删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

错误记忆产生的认知与神经机制:信息加工视角

本站小编 Free考研考试/2022-01-01

郭滢1, 龚先旻2, 王大华1()
1北京师范大学发展心理研究院, 北京 100875
2香港中文大学何鸿燊海量数据决策分析研究中心&心理学系, 香港 999077
收稿日期:2020-05-14出版日期:2021-01-15发布日期:2020-11-23
通讯作者:王大华E-mail:wangdahua@bnu.edu.cn



The cognitive and neural mechanisms underlying false memory: An information processing perspective

GUO Ying1, GONG Xianmin2, WANG Dahua1()
1Institute of Developmental Psychology, Beijing Normal University, Beijing 100875, China
2Stanley Ho Big Data Decision Analytics Research Centre & Department of Psychology, The Chinese University of Hong Kong, Hong Kong 999077, China
Received:2020-05-14Online:2021-01-15Published:2020-11-23
Contact:WANG Dahua E-mail:wangdahua@bnu.edu.cn






摘要/Abstract


摘要: 采用信息加工视角, 在划分不同信息来源的基础上分析编码、存储(巩固)、再激活/再巩固和提取的一系列加工过程如何导致错误记忆形成, 由此总结出错误记忆产生的三个可能原因:(1)因缺乏针对目标事物特异性细节的记忆表征而侧重于编码和提取目标和非目标事物共享的抽象记忆表征, 使被试更倾向于依赖抽象表征对缺失的目标细节进行重构, 引发错误记忆; (2)目标事物启动了对应图式, 导致与图式相关的非目标事物记忆表征得到增强, 引发错误记忆; (3)误导信息干扰了再度激活状态下目标事物的记忆表征, 妨碍其进行准确的记忆再巩固, 从而引发错误记忆。未来研究可进一步探讨目标事物特异性细节的表征区域、不同类型的图式表征促进非目标事物记忆表征的具体机制以及提取阶段的图式复现对错误记忆形成的影响等问题。



图1信息加工视角下错误记忆产生机制的示意图 注:各灰色背景框代表不同的信息来源(来自目标事件、内部图式和外界干扰); 各白色方框代表不同的信息加工过程(编码、存储、再激活/再巩固和提取); 各虚线方框代表错误记忆产生的可能机制, 每条机制着重描述某一来源信息的各加工过程, 由①②③代表, 且它的发生阶段与下方的白色方框相对应。三条机制相互独立, 又彼此联系1(1 三种机制之间既相互独立, 又彼此联系。其中, 独立体现在:每条机制都对应着不同的信息来源, 并与不同种类的错误记忆形成有关, 比如机制2可以用来解释关联性错误记忆的形成, 而机制3可以用来解释植入性错误记忆的形成。联系体现在:正确记忆形成相关的机制1与错误记忆形成相关的机制2和机制3通常共同发生。不论是关联性错误记忆, 还是植入性错误记忆都缺乏针对目标事件的特异化细节表征。另外, 机制1与机制2、机制1与机制3间还存在相互影响的可能。如机制2中图式对特异性细节的抑制作用(如van der Linden et al., 2017)以及机制3中误导信息与特异性细节间的相互竞争(如Okado & Stark, 2005)。), 共同导致错误记忆的发生。有必要进行说明的是, 机制3虽着重描述对外界干扰的信息加工, 但同样涉及对目标事件的信息加工, 因此代表机制3的虚线方框同时呈现在两种灰色背景框之上。
图1信息加工视角下错误记忆产生机制的示意图 注:各灰色背景框代表不同的信息来源(来自目标事件、内部图式和外界干扰); 各白色方框代表不同的信息加工过程(编码、存储、再激活/再巩固和提取); 各虚线方框代表错误记忆产生的可能机制, 每条机制着重描述某一来源信息的各加工过程, 由①②③代表, 且它的发生阶段与下方的白色方框相对应。三条机制相互独立, 又彼此联系1(1 三种机制之间既相互独立, 又彼此联系。其中, 独立体现在:每条机制都对应着不同的信息来源, 并与不同种类的错误记忆形成有关, 比如机制2可以用来解释关联性错误记忆的形成, 而机制3可以用来解释植入性错误记忆的形成。联系体现在:正确记忆形成相关的机制1与错误记忆形成相关的机制2和机制3通常共同发生。不论是关联性错误记忆, 还是植入性错误记忆都缺乏针对目标事件的特异化细节表征。另外, 机制1与机制2、机制1与机制3间还存在相互影响的可能。如机制2中图式对特异性细节的抑制作用(如van der Linden et al., 2017)以及机制3中误导信息与特异性细节间的相互竞争(如Okado & Stark, 2005)。), 共同导致错误记忆的发生。有必要进行说明的是, 机制3虽着重描述对外界干扰的信息加工, 但同样涉及对目标事件的信息加工, 因此代表机制3的虚线方框同时呈现在两种灰色背景框之上。







[1] 陈红, 郭春彦, 杨海波. (2015). 延迟间隔和提取条件对短时错误记忆的影响. 心理与行为研究, 13(1), 37-43.
[2] 江荣焕, 李晓东. (2015). 错误记忆的发展性逆转: 为什么越长大越易“错”? 心理科学进展, 23(8), 1371-1379.
[3] 雷威, 杨志, 詹旻野, 李红, 翁旭初. (2010). 利用脑成像多体素模式分析解码认知的神经表征: 原理和应用. 心理科学进展, 18(12), 1934-1941.
[4] 刘振亮, 刘田田, 韩佳慧, 沐守宽. (2015). 错误记忆的可植入性. 心理科学进展, 23(5), 806-814.
[5] 王密, 耿海燕. (2010). 从关联性记忆错觉的毕生发展看记忆的适应性特质. 科学通报, 55(4), 307-315.
[6] Addis, D. R., & McAndrews, M. P. (2006). Prefrontal and hippocampal contributions to the generation and binding of semantic associations during successful encoding. Neuroimage, 33(4), 1194-1206.
URLpmid: 17023179
[7] Aminoff, E., Schacter, D. L., & Bar, M. (2008). The cortical underpinnings of context-based memory distortion. Journal of Cognitive Neuroscience, 20(12), 2226-2237.
URLpmid: 18457503
[8] Baldassano, C., Chen, J., Zadbood, A., Pillow, J. W., Hasson, U., & Norman, K. A. (2017). Discovering event structure in continuous narrative perception and memory. Neuron, 95(3), 709-721.
URLpmid: 28772125
[9] Baldassano, C., Hasson, U., & Norman, K. A. (2018). Representation of real-world event schemas during narrative perception. Journal of Neuroscience, 38(45), 9689-9699.
URLpmid: 30249790
[10] Baym, C. L., & Gonsalves, B. D. (2010). Comparison of neural activity that leads to true memories, false memories, and forgetting: An fMRI study of the misinformation effect. Cognitive, Affective, & Behavioral Neuroscience, 10(3), 339-348.
[11] Berkers, R. M. W. J., van der Linden, M., de Almeida, R. F., Müller, N. C. J., Bovy, L., Dresler, M., ... Fernández, G. (2017). Transient medial prefrontal perturbation reduces false memory formation. Cortex, 88, 42-52.
URLpmid: 28068640
[12] Binder, J. R., & Desai, R. H. (2011). The neurobiology of semantic memory. Trends in Cognitive Sciences, 15(11), 527-536.
URLpmid: 22001867
[13] Bonasia, K., Sekeres, M. J., Gilboa, A., Grady, C. L., Winocur, G., & Moscovitch, M. (2018). Prior knowledge modulates the neural substrates of encoding and retrieving naturalistic events at short and long delays. Neurobiology of Learning and Memory, 153, 26-39.
URLpmid: 29269085
[14] Bower, G. H., Black, J. B., & Turner, T. J. (1979). Scripts in memory for text. Cognitive Psychology, 11(2), 177-220.
doi: 10.1016/0010-0285(79)90009-4URL
[15] Bowman, C. R., & Dennis, N. A. (2016). The neural basis of recollection rejection: Increases in hippocampal-prefrontal connectivity in the absence of a shared recall-to-reject and target recollection network. Journal of cognitive neuroscience, 28(8), 1194-1209.
URLpmid: 27054401
[16] Brainerd, C. J., & Reyna, V. F. (1993). Memory independence and memory interference in cognitive development. Psychological Review, 100(1), 42-67.
URLpmid: 8426881
[17] Brainerd, C. J., & Reyna, V. F. (2002). Fuzzy-trace theory and false memory. Current Directions in Psychological Science, 11(5), 164-169.
doi: 10.1111/1467-8721.00192URL
[18] Bridge, D. J., & Voss, J. L. (2014). Hippocampal binding of novel information with dominant memory traces can support both memory stability and change. Journal of Neuroscience, 34(6), 2203-2213.
URLpmid: 24501360
[19] Cabeza, R., Rao, S. M., Wagner, A. D., Mayer, A. R., & Schacter, D. L. (2001). Can medial temporal lobe regions distinguish true from false? An event-related functional MRI study of veridical and illusory recognition memory. Proceedings of the National Academy of Sciences of the United States of America, 98(8), 4805-4810.
URLpmid: 11287664
[20] Chadwick, M. J., Anjum, R. S., Kumaran, D., Schacter, D. L., Spiers, H. J., & Hassabis, D. (2016). Semantic representations in the temporal pole predict false memories. Proceedings of the National Academy of Sciences of the United States of America, 113(36), 10180-10185.
URLpmid: 27551087
[21] Chen, J., Leong, Y. C., Honey, C. J., Yong, C. H., Norman, K. A., & Hasson, U. (2017). Shared memories reveal shared structure in neural activity across individuals. Nature Neuroscience, 20(1), 115-125.
doi: 10.1038/nn.4450URLpmid: 27918531
[22] Chen, J., Olsen, R. K., Preston, A. R., Glover, G. H., & Wagner, A. D. (2011). Associative retrieval processes in the human medial temporal lobe: Hippocampal retrieval success and CA1 mismatch detection. Learning & Memory, 18(8), 523-528.
URLpmid: 21775513
[23] Cooper, R. A., & Ritchey, M. (2020). Progression from feature-specific brain activity to hippocampal binding during episodic encoding. Journal of Neuroscience, 40(8), 1701-1709.
URLpmid: 31826947
[24] Davis, T., & Poldrack, R. A. (2013). Measuring neural representations with fMRI: practices and pitfalls. Annals of the New York Academy of Sciences, 1296(1), 108-134.
doi: 10.1111/nyas.12156URL
[25] Dennis, N. A., Bowman, C. R., & Turney, I. C. (2015). Functional neuroimaging of false memories. In D. R. Addis, M. Barense & A. Duarte (Eds.), The Wiley Handbook on the Cognitive Neuroscience of Memory (pp. 150-171). Hoboken, NJ: John Wiley & Sons, Ltd.
[26] Dennis, N. A., Kim, H., & Cabeza, R. (2008). Age-related differences in brain activity during true and false memory retrieval. Journal of cognitive neuroscience, 20(8), 1390-1402.
URLpmid: 18303982
[27] Doss, M. K., Picart, J. K., & Gallo, D. A. (2018). The dark side of context: Context reinstatement can distort memory. Psychological Science, 29(6), 914-925.
URLpmid: 29671680
[28] Friedman, A. (1979). Framing pictures: the role of knowledge in automatized encoding and memory for gist. Journal of Experimental Psychology: General, 108(3), 316-355.
[29] Gallo, D. A. (2006). Processes that cause false memory. In H. L. Roediger & J. R. Pomerantz (Eds.), Associative illusions of memory: False memory research in DRM and related tasks (pp. 39-73). New York, NY: Psychology Press.
[30] Garoff-Eaton, R. J., Kensinger, E. A., & Schacter, D. L. (2007). The neural correlates of conceptual and perceptual false recognition. Learning & Memory, 14(10), 684-692.
URLpmid: 17911372
[31] Garoff-Eaton, R. J., Slotnick, S. D., & Schacter, D. L. (2005). The neural origins of specific and general memory: The role of the fusiform cortex. Neuropsychologia, 43(6), 847-859.
URLpmid: 15716157
[32] Gershman, S. J., Schapiro, A. C., Hupbach, A., & Norman, K. A. (2013). Neural context reinstatement predicts memory misattribution. Journal of Neuroscience, 33(20), 8590-8595.
doi: 10.1523/JNEUROSCI.0096-13.2013URL
[33] Ghosh, V. E., & Gilboa, A. (2014). What is a memory schema? A historical perspective on current neuroscience literature. Neuropsychologia, 53, 104-114.
doi: 10.1016/j.neuropsychologia.2013.11.010URL
[34] Ghosh, V. E., Moscovitch, M., Colella, B. M., & Gilboa, A. (2014). Schema representation in patients with ventromedial PFC lesions. Journal of Neuroscience, 34(36), 12057-12070.
doi: 10.1523/JNEUROSCI.0740-14.2014URL
[35] Gilboa, A., & Marlatte, H. (2017). Neurobiology of schemas and schema-mediated memory. Trends in Cognitive Sciences, 21(8), 618-631.
URLpmid: 28551107
[36] Gilboa, A., & Moscovitch, M. (2017). Ventromedial prefrontal cortex generates pre-stimulus theta coherence desynchronization: A schema instantiation hypothesis. Cortex, 87, 16-30.
URLpmid: 27890323
[37] Gonsalves, B., & Paller, K. A. (2000). Neural events that underlie remembering something that never happened. Nature Neuroscience, 3(12), 1316-1321.
URLpmid: 11100153
[38] Gordon, A. M., Rissman, J., Kiani, R., & Wagner, A. D. (2014). Cortical reinstatement mediates the relationship between content-specific encoding activity and subsequent recollection decisions. Cerebral Cortex, 24(12), 3350-3364.
URLpmid: 23921785
[39] Guerin, S. A., Robbins, C. A., Gilmore, A. W., & Schacter, D. L. (2012a). Interactions between visual attention and episodic retrieval: dissociable contributions of parietal regions during gist-based false recognition. Neuron, 75(6), 1122-1134.
URLpmid: 22998879
[40] Guerin, S. A., Robbins, C. A., Gilmore, A. W., & Schacter, D. L. (2012b). Retrieval failure contributes to gist-based false recognition. Journal of Memory and Language, 66(1), 68-78.
URLpmid: 22125357
[41] Hannigan, S. L., & Reinitz, M. T. (2001). A demonstration and comparison of two types of inference-based memory errors. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27(4), 931-940.
URLpmid: 11486926
[42] Hardt, O., Einarsson, E. ?., & Nader, K. (2010). A bridge over troubled water: Reconsolidation as a link between cognitive and neuroscientific memory research traditions. Annual Review of Psychology, 61(1), 141-167.
[43] Hupbach, A., Gomez, R., & Nadel, L. (2009). Episodic memory reconsolidation: Updating or source confusion? Memory, 17(5), 502-510.
URLpmid: 19468955
[44] Jacques, P. L. S., Olm, C., & Schacter, D. L. (2013). Neural mechanisms of reactivation-induced updating that enhance and distort memory. Proceedings of the National Academy of Sciences of the United States of America, 110(49), 19671-19678.
URLpmid: 24191059
[45] Johnson, M. K., Raye, C. L., Mitchell, K. J., & Ankudowich, E. (2012). The cognitive neuroscience of true and false memories. In R. F. Belli (Ed.). True and false recovered memories: Toward a reconsolidation of the debate (pp. 15-52). New York, NY: Springer.
[46] Jonker, T. R., Dimsdale-zucker, H., Ritchey, M., Clarke, A., & Ranganath, C. (2018). Neural reactivation in parietal cortex enhances memory for episodically linked information. Proceedings of the National Academy of Sciences of the United States of America, 115(43), 11084-11089.
doi: 10.1073/pnas.1800006115URLpmid: 30297400
[47] Kensinger, E. A., & Schacter, D. L. (2006). Neural processes underlying memory attribution on a reality-monitoring task. Cerebral Cortex, 16(8), 1126-1133.
URLpmid: 16648457
[48] Kim, G., Lewis-Peacock, J. A., Norman, K. A., & Turk-Browne, N. B. (2014). Pruning of memories by context-based prediction error. Proceedings of the National Academy of Sciences of the United States of America, 111(24), 8997-9002.
URLpmid: 24889631
[49] Kim, H., & Cabeza, R. (2007). Differential contributions of prefrontal, medial temporal, and sensory-perceptual regions to true and false memory formation. Cerebral Cortex, 17(9), 2143-2150.
URLpmid: 17110592
[50] Koen, J. D., & Rugg, M. D. (2016). Memory reactivation predicts resistance to retroactive interference: evidence from multivariate classification and pattern similarity analyses. Journal of Neuroscience, 36(15), 4389-4399.
URLpmid: 27076433
[51] Kriegeskorte, N., Mur, M., & Bandettini, P. (2008). Representational similarity analysis-connecting the branches of systems neuroscience. Frontiers in systems neuroscience, 2, 4.
URLpmid: 19104670
[52] Kubota, Y., Toichi, M., Shimizu, M., Mason, R. A., Findling, R. L., Yamamoto, K., & Calabrese, J. R. (2006). Prefrontal hemodynamic activity predicts false memory—A near-infrared spectroscopy study. Neuroimage, 31(4), 1783-1789.
URLpmid: 16545964
[53] Kuhl, B. A., Bainbridge, W. A., & Chun, M. M. (2012). Neural reactivation reveals mechanisms for updating memory. Journal of Neuroscience, 32(10), 3453-3461.
URLpmid: 22399768
[54] Kuhl, B. A., & Chun, M. M. (2014). Successful remembering elicits event-specific activity patterns in lateral parietal cortex. Journal of Neuroscience, 34(23), 8051-8060.
URLpmid: 24899726
[55] Kuhl, B. A., Johnson, M. K., & Chun, M. M. (2013). Dissociable neural mechanisms for goal-directed versus incidental memory reactivation. Journal of Neuroscience, 33(41), 16099-16109.
URLpmid: 24107943
[56] Kuhl, B. A., Rissman, J., Chun, M. M., & Wagner, A. D. (2011). Fidelity of neural reactivation reveals competition between memories. Proceedings of the National Academy of Sciences of the United States of America, 108(14), 5903-5908.
URLpmid: 21436044
[57] Kuhl, B. A., Shah, A. T., DuBrow, S., & Wagner, A. D. (2010). Resistance to forgetting associated with hippocampus-mediated reactivation during new learning. Nature neuroscience, 13(4), 501-506.
URLpmid: 20190745
[58] Kurkela, K. A., & Dennis, N. A. (2016). Event-related fMRI studies of false memory: An Activation Likelihood Estimation meta-analysis. Neuropsychologia, 81, 149-167.
URLpmid: 26683385
[59] LaRocque, K. F., Smith, M. E., Carr, V. A., Witthoft, N., Grill-Spector, K., & Wagner, A. D. (2013). Global similarity and pattern separation in the human medial temporal lobe predict subsequent memory. Journal of Neuroscience, 33(13), 5466-5474.
URLpmid: 23536062
[60] Lee, H. M., Samide, R., Richter, F. R., & Kuhl, B. A. (2019). Decomposing parietal memory reactivation to predict consequences of remembering. Cerebral Cortex, 29(8), 3305-3318.
URLpmid: 30137255
[61] Lee, J. L. C. (2009). Reconsolidation: maintaining memory relevance. Trends in Neurosciences, 32(8), 413-420.
doi: 10.1016/j.tins.2009.05.002URLpmid: 19640595
[62] McDermott, K. B., Gilmore, A. W., Nelson, S. M., Watson, J. M., & Ojemann, J. G. (2017). The parietal memory network activates similarly for true and associative false recognition elicited via the DRM procedure. Cortex, 87, 96-107.
URLpmid: 27745847
[63] Moritz, S., Gl?scher, J., Sommer, T., Büchel, C., & Braus, D. F. (2006). Neural correlates of memory confidence. Neuroimage, 33(4), 1188-1193.
doi: 10.1016/j.neuroimage.2006.08.003URLpmid: 17029986
[64] Norman, K. A. (2010). How hippocampus and cortex contribute to recognition memory: revisiting the complementary learning systems model. Hippocampus, 20(11), 1217-1227.
URLpmid: 20857486
[65] Nyberg, L., Habib, R., Mcintosh, A. R., & Tulving, E. (2000). Reactivation of encoding-related brain activity during memory retrieval. Proceedings of the National Academy of Sciences of the United States of America, 97(20), 11120-11124.
URLpmid: 11005878
[66] Okado, Y., & Stark, C. E. L. (2005). Neural activity during encoding predicts false memories created by misinformation. Learning & Memory, 12(1), 3-11.
URLpmid: 15687227
[67] Packard, P. A., Rodríguez-Fornells, A., Bunzeck, N., Nicolás, B., de Diego-Balaguer, R., & Fuentemilla, L. (2017). Semantic congruence accelerates the onset of the neural signals of successful memory encoding. The Journal of Neuroscience, 37(2), 291-301.
URLpmid: 28077709
[68] Patterson, K., Nestor, P. J., & Rogers, T. T. (2007). Where do you know what you know? The representation of semantic knowledge in the human brain. Nature Reviews Neuroscience, 8(12), 976-987.
URLpmid: 18026167
[69] Pidgeon, L. M., & Morcom, A. M. (2016). Cortical pattern separation and item-specific memory encoding. Neuropsychologia, 85, 256-271.
URLpmid: 27018483
[70] Putnam, A. L., Sungkhasettee, V. W., & Roediger III, H. L. (2017). When misinformation improves memory: The effects of recollecting change. Psychological Science, 28(1), 36-46.
URLpmid: 27879321
[71] Richter, F. R., Cooper, R., Bays, P. M., & Simons, J. S. (2016). Distinct neural mechanisms underlie the success, precision, and vividness of episodic memory. eLife, 5, e18260.
URLpmid: 28009253
[72] Ritvo, V. J. H., Turk-Browne, N. B., & Norman, K. A. (2019). Nonmonotonic plasticity: How memory retrieval drives learning. Trends in Cognitive Sciences, 23(9), 726-742.
doi: 10.1016/j.tics.2019.06.007URLpmid: 31358438
[73] Schacter, D. L., Guerin, S. A., & Jacques, P. L. S. (2011). Memory distortion: An adaptive perspective. Trends in Cognitive Sciences, 15(10), 467-474.
doi: 10.1016/j.tics.2011.08.004URLpmid: 21908231
[74] Schacter, D. L., Norman, K. A., & Koutstaal, W. (1998). The cognitive neuroscience of constructive memory. Annual Review of Psychology, 49(1), 289-318.
[75] Sederberg, P. B., Gershman, S. J., Polyn, S. M., & Norman, K. A. (2011). Human memory reconsolidation can be explained using the temporal context model. Psychonomic Bulletin & Review, 18(3), 455-468.
doi: 10.3758/s13423-011-0086-9URLpmid: 21512839
[76] Sekeres, M. J., Bonasia, K., St-Laurent, M., Pishdadian, S., Winocur, G., Grady, C., & Moscovitch, M. (2016). Recovering and preventing loss of detailed memory: Differential rates of forgetting for detail types in episodic memory. Learning & Memory, 23(2), 72-82.
URLpmid: 26773100
[77] Sinclair, A. H., & Barense, M. D. (2018). Surprise and destabilize: prediction error influences episodic memory reconsolidation. Learning & Memory, 25(8), 369-381.
doi: 10.1101/lm.046912.117URLpmid: 30012882
[78] Sinclair, A. H., & Barense, M. D. (2019). Prediction error and memory reactivation: How incomplete reminders drive reconsolidation. Trends in Neurosciences, 42(10), 727-739.
URLpmid: 31506189
[79] Slotnick, S. D., & Schacter, D. L. (2004). A sensory signature that distinguishes true from false memories. Nature Neuroscience, 7(6), 664-672.
URLpmid: 15156146
[80] Sommer, T. (2017). The emergence of knowledge and how it supports the memory for novel related information. Cerebral Cortex, 27(3), 1906-1921.
URLpmid: 26908636
[81] Spalding, K. N., Jones, S. H., Duff, M. C., Tranel, D., & Warren, D. E. (2015). Investigating the neural correlates of schemas: Ventromedial prefrontal cortex is necessary for normal schematic influence on memory. Journal of Neuroscience, 35(47), 15746-15751.
URLpmid: 26609165
[82] Staresina, B. P., Henson, R. N. A., Nikolaus, K., & Arjen, A. (2012). Episodic reinstatement in the medial temporal lobe. Journal of Neuroscience, 32(50), 18150-18156.
URLpmid: 23238729
[83] Stevenson, R. F., Reagh, Z. M., Chun, A. P., Murray, E. A., & Yassa, M. A. (2020). Pattern separation and source memory engage distinct hippocampal and neocortical regions during retrieval. Journal of Neuroscience, 40(4), 843-851.
doi: 10.1523/JNEUROSCI.0564-19.2019URLpmid: 31748377
[84] St-Laurent, M., Abdi, H., Bondad, A., & Buchsbaum, B. R. (2014). Memory reactivation in healthy aging: evidence of stimulus-specific dedifferentiation. Journal of Neuroscience, 34(12), 4175-4186.
URLpmid: 24647939
[85] Straube, B. (2012). An overview of the neuro-cognitive processes involved in the encoding, consolidation, and retrieval of true and false memories. Behavioral and Brain Functions, 8(1), 35-35.
[86] Sweegers, C. C. G., Coleman, G. A., van Poppel, E. A. M., Cox, R., & Talamini, L. M. (2015). Mental schemas hamper memory storage of goal-irrelevant information. Frontiers in Human Neuroscience, 9, 629-629.
URLpmid: 26793093
[87] van Buuren, M., Kroes, M. C. W., Wagner, I. C., Genzel, L., Morris, R. G. M., & Fernandez, G. (2014). Initial investigation of the effects of an experimentally learned schema on spatial associative memory in humans. Journal of Neuroscience, 34(50), 16662-16670.
URLpmid: 25505319
[88] van den Honert, R. N., McCarthy, G., & Johnson, M. K. (2016). Reactivation during encoding supports the later discrimination of similar episodic memories. Hippocampus, 26(9), 1168-1178.
URLpmid: 27082832
[89] van der Linden, M., Berkers, R. M. W. J., Morris, R. G. M., & Fernández, G. (2017). Angular gyrus involvement at encoding and retrieval is associated with durable but less specific memories. Journal of Neuroscience, 37(39), 9474-9485.
URLpmid: 28871031
[90] van Kesteren, M. T. R., Rijpkema, M., Ruiter, D. J., & Fernández, G. (2010). Retrieval of associative information congruent with prior knowledge is related to increased medial prefrontal activity and connectivity. The Journal of Neuroscience, 30(47), 15888-15894.
URLpmid: 21106827
[91] Warren, D. E., Jones, S. H., Duff, M. C., & Tranel, D. (2014). False recall is reduced by damage to the ventromedial prefrontal cortex: implications for understanding the neural correlates of schematic memory. Journal of Neuroscience, 34(22), 7677-7682.
URLpmid: 24872571
[92] Webb, C. E., Turney, I. C., & Dennis, N. A. (2016). What's the gist? The influence of schemas on the neural correlates underlying true and false memories. Neuropsychologia, 93, 61-75.
URLpmid: 27697593
[93] Weinstein, Y., McDermott, K. B., & Chan, J. C. (2010). True and false memories in the DRM paradigm on a forced choice test. Memory, 18(4), 375-384.
URLpmid: 20408042
[94] Wheeler, M. E., Petersen, S. E., & Buckner, R. L. (2000). Memory's echo: vivid remembering reactivates sensory-specific cortex. Proceedings of the National Academy of Sciences of the United States of America, 97(20), 11125-11129.
doi: 10.1073/pnas.97.20.11125URLpmid: 11005879
[95] Wing, E. A., Geib, B. R., Wang, W. C., Monge, Z., Davis, S. W., & Cabeza, R. (2020). Cortical overlap and cortical-hippocampal interactions predict subsequent true and false memory. Journal of Neuroscience, 40(9), 1920-1930.
URLpmid: 31974208
[96] Xiao, X. Q., Dong, Q., Gao, J. H., Men, W. W., Poldrack, R. A., & Xue, G. (2017). Transformed neural pattern reinstatement during episodic memory retrieval. Journal of Neuroscience, 37(11), 2986-2998.
URLpmid: 28202612
[97] Yassa, M. A., Lacy, J. W., Stark, S. M., Albert, M. S., Gallagher, M., & Stark, C. E. L. (2011). Pattern separation deficits associated with increased hippocampal CA3 and dentate gyrus activity in nondemented older adults. Hippocampus, 21(9), 968-979.
URLpmid: 20865732
[98] Ye, Z. F., Zhu, B., Zhuang, L. P., Lu, Z. L., Chen, C. S., & Xue, G. (2016). Neural global pattern similarity underlies true and false memories. Journal of Neuroscience, 36(25), 6792-6802.
URLpmid: 27335409
[99] Zhu, B., Chen, C. S., Shao, X. H., Liu, W. Z., Ye, Z. F., Zhuang, L. P., ... Xue, G. (2019). Multiple interactive memory representations underlie the induction of false memory. Proceedings of the National Academy of Sciences of the United States of America, 116(9), 3466-3475.
URLpmid: 30765524




[1]周爱保, 胡砚冰, 周滢鑫, 李玉, 李文一, 张号博, 郭彦麟, 胡国庆. 听而不“闻”?人声失认症的神经机制[J]. 心理科学进展, 2021, 29(3): 414-424.
[2]赵小红, 童薇, 陈桃林, 吴冬梅, 张蕾, 陈正举, 方晓义, 龚启勇, 唐小蓉. 敬畏的心理模型及其认知神经机制[J]. 心理科学进展, 2021, 29(3): 520-530.
[3]魏真瑜, 邓湘树, 赵治瀛. 亲社会行为中的从众效应[J]. 心理科学进展, 2021, 29(3): 531-539.
[4]岳童, 黄希庭, 傅安国. 人们何以能够“舍生取义”?基于保护性价值观认知神经机制的解释[J]. 心理科学进展, 2021, 29(3): 540-548.
[5]王葛彤, 席洁, 陈霓虹, 黄昌兵. 双眼视差的神经机制与知觉学习效应[J]. 心理科学进展, 2021, 29(1): 56-69.
[6]刘启鹏, 赵小云, 王翠艳, 徐艺雅, 王淑燕. 反刍思维与注意脱离损坏的关系及其神经机制[J]. 心理科学进展, 2021, 29(1): 102-111.
[7]翁纯纯, 王宁. 时距知觉的动物研究范式及相关神经机制[J]. 心理科学进展, 2020, 28(9): 1478-1492.
[8]杨晓梦, 王福兴, 王燕青, 赵婷婷, 高春颍, 胡祥恩. 瞳孔是心灵的窗口吗?——瞳孔在心理学研究中的应用及测量[J]. 心理科学进展, 2020, 28(7): 1029-1041.
[9]程士静, 何文广. 语义认知的习得、发展和老化及其神经机制[J]. 心理科学进展, 2020, 28(7): 1156-1163.
[10]张晶晶, 梁啸岳, 陈伊笛, 陈庆荣. 音乐句法加工的认知机制与音乐结构的影响模式[J]. 心理科学进展, 2020, 28(6): 883-892.
[11]诸彦含, 陈国良, 徐俊英. 组织中的正念:基于认知的动态衍生过程及干预[J]. 心理科学进展, 2020, 28(3): 510-522.
[12]杨国春, 伍海燕, 齐玥, 刘勋. 人类性别加工的认知神经机制[J]. 心理科学进展, 2020, 28(12): 2008-2017.
[13]李灵, 侯晓旭, 张亚, 隋雪. 食物线索注意偏向及其神经机制[J]. 心理科学进展, 2020, 28(12): 2040-2051.
[14]岳童, 黄希庭, 徐颖, 潘思存. 价值观的稳定性与可变性:基于认知神经科学的视角[J]. 心理科学进展, 2020, 28(12): 2091-2101.
[15]尹华站, 崔晓冰, 白幼玲, 曹格格, 邓靖歆, 李丹. 时间信息加工与信息加工时间特性双视角下的重要时间参数及其证据[J]. 心理科学进展, 2020, 28(11): 1853-1864.





PDF全文下载地址:

http://journal.psych.ac.cn/xlkxjz/CN/article/downloadArticleFile.do?attachType=PDF&id=5295
相关话题/信息 心理 科学 神经 过程

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 反刍思维与注意脱离损坏的关系及其神经机制
    刘启鹏,赵小云,王翠艳,徐艺雅,王淑燕()淮北师范大学教育学院,安徽淮北235000收稿日期:2020-06-09出版日期:2021-01-15发布日期:2020-11-23通讯作者:王淑燕E-mail:wsy720@chnu.edu.cn基金资助:*教育部人文社会科学研究青年项目(20YJCZH1 ...
    本站小编 Free考研考试 2022-01-01
  • 音乐愉悦体验的神经机制
    周璨,周临舒(),蒋存梅上海师范大学音乐学院,上海200234收稿日期:2020-06-16出版日期:2021-01-15发布日期:2020-11-23通讯作者:周临舒E-mail:zhoulinshu@163.comNeuralmechanismsunderlyingtheexperienceof ...
    本站小编 Free考研考试 2022-01-01
  • 词汇共现频率视角下语义联想效应及其神经机制
    李雨桐,隋雪()辽宁师范大学心理学院,大连116029收稿日期:2020-06-09出版日期:2021-01-15发布日期:2020-11-23通讯作者:隋雪E-mail:suixue88@163.com基金资助:*辽宁省教育厅自然科学基金青年项目(L201783637);教育部人文社会科学规划基金 ...
    本站小编 Free考研考试 2022-01-01
  • 自豪感的神经基础:比较的视角
    沈蕾,江黛苔,陈宁(),刘伟()上海师范大学教育学院,上海200234收稿日期:2020-03-11出版日期:2021-01-15发布日期:2020-11-23通讯作者:陈宁,刘伟E-mail:chenning@shnu.edu.cn;liuwei@shnu.edu.cn基金资助:*国家社科基金后期 ...
    本站小编 Free考研考试 2022-01-01
  • 即刻消退缺损的原因分析及其神经生物学机制
    王红波(),关旭旭,李梓萌河南大学认知、脑与健康研究所;河南大学心理与行为研究所;河南大学教育科学学院,开封475004收稿日期:2019-11-18出版日期:2021-01-15发布日期:2020-11-23通讯作者:王红波E-mail:fightingwhb@vip.163.com基金资助:*教 ...
    本站小编 Free考研考试 2022-01-01
  • 计算模型视角下信任形成的心理和神经机制——基于信任博弈中投资者的角度
    高青林,周媛()中国科学院心理研究所行为科学重点实验室,北京100101中国科学院大学心理学系,北京100049收稿日期:2020-04-18出版日期:2021-01-15发布日期:2020-11-23通讯作者:周媛E-mail:zhouyuan@psych.ac.cn基金资助:*中国科学院心理研究 ...
    本站小编 Free考研考试 2022-01-01
  • 《心理科学进展》2020年度审稿专家名录
    出版日期:2021-01-15发布日期:2021-01-08Online:2021-01-15Published:2021-01-08摘要/Abstract参考文献相关文章0Norelatedarticlesfound!PDF全文下载地址:http://journal.psych.ac.cn/xlk ...
    本站小编 Free考研考试 2022-01-01
  • 高社交焦虑者识别动态情绪面孔的神经机制
    冉光明1(),李睿1,张琪21西华师范大学教育学院心理系2西华师范大学学前与初等教育学院,四川南充637002收稿日期:2020-04-13出版日期:2020-12-15发布日期:2020-10-26通讯作者:冉光明E-mail:haiqi198649@163.com基金资助:国家自然科学基金青年项 ...
    本站小编 Free考研考试 2022-01-01
  • 《心理科学进展》2020年度审稿专家名录
    出版日期:2021-01-15发布日期:2021-01-08Online:2021-01-15Published:2021-01-08摘要/Abstract参考文献相关文章0Norelatedarticlesfound!PDF全文下载地址:http://journal.psych.ac.cn/xlk ...
    本站小编 Free考研考试 2022-01-01
  • 人类性别加工的认知神经机制
    杨国春1,2,伍海燕3,4,齐玥5,6,1,2,刘勋1,2()1中国科学院行为科学重点实验室,北京1001012中国科学院大学心理学系,北京1000493澳门大学认知与脑科学研究中心4澳门大学心理系,澳门9990785中国人民大学心理学系6中国人民大学心理学系实验室,北京100872收稿日期:202 ...
    本站小编 Free考研考试 2022-01-01