河南大学认知、脑与健康研究所; 河南大学心理与行为研究所; 河南大学教育科学学院, 开封 475004
收稿日期:
2019-11-18出版日期:
2021-01-15发布日期:
2020-11-23通讯作者:
王红波E-mail:fightingwhb@vip.163.com基金资助:
* 教育部人文社会科学研究项目(20YJC190019)Immediate extinction deficit: Causes and neurobiological mechanisms
WANG Hongbo(), GUAN Xuxu, LI ZimengSchool of Educational Science, Henan University, Kaifeng 475004, China
Institute of Cognition, Brain and Health, Henan University, Kaifeng 475004, China; Institute of Psychology and Behavior, Henan University, Kaifeng 475004, China; School of Educational Science, Henan University, Kaifeng 475004, China
Received:
2019-11-18Online:
2021-01-15Published:
2020-11-23Contact:
WANG Hongbo E-mail:fightingwhb@vip.163.com摘要/Abstract
摘要: 即刻消退缺损(immediate extinction deficit, IED)是指在条件性恐惧习得后, 立即进行的消退训练不能长期抑制恐惧记忆的现象。IED可能与消退起始时的应激水平和事件分割等因素有关。在高应激水平下, 消退记忆的巩固受损导致IED; 而在中等或较低的应激水平条件下, 即刻消退有效但效果可能容易受事件分割的影响。IED的神经生物学机制涉及应激激活蓝斑去甲肾上腺素能系统, 去甲肾上腺素引起杏仁核基底外侧核(basolateral amygdala, BLA)过度兴奋, 然后BLA通过投射突触抑制在恐惧消退中起核心作用的内侧前额叶神经元的活动。未来研究应注意即刻消退缺损引起的长期后果, 并深入探讨如何优化即刻消退在临床上的应用。
参考文献 77
[1] | Abiri, D., Douglas, C. E., Calakos, K. C., Barbayannis, G., Roberts, A., & Bauer, E. P. (2014). Fear extinction learning can be impaired or enhanced by modulation of the CRF system in the basolateral nucleus of the amygdala. Behavioural Brain Research, 271, 234-239. URLpmid: 24946071 |
[2] | Alberini, C. M., Johnson, S. A., & Ye, X. J.(2013). Chapter five-Memory reconsolidation: Lingering consolidation and the dynamic memory trace. In C. M. Alberini (Ed.), Memory reconsolidation (pp. 81-117). San Diego: Academic Press. |
[3] | Alvarez, R. P., Johnson, L., & Grillon, C. (2007). Contextual- specificity of short-delay extinction in humans: Renewal of fear-potentiated startle in a virtual environment. Learning and Memory, 14(4), 247-253. URLpmid: 17412963 |
[4] | Arnsten, A. F. T., Raskind, M. A., Taylor, F. B., & Connor, D. F. (2015). The effects of stress exposure on prefrontal cortex: Translating basic research into successful treatments for post-traumatic stress disorder. Neurobiology of Stress, 1, 89-99. URLpmid: 25436222 |
[5] | Arruda-Carvalho, M., & Clem, R. L. (2014). Pathway-selective adjustment of prefrontal-amygdala transmission during fear encoding. Journal of Neuroscience, 34(47), 15601-15609. URLpmid: 25411488 |
[6] | Bangasser, D. A., Eck, S. R., & Ordo?es Sanchez, E. (2019). Sex differences in stress reactivity in arousal and attention systems. Neuropsychopharmacology, 44(1), 129-139. URLpmid: 30022063 |
[7] | Bloodgood, D. W., Sugam, J. A., Holmes, A., & Kash, T. L. (2018). Fear extinction requires infralimbic cortex projections to the basolateral amygdala. Translational Psychiatry, 8(1), 60-60. URLpmid: 29507292 |
[8] | Borodovitsyna, O., Joshi, N., & Chandler, D. (2018). Persistent stress-induced neuroplastic changes in the locus coeruleus/norepinephrine system. Neural Plasticity, 2018, 1892570. URLpmid: 30008741 |
[9] | Bouret, S., & Richmond, B. J. (2015). Sensitivity of locus ceruleus neurons to reward value for goal-directed actions. Journal of Neuroscience, 35(9), 4005-4014. URLpmid: 25740528 |
[10] | Briggs, J. F., & Fava, D. A. (2016). Immediate extinction attenuates spontaneous recovery and reinstatement in a passive avoidance paradigm. Perceptual and Motor Skills, 123(1), 5-16. URLpmid: 27307156 |
[11] | Britton, J. C., Evans, T. C., & Hernandez, M. V. (2014). Looking beyond fear and extinction learning: Considering novel treatment targets for anxiety. Current Behavioral Neuroscience Reports, 1(3), 134-143. doi: 10.1007/s40473-014-0015-0URLpmid: 25705579 |
[12] | Bukalo, O., Pinard, C. R., Silverstein, S., Brehm, C., Hartley, N. D., Whittle, N., ... Holmes, A. (2015). Prefrontal inputs to the amygdala instruct fear extinction memory formation. Science Advances, 1(6), e1500251. URLpmid: 26504902 |
[13] | Cahill, L., Prins, B., Weber, M., & McGaugh, J. L. (1994). Beta-adrenergic activation and memory for emotional events. Nature, 371(6499), 702-704. URLpmid: 7935815 |
[14] | Careaga, M. B. L., Girardi, C. E. N., & Suchecki, D. (2016). Understanding posttraumatic stress disorder through fear conditioning, extinction and reconsolidation. Neuroscience & Biobehavioral Reviews, 71, 48-57. URLpmid: 27590828 |
[15] | Chandler, D. J., Gao, W-J., & Waterhouse, B. D. (2014). Heterogeneous organization of the locus coeruleus projections to prefrontal and motor cortices. Proceedings of the National Academy of Sciences of the United States of America, 111(18), 6816-6821. URLpmid: 24753596 |
[16] | Chandler, D. J., Jensen, P., McCall, J. G., Pickering, A. E., Schwarz, L. A., & Totah, N. K. (2019). Redefining noradrenergic neuromodulation of behavior: Impacts of a modular locus coeruleus architecture. Journal of Neuroscience, 39(42), 8239-8249. URLpmid: 31619493 |
[17] | Chang, C. H., Berke, J. D., & Maren, S. (2010). Single-unit activity in the medial prefrontal cortex during immediate and delayed extinction of fear in rats. PLoS One, 5(8), e22971. |
[18] | Chang, C. H., & Maren, S. (2009). Early extinction after fear conditioning yields a context-independent and short-term suppression of conditional freezing in rats. Learning and Memory, 16(1), 62-68. URLpmid: 19141467 |
[19] | Chang, C. H., & Maren, S. (2011). Medial prefrontal cortex activation facilitates re-extinction of fear in rats. Learning and Memory, 18(4), 221-225. URLpmid: 21430044 |
[20] | Cho, J-H., Deisseroth, K., & Bolshakov, V. Y. (2013). Synaptic encoding of fear extinction in mPFC-amygdala circuits. Neuron, 80(6), 1491-1507. URLpmid: 24290204 |
[21] | Do-Monte, F. H., Manzano-Nieves, G., Qui?ones-Laracuente, K., Ramos-Medina, L., & Quirk, G. J. (2015). Revisiting the role of infralimbic cortex in fear extinction with optogenetics. Journal of Neuroscience, 35(8), 3607-3615. URLpmid: 25716859 |
[22] | Dunsmoor, J. E., Kroes, M. C. W., Moscatelli, C. M., Evans, M. D., Davachi, L., & Phelps, E. A. (2018). Event segmentation protects emotional memories from competing experiences encoded close in time. Nature Human Behaviour, 2(4), 291-299. URLpmid: 30221203 |
[23] | Ebrahimi, C., Koch, S. P., Pietrock, C., Fydrich, T., Heinz, A., & Schlagenhauf, F. (2019). Opposing roles for amygdala and vmPFC in the return of appetitive conditioned responses in humans. Translation Psychiatry, 9(1), 148. |
[24] | Fadok, J. P., Krabbe, S., Markovic, M., Courtin, J., Xu, C., Massi, L., ... Lüthi, A. (2017). A competitive inhibitory circuit for selection of active and passive fear responses. Nature, 542(7639), 96-100. URLpmid: 28117439 |
[25] | Fitzgerald, P. J., Giustino, T. F., Seemann, J. R., & Maren, S. (2015). Noradrenergic blockade stabilizes prefrontal activity and enables fear extinction under stress. Proceedings of the National Academy of Sciences of the United States of America, 112(28), E3729-3737. URLpmid: 26124100 |
[26] | Flores, S., Bailey, H. R., Eisenberg, M. L., & Zacks, J. M. (2017). Event segmentation improves event memory up to one month later. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(8), 1183-1202. URLpmid: 28383955 |
[27] | Gafford, G. M., & Ressler, K. J. (2015). GABA and NMDA receptors in CRF neurons have opposing effects in fear acquisition and anxiety in central amygdala vs. bed nucleus of the stria terminalis. Hormones and Behavior, 76, 136-142. URLpmid: 25888455 |
[28] | Giustino, T. F., Fitzgerald, P. J., & Maren, S. (2016). Revisiting propranolol and PTSD: Memory erasure or extinction enhancement? Neurobiology of Learning and Memory, 130, 26-33. URLpmid: 26808441 |
[29] | Giustino, T. F., Fitzgerald, P. J., Ressler, R. L., & Maren, S. (2019). Locus coeruleus toggles reciprocal prefrontal firing to reinstate fear. Proceedings of the National Academy of Sciences of the United States of America, 116(17), 8570-8575. URLpmid: 30971490 |
[30] | Giustino, T. F., & Maren, S. (2015). The role of the medial prefrontal cortex in the conditioning and extinction of fear. Frontiers in Behavioral Neuroscience, 9, 298. URLpmid: 26617500 |
[31] | Giustino, T. F., & Maren, S. (2018). Noradrenergic modulation of fear conditioning and extinction. Frontiers in Behavioral Neuroscience, 12, 43. URLpmid: 29593511 |
[32] | Giustino, T. F., Ramanathan, K. R., Totty, M. S., Miles, O. W., & Maren, S. (2020). Locus coeruleus norepinephrine drives stress-induced increases in basolateral amygdala firing and impairs extinction learning. Journal of Neuroscience, 40(4), 907-916. URLpmid: 31801809 |
[33] | Giustino, T. F., Seemann, J. R., Acca, G. M., Goode, T. D., Fitzgerald, P. J., & Maren, S. (2017). Beta-adrenoceptor blockade in the basolateral amygdala, but not the medial prefrontal cortex, rescues the immediate extinction deficit. Neuropsychopharmacology, 42(13), 2537-2544. URLpmid: 28462941 |
[34] | Golkar, A., & ?hman, A. (2012). Fear extinction in humans: Effects of acquisition-extinction delay and masked stimulus presentations. Biological psychology, 91(2), 292-301. URLpmid: 22898744 |
[35] | Goode, T. D., & Maren, S. (2019). Common neurocircuitry mediating drug and fear relapse in preclinical models. Psychopharmacology, 236(1), 415-437. doi: 10.1007/s00213-018-5024-3URLpmid: 30255379 |
[36] | Hayat, H., Regev, N., Matosevich, N., Sales, A., Paredes- Rodriguez, E., Krom, A. J., ... Nir, Y. (2020). Locus-coeruleus norepinephrine activity gates sensory-evoked awakenings from sleep. Science Advances, 6(15), eaaz4232. URLpmid: 33355127 |
[37] | Hollis, F., Sevelinges, Y., Grosse, J., Zanoletti, O., & Sandi, C. (2016). Involvement of CRFR1 in the basolateral amygdala in the immediate fear extinction deficit. eNeuro, 3(5). doi: 10.1523/ENEURO.0084-16.2016 URLpmid: 28032118 |
[38] | Huff, N. C., Hernandez, J. A., Blanding, N. Q., & LaBar, K. S. (2009). Delayed extinction attenuates conditioned fear renewal and spontaneous recovery in humans. Behavioral Neuroscience, 123(4), 834-843. URLpmid: 19634943 |
[39] | Hupalo, S., & Berridge, C. W. (2016). Working memory impairing actions of corticotropin-releasing factor (CRF) neurotransmission in the prefrontal cortex. Neuropsychopharmacology, 41(11), 2733-2740. URLpmid: 27272767 |
[40] | Hupalo, S., Bryce, C. A., Bangasser, D. A., Berridge, C. W., Valentino, R. J., & Floresco, S. B. (2019). Corticotropin- releasing factor (CRF) circuit modulation of cognition and motivation. Neuroscience and Biobehavioral Reviews, 103, 50-59. URLpmid: 31212019 |
[41] | Hupalo, S., Martin, A. J., Green, R. K., Devilbiss, D. M., & Berridge, C. W. (2019). Prefrontal corticotropin-releasing factor (CRF) neurons act locally to modulate frontostriatal cognition and circuit function. Journal of Neuroscience, 39(11), 2080-2090. URLpmid: 30651328 |
[42] | Kim, S. C., Jo, Y. S., Kim, I. H., Kim, H., & Choi, J. S. (2010). Lack of medial prefrontal cortex activation underlies the immediate extinction deficit. Journal of Neuroscience, 30(3), 832-837. URLpmid: 20089891 |
[43] | Klavir, O., Prigge, M., Sarel, A., Paz, R., & Yizhar, O. (2017). Manipulating fear associations via optogenetic modulation of amygdala inputs to prefrontal cortex. Nature Neuroscience, 20(6), 836-844. URLpmid: 28288126 |
[44] | Korosi, A., & Baram, T. Z. (2008). The central corticotropin releasing factor system during development and adulthood. European Journal of Pharmacology, 583(2-3), 204-214. URLpmid: 18275957 |
[45] | MacPherson, K., Whittle, N., Camp, M., Gunduz-Cinar, O., Singewald, N., & Holmes, A. (2013). Temporal factors in the extinction of fear in inbred mouse strains differing in extinction efficacy. Biology of Mood & Anxiety Disorders, 3(1), 13. URLpmid: 23830244 |
[46] | Maren, S. (2014). Nature and causes of the immediate extinction deficit: A brief review. Neurobiology of Learning and Memory, 113, 19-24. URLpmid: 24176924 |
[47] | Maren, S., & Chang, C. H. (2006). Recent fear is resistant to extinction. Proceedings of the National Academy of Sciences of the United States of America, 103(47), 18020-18025. URLpmid: 17090669 |
[48] | Maren, S., & Holmes, A. (2016). Stress and fear extinction. Neuropsychopharmacology, 41(1), 58-79. URLpmid: 26105142 |
[49] | McCall, J. G., Al-Hasani, R., Siuda, E. R., Hong, D. Y., Norris, A. J., Ford, C. P., & Bruchas, M. R. (2015). CRH engagement of the locus coeruleus noradrenergic system mediates stress-induced anxiety. Neuron, 87(3), 605-620. URLpmid: 26212712 |
[50] | McCall, J. G., Siuda, E. R., Bhatti, D. L., Lawson, L. A., McElligott, Z. A., Stuber, G. D., & Bruchas, M. R. (2017). Locus coeruleus to basolateral amygdala noradrenergic projections promote anxiety-like behavior. Elife, 6, e18247. |
[51] | McGarry, L. M., & Carter, A. G. (2016). Inhibitory gating of basolateral amygdala inputs to the prefrontal cortex. Journal of Neuroscience, 36(36), 9391-9406. URLpmid: 27605614 |
[52] | McGaugh, J. L. (2000). Memory - A century of consolidation. Science, 287(5451), 248-251. URLpmid: 10634773 |
[53] | Merz, C. J., Hamacher-Dang, T. C., & Wolf, O. T. (2016). Immediate extinction promotes the return of fear. Neurobiology of Learning and Memory, 131, 109-116. URLpmid: 26995309 |
[54] | Merz, C. J., & Wolf, O. T. (2019). The immediate extinction deficit occurs in a nonemotional learning paradigm. Learning and Memory, 26(2), 39-45. URLpmid: 30651376 |
[55] | Mingote, S., de Bruin, J. P., & Feenstra, M. G. (2004). Noradrenaline and dopamine efflux in the prefrontal cortex in relation to appetitive classical conditioning. Journal of Neuroscience, 24(10), 2475-2480. URLpmid: 15014123 |
[56] | Monfils, M-H., Cowansage, K. K., Klann, E., & LeDoux, J. E. (2009). Extinction-reconsolidation boundaries: key to persistent attenuation of fear memories. Science, 324(5929), 951-955. URLpmid: 19342552 |
[57] | Myers, K. M., Ressler, K. J., & Davis, M. (2006). Different mechanisms of fear extinction dependent on length of time since fear acquisition. Learning and Memory, 13(2), 216-223. doi: 10.1101/lm.119806URLpmid: 16585797 |
[58] | Norrholm, S. D., Vervliet, B., Jovanovic, T., Boshoven, W., Myers, K. M., Davis, M., ... Duncan, E. J. (2008). Timing of extinction relative to acquisition: A parametric analysis of fear extinction in humans. Behavioral Neuroscience, 122(5), 1016-1030. URLpmid: 18823159 |
[59] | Prouty, E. W., Waterhouse, B. D., & Chandler, D. J. (2017). Corticotropin releasing factor dose-dependently modulates excitatory synaptic transmission in the noradrenergic nucleus locus coeruleus. European Journal of Neuroscience, 45(5), 712-722. doi: 10.1111/ejn.13501URL |
[60] | Radvansky, G. A., & Zacks, J. M. (2017). Event boundaries in memory and cognition. Current Opinion in Behavoral Sciences, 17, 133-140. |
[61] | Rothbaum, B. O., Kearns, M. C., Reiser, E., Davis, J. S., Kerley, K. A., Rothbaum, A. O., ... Ressler, K. J. (2014). Early intervention following trauma may mitigate genetic risk for PTSD in civilians: A pilot prospective emergency department study. Journal of Clinical Psychiatry, 75(12), 1380-1387. |
[62] | Schiller, D., Cain, C. K., Curley, N. G., Schwartz, J. S., Stern, S. A., Ledoux, J. E., & Phelps, E. A. (2008). Evidence for recovery of fear following immediate extinction in rats and humans. Learning and Memory, 15(6), 394-402. URLpmid: 18509113 |
[63] | Senn, V., Wolff, S. B., Herry, C., Grenier, F., Ehrlich, I., Grundemann, J., ... Lüthi, A. (2014). Long-range connectivity defines behavioral specificity of amygdala neurons. Neuron, 81(2), 428-437. URLpmid: 24462103 |
[64] | Siddiqui, S. A., Singh, S., Ranjan, V., Ugale, R., Saha, S., & Prakash, A. (2017). Enhanced histone acetylation in the infralimbic prefrontal cortex is associated with fear extinction. Cellular and Molecular Neurobiology, 37(7), 1287-1301. URLpmid: 28097489 |
[65] | Sierra-Mercado, D., Padilla-Coreano, N., & Quirk, G. J. (2011). Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction of conditioned fear. Neuropsychopharmacology, 36(2), 529-538. doi: 10.1038/npp.2010.184URLpmid: 20962768 |
[66] | Singh, S., Siddiqui, S. A., Tripathy, S., Kumar, S., Saha, S., Ugale, R., ... Prakash, A. (2018). Decreased level of histone acetylation in the infralimbic prefrontal cortex following immediate extinction may result in deficit of extinction memory. Brain research bulletin, 140, 355-364. URLpmid: 29908895 |
[67] | Stafford, J. M., Maughan, D. K., Ilioi, E. C., & Lattal, K. M. (2013). Exposure to a fearful context during periods of memory plasticity impairs extinction via hyperactivation of frontal-amygdalar circuits. Learning and Memory, 20(3), 156-163. URLpmid: 23422280 |
[68] | Sun, Q., Gu, S. M., & Yang, J. J. (2018). Context and time matter: Effects of emotion and motivation on episodic memory overtime. Neural Plasticity, 2018, 7051925. URLpmid: 29849564 |
[69] | Totty, M. S., Payne, M. R., & Maren, S. (2019). Event boundaries do not cause the immediate extinction deficit after Pavlovian fear conditioning in rats. Scientific Reports, 9(1), 9459. URLpmid: 31263140 |
[70] | Tovote, P., Fadok, J. P., & Lüthi, A. (2015). Neuronal circuits for fear and anxiety. Nature Reviews Neuroscience, 16(6), 317-331. doi: 10.1038/nrn3945URL |
[71] | Uematsu, A., Tan, B. Z., Ycu, E. A., Cuevas, J. S., Koivumaa, J., Junyent, F., ... Johansen, J. P. (2017). Modular organization of the brainstem noradrenaline system coordinates opposing learning states. Nature Neuroscience, 20(11), 1602-1611. doi: 10.1038/nn.4642URLpmid: 28920933 |
[72] | Uribe-Mari?o, A., Gassen, N. C., Wiesbeck, M. F., Balsevich, G., Santarelli, S., Solfrank, B., ... Schmidt, M. V. (2016). Prefrontal cortex corticotropin-releasing factor receptor 1 conveys acute stress-induced executive dysfunction. Biological Psychiatry, 80(10), 743-753. URLpmid: 27318500 |
[73] | Vervliet, B., Craske, M. G., & Hermans, D. (2013). Fear extinction and relapse: state of the art. Annual Review of Clinical Psychology, 9, 215-248. URLpmid: 23537484 |
[74] | Weston, C. S. E. (2014). Posttraumatic stress disorder: A theoretical model of the hyperarousal subtype. Frontiers in Psychiatry, 5, 37. doi: 10.3389/fpsyt.2014.00037URLpmid: 24772094 |
[75] | Woods, A. M., & Bouton, M. E. (2008). Immediate extinction causes a less durable loss of performance than delayed extinction following either fear or appetitive conditioning. Learning and Memory, 15(12), 909-920. URLpmid: 19050163 |
[76] | Zacks, J. M., Tversky, B., & Iyer, G. (2001). Perceiving, remembering, and communicating structure in events. Journal of Experimental Psychology: General, 130(1), 29-58. |
[77] | Zitnik, G. A. (2016). Control of arousal through neuropeptide afferents of the locus coeruleus. Brain Research, 1641(Pt B), 338-350. URLpmid: 26688115 |
相关文章 4
[1] | 曹杨婧文, 李俊娇, 陈伟, 杨勇, 胡琰健, 郑希付. 条件性恐惧记忆消退的提取干预范式及其作用的神经机制[J]. 心理科学进展, 2019, 27(2): 268-277. |
[2] | 曾祥星;向燕辉;杜娟;郑希付. 条件性恐惧记忆提取消退干预范式[J]. 心理科学进展, 2014, 22(3): 431-438. |
[3] | 王红波; 安献丽; 李幼虹; 郑希耕. 干预条件性恐惧记忆表达的相关影响因素分析[J]. 心理科学进展, 2010, 18(5): 718-724. |
[4] | 安献丽;王文忠;郑希耕. 阻碍条件性恐惧记忆消退的原因分析[J]. 心理科学进展, 2009, 17(1): 126-131. |
PDF全文下载地址:
http://journal.psych.ac.cn/xlkxjz/CN/article/downloadArticleFile.do?attachType=PDF&id=5302