1中国科学院心理研究所, 北京 100101
2中国科学院大学心理学系, 北京 100049
3联想研究院, 北京 100094
收稿日期:
2020-01-14出版日期:
2021-04-15发布日期:
2021-02-22基金资助:
国家社科基金重点项目(17AZD041);国家自然科学基金项目(31700984);中国科学院青年创新促进会资助Identifying psychological indexes based on social media data: A machine learning method
SU Yue1,2, LIU Mingming1,3, ZHAO Nan1, LIU Xiaoqian1, ZHU Tingshao1,2()1Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
2Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
3Lenovo Research, Beijing 100094, China
Received:
2020-01-14Online:
2021-04-15Published:
2021-02-22摘要/Abstract
摘要: 心理指标识别建模是基于海量数据结合计算机机器学习算法识别心理特征的一种新兴方式。由于传统纸笔测量方式所存在的诸多限制, 本文对基于社交媒体数据的心理建模方法及应用于心理测量的可行性进行综述, 介绍了特征及提取方法、常用机器学习算法以及应用场景, 并对心理指标识别建模的优势和不足进行了总结与展望。该测量方法基于社交媒体数据, 相比自我报告法具有时效性高、可回溯测量、生态效度好等独特优势。然而, 基于社交媒体的心理指标识别建模方法也在学习成本、硬件成本等方面存在局限性。未来研究人员需要进一步探索社会媒体信息与用户心理变量间的关联机制, 并将心理指标识别模型同传统心理学研究方法结合进行更多的探索和应用。心理指标识别建模结合心理测量基本原理和计算机领域机器学习的技术, 将为心理学研究打开一扇新的大门。
图/表 3
图1心理建模的一般过程示意图
图1心理建模的一般过程示意图
表1心理建模常用特征-场景-算法组合汇总
数据 类型 | 应用场景 | |||
---|---|---|---|---|
个人信息 | 人格 | 心理健康 | 其他 | |
个人账户信息 | 分类: SVM、GP、LR | 回归: M5、GPR、RR、线性回归、PACE 分类: SVM、NB、DT | 回归: LASSO、SVR、stepwise | |
文本信息 | 回归: RR 分类: SVM、GP、LR、NB | 回归: GPR、线性回归、RR、M5、RFR 分类: NB、SVM、ZeroR、RF、DT、ZeroR、J48、KNN、LR、NN | 回归: 线性回归、LASSO、 SVR、stepwise、PACE 分类: SVM、LR、NN、RF | 回归: RR、GPR [用户影响力] 分类: SVM [情感类别] LR [道德判断、自我监控行为] |
社交网络信息 | 回归: 线性回归、RR 分类: LR、SVM、GP | 回归: LASSO、GPR、线性回归、RFR、M5、PACE、RR 分类: SVM、NB、ZeroR、J48、RF、KNN、LR、NB、DT | 回归: 线性回归、LASSO、SVR、stepwise、PACE 分类: SVM、NN | 回归: RR、GPR [用户影响力] 分类: LR [政治倾向] |
社交媒体使用信息 | 回归: 线性回归、PACE、GPR 分类: SVM、NB、DT、J48、RF、ZeroR | 回归: 线性回归、PACE、LASSO、SVR、stepwise 分类: SVM、NN | 回归: RR、GPR [用户影响力] | |
图片信息 | 分类: LR、NN | 回归: 线性回归、RFR | ||
其他信息 | 回归: PR、线性回归 分类: SVM、LR、GP、NB、NN | 回归: GPR、线性回归、RFR、LASSO 分类: NB、SVM、KNN、DT、ZeroR | 回归: 线性回归 | 分类: RF [人类价值] |
表1心理建模常用特征-场景-算法组合汇总
数据 类型 | 应用场景 | |||
---|---|---|---|---|
个人信息 | 人格 | 心理健康 | 其他 | |
个人账户信息 | 分类: SVM、GP、LR | 回归: M5、GPR、RR、线性回归、PACE 分类: SVM、NB、DT | 回归: LASSO、SVR、stepwise | |
文本信息 | 回归: RR 分类: SVM、GP、LR、NB | 回归: GPR、线性回归、RR、M5、RFR 分类: NB、SVM、ZeroR、RF、DT、ZeroR、J48、KNN、LR、NN | 回归: 线性回归、LASSO、 SVR、stepwise、PACE 分类: SVM、LR、NN、RF | 回归: RR、GPR [用户影响力] 分类: SVM [情感类别] LR [道德判断、自我监控行为] |
社交网络信息 | 回归: 线性回归、RR 分类: LR、SVM、GP | 回归: LASSO、GPR、线性回归、RFR、M5、PACE、RR 分类: SVM、NB、ZeroR、J48、RF、KNN、LR、NB、DT | 回归: 线性回归、LASSO、SVR、stepwise、PACE 分类: SVM、NN | 回归: RR、GPR [用户影响力] 分类: LR [政治倾向] |
社交媒体使用信息 | 回归: 线性回归、PACE、GPR 分类: SVM、NB、DT、J48、RF、ZeroR | 回归: 线性回归、PACE、LASSO、SVR、stepwise 分类: SVM、NN | 回归: RR、GPR [用户影响力] | |
图片信息 | 分类: LR、NN | 回归: 线性回归、RFR | ||
其他信息 | 回归: PR、线性回归 分类: SVM、LR、GP、NB、NN | 回归: GPR、线性回归、RFR、LASSO 分类: NB、SVM、KNN、DT、ZeroR | 回归: 线性回归 | 分类: RF [人类价值] |
表2心理模型识别信度检验(刘明明, 2019)
计算模型 | 重测信度 |
---|---|
大五人格 | 0.77~0.79 |
抑郁 | 0.83 |
自杀可能性 | 0.80~0.91 |
生活满意度 | 0.84 |
表2心理模型识别信度检验(刘明明, 2019)
计算模型 | 重测信度 |
---|---|
大五人格 | 0.77~0.79 |
抑郁 | 0.83 |
自杀可能性 | 0.80~0.91 |
生活满意度 | 0.84 |
参考文献 129
[1] | 白朔天, 袁莎, 程立, 朱廷劭. (2014). 多任务回归在社交媒体挖掘中的应用. 哈尔滨工业大学学报, 46(9),100-104+110. doi: 10.11918/j.issn.0367-6234.2014.09.017URL |
[2] | 曹奔, 夏勉, 任志洪, 林秀彬, 徐升, 赖丽足, 王琪, 江光荣. (2018). 大数据时代心理学文本分析技术——“主题模型”的应用. 心理科学进展, 26(5),770-780. |
[3] | 仇筠茜, 陈昌凤. (2018). 基于人工智能与算法新闻透明度的“黑箱”打开方式选择. 郑州大学学报 (哲学社会科学版), 51(5),84-88. |
[4] | 李昂, 郝碧波, 白朔天, 朱廷劭. (2015). 基于网络数据分析的心理计算: 针对心理健康状态与主观幸福感. 科学通报, 60(11),994-1001. |
[5] | 刘宝芹, 牛耘. (2016). 基于情绪特征的中文微博用户性别识别. 计算机工程与科学, 38(9),1917-1923. |
[6] | 刘明明. (2019). 基于社交媒体数据的心理特征自动识别新方法研究(硕士学位论文). 中国科学院大学, 北京. |
[7] | 娜迪热, 胡俊. (2018). 基于用户社交网络数据的人格倾向性分析及预测模型的建立. 电脑知识与技术, 14(7),6-11. |
[8] | 王晶晶, 李寿山, 黄磊. (2014). 中文微博用户性别分类方法研究. 中文信息学报, 28(6),150-155. |
[9] | 杨剑锋, 乔佩蕊, 李永梅, 王宁. (2019). 机器学习分类问题及算法研究综述. 统计与决策, 35(6),36-40. |
[10] | 于建伟. (2018). 基于社交网络的人格分析与预测. 现代计算机(专业版), (4),29-34. |
[11] | 张磊, 陈贞翔, 杨波. (2014). 社交网络用户的人格分析与预测. 计算机学报, 37(8),1877-1894. |
[12] | 张璞, 陈超, 陈韬, 王永. (2019). 两分类器融合的中文微博用户性别分类方法. 计算机工程与设计, 40(1),276-280. |
[13] | 郑敬华, 郭世泽, 高梁, 赵楠. (2018). 基于多任务学习的大五人格预测. 中国科学院大学学报, 35(4),550-560. |
[14] | 周阳. (2018). 基于社会媒体大数据的舆情预警 (博士学位论文). 中国科学院大学, 北京. |
[15] | 朱廷劭, 汪静莹, 赵楠, 刘晓倩. (2015). 论大数据时代的心理学研究变革. 新疆师范大学学报(哲学社会科学版), (4),2+108-115. |
[16] | Adal?, S., & Golbeck, J. (2014). Predicting personality with social behavior: A comparative study. Social Network Analysis and Mining, 4(1),159. |
[17] | Aldarwish, M. M., & Ahmad, H. F. (2017,March). Predicting depression levels using social media posts. In 2017 IEEE 13th International Symposium on Autonomous Decentralized System (ISADS) (pp.277-280). IEEE. |
[18] | Annalyn, N., Bos, M. W., Sigal, L., & Li, B. Y. (2018). Predicting personality from book preferences with user- generated content labels. IEEE Transactions on Affective Computing, 11(3),482-492. |
[19] | Araujo, M., Mejova, Y., Weber, I., & Benevenuto, F. (2017, June) Using Facebook ads audiences for global lifestyle disease surveillance: Promises and limitations. In Proceedings of the 2017 ACM on Web Science Conference . (pp.253-257). ACM. |
[20] | Arnoux, P. H., Xu, A. B., Boyette, N., Mahmud, J., Akkiraju, R., & Sinha, V. (2017, May). 25 Tweets to know you: A new model to predict personality with social media. In Eleventh International AAAI Conference on Web and Social Media |
[21] | Azucar, D., Marengo, D., & Settanni, M. (2018). Predicting the Big 5 personality traits from digital footprints on social media: A meta-analysis. Personality and Individual Differences,124150-159. |
[22] | Bachrach, Y., Kosinski, M., Graepel, T., Kohli, P., & Stillwell, D. (2012, June). Personality and patterns of Facebook usage. In Proceedings of the 4th Annual ACM Web Science Conference (pp.24-32). ACM. |
[23] | Bai, S. T., Yuan, S., Hao, B. B., & Zhu, T. S. (2014). Predicting personality traits of microblog users. Web Intelligence and Agent Systems: An International Journal, 12(3),249-265. |
[24] | Bai, S. T., Zhu, T. S., & Cheng, L. (2012). Big-five personality prediction based on user behaviors at social network sites. arXiv preprint arXiv:1204.4809. |
[25] | Bolotaeva, V., & Cata, T. (2010). Marketing opportunities with social networks. Journal of Internet Social Networking and Virtual Communities, 2010,1-8. |
[26] | Breiman, L. (2001). Random forests. Machine Learning, 45(1),5-32. doi: 10.1023/A:1010933404324URL |
[27] | Brown, P. F., Desouza, P. V., Mercer, R. L., Pietra, V.J. D., & Lai, J. C. (1992). Class-based n-gram models of natural language. Computational Linguistics, 18(4),467-479. |
[28] | Carvalho, L.D. F., & Pianowski, G. (2017). Pathological personality traits assessment using Facebook: Systematic review and meta-analyses. Computers in Human Behavior, 71,307-317. |
[29] | Celli, F., Pianesi, F., Stillwell, D., & Kosinski, M. (2013). Workshop on computational personality recognition: Shared task. Proceedings of the Workshop on Personality Recognition, 2006,2-5. |
[30] | de Choudhury, M., Counts, S., & Horvitz, E. J. (2013,May) Social media as a measurement tool of depression in populations. In Proceedings of the 5th Annual ACM Web Science Conference. (pp.47-56). ACM. |
[31] | de Choudhury M., Counts, S., Horvitz, E. J., & Hoff, A. (2014, February). Characterizing and predicting postpartum depression from shared Facebook data. In Proceedings of the 17th ACM Conference on Computer Supported Cooperative Work & Social Computing. (pp.626-638). ACM. |
[32] | de Choudhury, M., Kiciman, E., Dredze, M., Coppersmith, G., & Kumar, M. (2016, May). Discovering shifts to suicidal ideation from mental health content in social media. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (pp.2098-2110). ACM. |
[33] | Devnani, P. A., & Hegde, A. U. (2015). Autism and sleep disorders. Journal of Pediatric Neurosciences, 10(4),304-307. URLpmid: 26962332 |
[34] | de Vries, L., Gensler, S., & Leeflang, P.S. H. (2012). Popularity of brand posts on brand fan pages: An investigation of the effects of social media marketing. Journal of Interactive Marketing, 26(2),83-91. |
[35] | Dirilen-Gümü?, ?., Cross, S. E., & D?nmez, A. (2012). Who voted for whom? Comparing supporters of Obama and McCain on value types and personality traits. Journal of Applied Social Psychology, 42(12),2879-2900. |
[36] | Dufner, M., Arslan, R. C., & Denissen, J.J. A. (2018). The unconscious side of Facebook: Do online social network profiles leak cues to users' implicit motive dispositions? Motivation and Emotion, 42(1),79-89. |
[37] | Dunning, D., Heath, C., & Suls, J. M. (2005). Picture imperfect. Scientific American Mind, 16(4),20-27. |
[38] | Eichstaedt, J. C., Schwartz, H. A., Kern, M. L., Park, G., Labarthe, D. R., Merchant, R. M., ... Seligman, M.E. P. (2015). Psychological language on Twitter predicts county- level heart disease mortality. Psychological Science, 26(2),159-169. URLpmid: 25605707 |
[39] | Ernala, S. K., Birnbaum, M. L., Candan, K. A., Rizvi, A. F., Sterling, W. A., Kane, J.M., & de Choudhury, M. (2019, April). Methodological gaps in predicting mental health states from social media: Triangulating diagnostic signals. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (p. 134). ACM. |
[40] | Farnadi, G., Sitaraman, G., Sushmita, S., Celli, F., Kosinski, M., Stillwell, D., ... de Cock, M. (2016). Computational personality recognition in social media. User Modeling and User-adapted Interaction, 26(2-3),109-142. |
[41] | Farnadi, G., Tang, J., de Cock, M., & Moens, M. F. (2018,February). User profiling through deep multimodal fusion. In Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining (pp.171-179). ACM. |
[42] | Farnadi, G., Zoghbi, S., Moens, M. -F., & de Cock, M. (2013, June). Recognising personality traits using Facebook status updates. Workshop on Computational Personality Recognition (WCPR13) in International AAAI Conference on Weblogs and Social Media (ICWSM13),14-18. |
[43] | Fernandez, A., Herrera, F., Cordon, O., del Jesus, M. J., & Marcelloni, F. (2019). Evolutionary Fuzzy systems for explainable artificial intelligence: Why, when, what for, and where to?. IEEE Computational Intelligence Magazine, 14(1),69-81. |
[44] | Gao, R., Hao, B. B., Bai, S. T., Li, L., Li, A., & Zhu, T. S. (2013, October) Improving user profile with personality traits predicted from social media content. In Proceedings of the 7th ACM Conference on Recommender Systems. (pp.355-358). ACM. |
[45] | Garten, J., Boghrati, R., Hoover, J., Johnson, K. M., & Dehghani, M. (2016, July) Morality between the lines: Detecting moral sentiment in text. In Proceedings of IJCAI 2016 Workshop on Computational Modeling of Attitudes. |
[46] | Gerrig, R. J., Zimbardo, P. G., Zimbardo, P. G., Psychologue, E. U., & Zimbardo, P. G. (2012). Psychology and life (20th ed.). Boston: Pearson. |
[47] | Gittelman, S., Lange, V., Crawford, C.A. G., Okoro, C. A., Lieb, E., Dhingra, S. S., & Trimarchi, E. (2015). A new source of data for public health surveillance: Facebook likes. Journal of Medical Internet Research, 17(4),e98. URLpmid: 25895907 |
[48] | Golbeck, J., Robles, C., Edmondson, M., & Turner, K. (2011, October). Predicting personality from twitter. In 2011 IEEE Third International Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third International Conference on Social Computing, (pp.149-156). IEEE. |
[49] | Golbeck, J., Robles, C., & Turner, K. (2011). Predicting personality with social media. Paper presented at the CHI '11 Extended Abstracts on Human Factors in Computing Systems (pp.253-262), ACM. doi: https://doi.org/10.1145/1979742.1979614. URLpmid: 27990497 |
[50] | Gosling, S. D., Augustine, A. A., Vazire, S., Holtzman, N., & Gaddis, S. (2011). Manifestations of personality in online social networks: Self-reported Facebook-related behaviors and observable profile information. Cyberpsychology, Behavior, and Social Networking, 14, 14(9),483-488. |
[51] | Graham, J., Haidt, J., & Nosek, B. A. (2009). Liberals and conservatives rely on different sets of moral foundations. Journal of Personality and Social Psychology, 96(5),1029-1046. URLpmid: 19379034 |
[52] | Hans, C. (2009). Bayesian lasso regression. Biometrika, 96(4),835-845. |
[53] | Hao, B. B., Li, L., Gao, R., Li, A., & Zhu, T. S. (2014, August). Sensing subjective well-being from social media. In International Conference on Active Media Technology(pp. 324-335). Springer, Cham. |
[54] | Hao, B. B., Li, L., Li, A., & Zhu, T. S. (2013, July). Predicting mental health status on social media a preliminary study on Microblog. In 15th International Conference on Human-Computer Interaction 8024, (pp.101-110) |
[55] | He, Q. W., Glas, C.A. W., Kosinski, M., Stillwell, D. J., & Veldkamp, B. P. (2014). Predicting self-monitoring skills using textual posts on Facebook. Computers in Human Behavior, 33,69-78. |
[56] | Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: applications to nonorthogonal problems. Technometrics, 12(1),69-82. |
[57] | Hopstaken, J. F., van der Linden, D., Bakker, A. B., Kompier, M.A. J., & Leung, Y. K. (2016). Shifts in attention during mental fatigue: Evidence from subjective, behavioral, physiological, and eye-tracking data. Journal of Experimental Psychology: Human Perception and Performance, 42(6),878-889. URLpmid: 26752733 |
[58] | Hu, Z., Liu, Y. S., Zhang, C. H., & Xu, Y. N. June, June.(2017, June) The analysis of topic's personality traits using a new topic model. In 2017 2nd International Conference on Image, Vision and Computing (ICIVC),(pp.1079-1083). IEEE. |
[59] | Iacobelli, F., Gill, A. J., Nowson, S., & Oberlander, J. (2011). Large scale personality classification of Bloggers. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6975(PART 2),487-496. doi: https://doi.org/ 10.1007/978-3-642-24571-8. |
[60] | Kalimeri, K., Beiró, M. G., Delfino, M., Raleigh, R., & Cattuto, C. (2019). Predicting demographics, moral foundations, and human values from digital behaviours. Computers in Human Behavior, 92,428-445. |
[61] | Kern, M. L., Eichstaedt, J. C., Schwartz, H. A., Dziurzynski, L., Ungar, L. H., Stillwell, D. J., ... Seligman, M.E. P. (2014). The online social self: An open vocabulary approach to personality. Assessment, 21(2),158-169. URLpmid: 24322010 |
[62] | Kosinski, M., Bachrach, Y., Kohli, P., Stillwell, D., & Graepel, T. (2014). Manifestations of user personality in website choice and behaviour on online social networks. Machine Learning, 95(3),357-380. |
[63] | Kosinski, M., Matz, S. C., Gosling, S. D., Popov, V., & Stillwell, D. (2015). Facebook as a research tool for the social sciences: Opportunities, challenges, ethical considerations, and practical guidelines. American Psychologist, 70(6),543-548. |
[64] | Kosinski, M., Stillwell, D., & Graepel, T. (2013). Private traits and attributes are predictable from digital records of human behavior. Proceedings of the National Academy of Sciences, 110(15),5802-5805. |
[65] | Kosinski, M., Wang, Y. L., Lakkaraju, H., & Leskovec, J. (2016). Mining big data to extract patterns and predict real-life outcomes. Psychological Methods, 21(4),493-506. |
[66] | Lampos, V., Aletras, N., Preo?iuc-Pietro, D., & Cohn, T. (2014, January). Predicting and characterising user impact on Twitter. In 14th Conference of the European Chapter of the Association for Computational Linguistics 2014, EACL 2014,(pp.405-413) |
[67] | Lewenberg, Y., Bachrach, Y., & Volkova, S. (2015, October) Using emotions to predict user interest areas in online social networks. In 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA). (pp.1-10). IEEE. |
[68] | Li, L., Li, A., Hao, B., Guan, Z., & Zhu, T. (2014). Predicting active users' personality based on micro-blogging behaviors. PloS One, 9(1),e84997. URLpmid: 24465462 |
[69] | Lima, A. C. E. S. & de Castro, L. N. (2014). A multi-label, semi-supervised classification approach applied to personality prediction in social media. Neural Networks, 58,122-130. doi: 10.1016/j.neunet.2014.05.020URLpmid: 24969690 |
[70] | Liu, L. Q., Preotiuc-Pietro, D., Samani, Z. R., Moghaddam, M. E., & Ungar, L. H. (2016). Analyzing personality through social media profile picture choice. In Proceedings of the Tenth International AAAI Conference on Web and Social Media (ICWSM) ,(pp.211-220). AAAI. |
[71] | Liu, M. M., Wu, Y. F., Jiao, D. D., Wu, M. S. T., & Zhu, T. S. (2018). Literary intelligence analysis of novel protagonists' personality traits and development. Digital Scholarship in the Humanities, 34(1),221-229. |
[72] | Liu, M. M., Xue, J. Zhao, N., Wang, X. F., Jiao, D. D., & Zhu, T.S. (2018). Using social media to explore the consequences of domestic violence on mental health. Journal of Interpersonal Violence, 0886260518757756. URLpmid: 33765852 |
[73] | Liu, X. Q., & Zhu, T. S. (2016). Deep learning for constructing microblog behavior representation to identify social media user's personality. PeerJ Computer Science, 2,e81. |
[74] | Liu, X. Y., Liu, X. Q., Sun, J. M., Yu, N. X. N., Sun, B. L., Li, Q., & Zhu, T. S. (2019). Proactive suicide prevention online (PSPO): Machine identification and crisis management for Chinese social media users with suicidal thoughts and behaviors. Journal of Medical Internet Research, 21(5),e11705. doi: 10.2196/11705URLpmid: 31344675 |
[75] | Liu, Y. Z., Wang, J. J., & Jiang, Y. C. (2016). PT-LDA: A latent variable model to predict personality traits of social network users. Neurocomputing, 210,155-163. |
[76] | Loper, E., & Bird, S. (2002). NLTK: the natural language toolkit. In Proceedings of the ACL-02 Workshop on Effective tools and methodologies for teaching natural language processing and computational linguistics ,(pp.63-70). Association for Computational Linguistics. |
[77] | Mairesse, F., Walker, M. A., Mehl, M. R., & Moore, R. K. (2007). Using linguistic cues for the automatic recognition of personality in conversation and text. Journal of Artificial Intelligence Research, 30(1),457-500. |
[78] | Markovikj, D., Gievska, S., Kosinski, M., & Stillwell, D. (2013, June). Mining Facebook data for predictive personality modeling. In Proceedings of the Seventh International AAAI Conference on Weblogs and Social Media,(pp.23-26) |
[79] | Mathan, K., Kumar, P. M., Panchatcharam, P., Manogaran, G., & Varadharajan, R. (2018). A novel Gini index decision tree data mining method with neural network classifiers for prediction of heart disease. Design Automation for Embedded Systems, 22(3),225-242. |
[80] | Matz, S. C., Kosinski, M., Nave, G., & Stillwell, D. J. (2017). Psychological targeting as an effective approach to digital mass persuasion. Proceedings of the National Academy of Sciences, 114(48),12714-12719. |
[81] | Mejova, Y., Weber, I., & Fernandez-Luque, L. (2018). Online health monitoring using Facebook advertisement audience estimates in the United States: Evaluation study. Journal of Medical Internet Research, 4(1),e30. doi: https://doi.org/10.2196/publichealth.7217. |
[82] | Mohammad, S. M., & Kiritchenko, S. (2015). Using hashtags to capture fine emotion categories from tweets. Computational Intelligence, 31(2),301-326. |
[83] | Mohammad, S. M., & Turney, P. D. (2013). Nrc emotion lexicon. National Research Council. http://saifmohammad. com/WebDocs/NRCemotionlexicon.pdf. |
[84] | Montgomery, D. C., Peck, E. A., & Vining, G. G. (2012). Introduction to linear regression analysis (5th ed.). Hoboken, NJ: John Wiley & Sons. |
[85] | Nave, G., Minxha, J., Greenberg, D. M., Kosinski, M., Stillwell, D., & Rentfrow, J. (2018). Musical preferences predict personality: Evidence from active listening and Facebook likes. Psychological Science, 29(7),1145-1158. URLpmid: 29587129 |
[86] | Nguyen, T., O'Dea, B., Larsen, M., Phung, D., Venkatesh, S., & Christensen, H. (2017). Using linguistic and topic analysis to classify sub-groups of online depression communities. Multimedia Tools and Applications, 76(8),10653-10676. |
[87] | Nie, D., Guan, Z. D., Hao, B. B., Bai, S. T., & Zhu, T. S. (2014, August). Predicting personality on social media with semi- supervised learning. In 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), (Vol. 2, pp.158-165). IEEE. |
[88] | Nielsen, F.?. (2011). A new ANEW: Evaluation of a word list for sentiment analysis in microblogs. In Proceedings of the ESWC2011 Workshop on Making Sense of Microposts, (pp.93-98). CEUR Workshop Proceedings. |
[89] | Orr, E. S., Sisic, M., Ross, C., Simmering, M. G., Arseneault, J. M., & Orr, R. R. (2009). The influence of shyness on the use of Facebook in an undergraduate sample. CyberPsychology & Behavior, 12(3),337-340. doi: 10.1089/cpb.2008.0214URLpmid: 19250019 |
[90] | Park, G., Schwartz, H. A., Eichstaedt, J. C., Kern, M. L., Kosinski, M., Stillwell, D. J., ... Seligman, M. E. (2015). Automatic personality assessment through social media language. Journal of Personality and Social Psychology, 108(6),934-952. URLpmid: 25365036 |
[91] | Paulhus, D. L., & Vazire, S. (2007). The self-report method. Handbook of Research Methods in Personality Psychology, 1,224-239. |
[92] | Peng, C.-Y. J., Lee, K. L., & Ingersoll, G. M. (2002). An introduction to logistic regression analysis and reporting. The Journal of Educational Research, 96(1),3-14. |
[93] | Peng, K. H., Liou, L. H., Chang, C. S., & Lee, D. S. (2015, October) Predicting personality traits of Chinese users based on Facebook wall posts. In 2015 24th Wireless and Optical Communication Conference (WOCC) . (pp.9-14). IEEE. |
[94] | Pennebaker, J. W., Booth, R. J., & Francis, M. E. (2007). Linguistic inquiry and word count: LIWC [Computer software]. Austin, TX: liwc. net, 135. |
[95] | Pennington, J., Socher, R., & Manning, C. (2014, October). Glove: Global vectors for word representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) . (pp.1532-1543). Association for Computational Linguistics. |
[96] | Praet, S., van Aelst, P., & Martens, D. (2018). I like, therefore I am. Predictive modeling to gain insights in political preference in a multi-party system. University of Antwerp, Faculty of Business and Economics,1-34. |
[97] | Preo?iuc-Pietro, D., Lampos, V., & Aletras, N. (2015, July). An analysis of the user occupational class through Twitter content. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),(Vol.1, pp.1754-1764. |
[98] | Preo?iuc-Pietro, D., Volkova, S., Lampos, V., Bachrach, Y., & Aletras, N. (2015). Studying user income through language, behaviour and affect in social media. PloS One, 10(9),e0138717. URLpmid: 26394145 |
[99] | Qiu, L., Lin, H., Ramsay, J., & Yang, F. (2012). You are what you tweet: Personality expression and perception on Twitter. Journal of Research in Personality, 46(6),710-718. |
[100] | Resnik, P., Garron, A., & Resnik, R. 2013, October. Using topic modeling to improve prediction of neuroticism and depression in college students. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, (pp.1348-1353). Association for Computational Linguistics. |
[101] | Roberts, D. F., & Foehr, U. G. (2008). Trends in media use. The Future of Children, 18(1),11-37. URLpmid: 21338004 |
[102] | Robins, R. W., Tracy, J. L., & Sherman, J. W. (2007). What kinds of methods do personality psychologists use?. In R. Robins, C. Fraley, & R. Krueger (Eds.) Handbook of research methods in personality psychology ,(pp.673-678). New York, NY: Guilford Press. |
[103] | Rong, X. (2014). word2vec parameter learning explained. arX iv preprint arXiv:1411.2738, |
[104] | Saha, K., Weber, I., Birnbaum, M. L., & de Choudhury, M., (2017). Characterizing awareness of schizophrenia among Facebook users by leveraging Facebook advertisement estimates. Journal of Medical Internet Research, 19(5),e156. URLpmid: 28483739 |
[105] | Salton, G., & Buckley, C. (1988). Term-weighting approaches in automatic text retrieval. Information Processing & Management, 24(5),513-523. |
[106] | Schwartz, H. A., Eichstaedt, J. C., Kern, M. L., Dziurzynski, L., Ramones, S. M., Agrawal, M., ... Ungar, L. H. (2013). Personality, gender, and age in the language of social media: The open-vocabulary approach. PloS One, 8(9),e73791. URLpmid: 24086296 |
[107] | Segalin, C., Perina, A., Cristani, M., & Vinciarelli, A. (2017). The pictures we like are our image: Continuous mapping of favorite pictures into self-assessed and attributed personality traits. IEEE Transactions on Affective Computing, 8(2),268-285. doi: https://doi.org/10.1109/TAFFC. 2016.2516994. |
[108] | Seneviratne, S., Seneviratne, A., Mohapatra, P., & Mahanti, A. (2014). Predicting user traits from a snapshot of apps installed on a smartphone. ACM SIGMOBILE Mobile Computing and Communications Review, 18(2),1-8. doi: https://doi.org/10.1145/2636242.2636244. |
[109] | Seneviratne, S., Seneviratne, A., Mohapatra, P., & Mahanti, A. (2015). Your installed apps reveal your gender and more!. ACM SIGMOBILE Mobile Computing and Communications Review, 18(3),55-61. |
[110] | Settanni, M., & Marengo, D. (2015). Sharing feelings online: studying emotional well-being via automated text analysis of Facebook posts. Frontiers in Psychology, 6,1045. URLpmid: 26257692 |
[111] | Singh, A., Thakur, N., & Sharma, A. (2016, March). A review of supervised machine learning algorithms. In 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom) , (pp.1310-1315). IEEE. |
[112] | Skowron, M., Tkal?i?, M., Ferwerda, B., & Schedl, M. (2016,April) Fusing social media cues: personality prediction from twitter and instagram. In Proceedings of the 25th International Conference Companion on World Wide Web(pp.107-108). International World Wide Web Conferences Steering Committee. |
[113] | Smith, R. J., Schwartz, H. A., Preo?iuc-Pietro, D., Eichstaedt, J. C., Asch, D. A., Ungar, L. H.… Crutchley, P. (2018). Facebook language predicts depression in medical records. Proceedings of the National Academy of Sciences, 115(44),11203-11208. doi: https://doi.org/10.1073/pnas.1802331115. |
[114] | Sumner, C., Byers, A., Boochever, R., & Park, G. J. (2012, December) Predicting dark triad personality traits from twitter usage and a linguistic analysis of tweets. In 2012 11th International Conference on Machine Learning and Applications. (Vol. 2, pp.386-393). IEEE. |
[115] | Tsugawa, S., Kikuchi, Y., Kishino, F., Nakajima, K., Itoh, Y., & Ohsaki, H. (2015,April) Recognizing depression from twitter activity. In Proceedings of the 33rd annual ACM Conference on Human Factors in Computing Systems(pp.3187-3196). ACM. |
[116] | Tucker, C. E. (2014). Social networks, personalized advertising, and privacy controls. Journal of Marketing Research, 51(5),546-562. |
[117] | Volkova, S., & Bachrach, Y. (2015). On predicting sociodemographic traits and emotions from communications in social networks and their implications to online self-disclosure. Cyberpsychology, Behavior, and Social Networking, 18(12),726-736. doi: https://doi.org/10.1089/cyber.2014.0609. |
[118] | Walsh, P., Clavio, G., Lovell, M. D., & Blaszka, M. (2013). Differences in event brand personality between social media users and non-users. Sport Marketing Quarterly, 22(4),214-223. |
[119] | Wang, Y., & Kosinski, M. (2018). Deep neural networks are more accurate than humans at detecting sexual orientation from facial images. Journal of Personality and Social Psychology, 114(2),246-257. doi: 10.1037/pspa0000098URLpmid: 29389215 |
[120] | Wilson, M. (1988). MRC psycholinguistic database: Machine- usable dictionary, version 2.00. Behavior Research Methods, Instruments, & Computers, 20(1),6-10. |
[121] | You, Q. Z., Bhatia, S., Sun, T., & Luo, J.B. (2014,December). The eyes of the beholder: Gender prediction using images posted in online social networks. In 2014 IEEE International Conference on Data Mining Workshop (pp.1026-1030). IEEE. |
[122] | Youyou, W., Kosinski, M., & Stillwell, D. (2015). Computer- based personality judgments are more accurate than those made by humans. Proceedings of the National Academy of Sciences, 112(4),1036-1040. |
[123] | Youyou, W., Stillwell, D., Schwartz, H. A., & Kosinski, M. (2017). Birds of a feather do flock together: Behavior- based personality-assessment method reveals personality similarity among couples and friends. Psychological Science, 28(3),276-284. URLpmid: 28059682 |
[124] | Yu, S., Tranchevent, L. C., de Moor, B., & Moreau, Y. (2011). Kernel-based data fusion for machine learning. Berlin: Springer. |
[125] | Zhang, L., Huang, X. L., Liu, T. L., Li, A., Chen, Z.X & Zhu, T. S. (2014, November). (2014, November). Using linguistic features to estimate suicide probability of Chinese microblog users. In International Conference on Human Centered Computing, (pp.549-559).Springer, Cham. |
[126] | Zhong, Y., Yuan, N. J., Zhong, W., Zhang, F. Z.,& Xie, X. (2015). You are where you go: Inferring demographic attributes from location check-ins. In Proceedings of the Eighth ACM International Conference on Web Search and Data Mining (WSDM '15), (pp.295-304). ACM. |
[127] | Zhou, Y., Zhang, L., Liu, X. Q., Zhang, Z., Bai, S. T., & Zhu, T. S. (2017). Predicting the trends of social events on Chinese social media. Cyberpsychology, Behavior, and Social Networking, 20(9),533-539. |
[128] | Zhu, Y. Q., & Chen, H. G. (2015). Social media and human need satisfaction: Implications for social media marketing. Business Horizons, 58(3),335-345. |
[129] | Zschirnt, S. (2011). The origins & meaning of liberal/ conservative self-identifications revisited. Political Behavior, 33(4),685-701. |
相关文章 14
[1] | 黄观澜, 周晓璐. 抑郁症患者的语言使用模式[J]. 心理科学进展, 2021, 29(5): 838-848. |
[2] | 郑泓, 蒲城城, 王毅, 陈楚侨. 基于脑结构像的精神分裂症机器学习分类[J]. 心理科学进展, 2020, 28(2): 252-265. |
[3] | 董健宇, 韦文棋, 吴珂, 妮娜, 王粲霏, 付莹, 彭歆. 机器学习在抑郁症领域的应用[J]. 心理科学进展, 2020, 28(2): 266-274. |
[4] | 梁静, 阮倩男, 李贺, 马梦晴, 颜文靖. 认知负荷取向下基于记忆-反应冲突的欺骗检测[J]. 心理科学进展, 2020, 28(10): 1619-1630. |
[5] | 区健新, 吴寅, 刘金婷, 李红. 计算精神病学:抑郁症研究和临床应用的新视角[J]. 心理科学进展, 2020, 28(1): 111-127. |
[6] | 蔡玉清, 董书阳, 袁帅, 胡传鹏. 变量间的网络分析模型及其应用[J]. 心理科学进展, 2020, 28(1): 178-190. |
[7] | 彭苏浩, 陶丹, 冷玥, 邓慧华. 社会排斥的心理行为特征及其脑机制[J]. 心理科学进展, 2019, 27(9): 1656-1666. |
[8] | 柴唤友, 牛更枫, 褚晓伟, 魏 祺, 宋玉红, 孙晓军. 错失恐惧:我又错过了什么?[J]. 心理科学进展, 2018, 26(3): 527-537. |
[9] | 李凯;郭永玉;杨沈龙. 民众对于恐怖袭击的风险感知[J]. 心理科学进展, 2017, 25(2): 358-369. |
[10] | 张慧;徐富明;李彬;罗寒冰;郑秋强. 基于气候变化的风险认知[J]. 心理科学进展, 2013, 21(9): 1677-1685. |
[11] | 李峰;朱彬钰;辛涛. 十五年来心理测量学研究领域可视化研究—— 基于CITESPACE的分析[J]. 心理科学进展, 2012, 20(7): 1128-1138. |
[12] | 伊丽;武国城;万憬;陈松;汪志勇. 抗震救灾官兵心理健康状况及相关因素分析[J]. 心理科学进展, 2009, 17(3): 567-569. |
[13] | 傅根跃,陈昌凯. 传统测谎技术研究现状与趋势[J]. 心理科学进展, 2003, 11(1): 108-115. |
[14] | 谢晓非;徐联仓. 风险认知研究概况及理论框架[J]. 心理科学进展, 1995, 3(2): 17-22. |
PDF全文下载地址:
http://journal.psych.ac.cn/xlkxjz/CN/article/downloadArticleFile.do?attachType=PDF&id=5403