 杨晓梦, 王福兴, 王燕青, 赵婷婷, 高春颍, 胡祥恩. 瞳孔是心灵的窗口吗?——瞳孔在心理学研究中的应用及测量[J]. 心理科学进展, 2020, 28(7): 1029-1041. |
[14] | 程士静, 何文广. 语义认知的习得、发展和老化及其神经机制[J]. 心理科学进展, 2020, 28(7): 1156-1163. |
[15] | 张晶晶, 梁啸岳, 陈伊笛, 陈庆荣. 音乐句法加工的认知机制与音乐结构的影响模式[J]. 心理科学进展, 2020, 28(6): 883-892. |
PDF全文下载地址:
http://journal.psych.ac.cn/xlkxjz/CN/article/downloadArticleFile.do?attachType=PDF&id=5507