删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

人类性别加工的认知神经机制

本站小编 Free考研考试/2022-01-01

杨国春1,2, 伍海燕3,4, 齐玥5,6,1,2, 刘勋1,2()
1中国科学院行为科学重点实验室, 北京 100101
2中国科学院大学心理学系, 北京 100049
3澳门大学认知与脑科学研究中心
4澳门大学心理系, 澳门 999078
5中国人民大学心理学系
6中国人民大学心理学系实验室, 北京 100872
收稿日期:2020-06-10出版日期:2020-12-15发布日期:2020-10-26
通讯作者:刘勋E-mail:liux@psych.ac.cn

基金资助:国家自然科学基金中德重大国际合作项目(NSFC 61621136008/DFG TRR-169);中国科学院心理研究所青年人才科研启动经费(Y9CX172005);中国科学院行为科学重点实验室经费资助(Y5CX052003);北京市博士后科研活动经费(ZZ2019-25)

Cognitive and neural mechanisms of human gender processing

YANG Guochun1,2, WU Haiyan3,4, QI Yue5,6,1,2, LIU Xun1,2()
1CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China
2Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
3Center for Cognition and Brain Sciences, University of Macau, Macau 999078, China
4Department of Psychology, University of Macau, Macau 999078, China
5The Department of Psychology, Renmin University of China, Beijing 100872, China
6The Laboratory of the Department of Psychology, Renmin University of China, Beijing 100872, China
Received:2020-06-10Online:2020-12-15Published:2020-10-26
Contact:LIU Xun E-mail:liux@psych.ac.cn






摘要/Abstract


摘要: 性别信息是人类重要的生物和社会属性, 对性别快速而准确的识别对人类的生存和繁衍具有重要意义。人类的性别加工具有自动化、刻板化以及不对称性等特点, 并受性别加工主体、其他性别信息、社会类别信息以及高级认知调节的影响。聚焦于面孔和声音这两个性别信息的主要来源, 综述了性别加工的行为和神经机制研究, 并提出了两阶段性别加工模型, 早期阶段为对性别信息物理属性的特异性加工, 晚期阶段为对抽象性别信息的一般性加工。未来的研究可以重点关注性别加工的系统性研究、性别分类和机器学习、以及性别的二相性问题等方面。


[1] 吴彬星, 张智君, 孙雨生. (2014). 面孔知觉中面孔性别与情绪表情的相互作用. 心理科学进展, 22, 943952. https://doi.org/10.3724/SP.J.1042.2014.00943
doi: 10.3724/SP.J.1042.2014.00943URL
[2] 叶玉婷, 陈科璞, 周雯. (2016). 信息素影响人类行为吗?. 科学通报, 61, 13891394. https://doi.org/10.1360/N972015-01287
[3] Abbatecola, C., Beneyton, K., Gerardin, P., Kennedy, H., & Knoblauch, K. (2020). Voice and face gender perception engages multimodal integration via multiple feedback pathways. bioRxiv. https://doi.org/10.1101/2020.01.07.884668
doi: 10.1101/2020.11.09.375139URLpmid: 33200129
[4] Barclay, C. D., Cutting, J. E., & Kozlowski, L. T. (1978). Temporal and spatial factors in gait perception that influence gender recognition. Perception and Psychophysics, 23(2), 145-152. https://doi.org/10.3758/bf03208295
doi: 10.3758/bf03208295URLpmid: 643509
[5] Belanova, E. (2017). A neuroscientific and cognitive examination of individual differences in face recognition ability (Unpublished doctoral dissertation). University of Greenwich. London.
[6] Belin, P., Bestelmeyer, P. E. G., Latinus, M., & Watson, R. (2011). Understanding voice perception. British Journal of Psychology, 102(4), 711-725. https://doi.org/10.1111/j.2044-8295.2011.02041.x
doi: 10.1111/j.2044-8295.2011.02041.xURLpmid: 21988380
[7] Bennett, M., Sani, F., Hopkins, N., Agostini, L., & Malucchi, L. (2000). Children's gender categorization: An investigation of automatic processing. British Journal of Developmental Psychology, 18(1), 97-102. https://doi.org/Doi 10.1348/026151000165599
doi: 10.1348/026151000165599URL
[8] Bentin, S., Allison, T., Puce, A., Perez, E., & McCarthy, G. (1996). Electrophysiological studies of face perception in humans. Journal of Cognitive Neuroscience, 8(6), 551-565. https://doi.org/10.1162/jocn.1996.8.6.551
doi: 10.1162/jocn.1996.8.6.551URLpmid: 20740065
[9] Bruce, V., & Young, A. (1986). Understanding face recognition. British Journal of Psychology, 77(Pt 3), 305-327. https://doi.org/10.1111/j.2044-8295.1986.tb02199. x
doi: 10.1111/bjop.1986.77.issue-3URL
[10] Cellerino, A., Borghetti, D., & Sartucci, F. (2004). Sex differences in face gender recognition in humans. Brain Research Bulletin, 63(6), 443-449. https://doi.org/10.1016/j.brainresbull.2004.03.010
doi: 10.1016/j.brainresbull.2004.03.010URLpmid: 15249109
[11] Charest, I., Pernet, C., Latinus, M., Crabbe, F., & Belin, P. (2013). Cerebral processing of voice gender studied using a continuous carryover FMRI design. Cerebral Cortex, 23(4), 958-966. https://doi.org/10.1093/cercor/bhs090
doi: 10.1093/cercor/bhs090URL
[12] Cheng, N., Chandramouli, R., & Subbalakshmi, K. P. (2011). Author gender identification from text. Digital Investigation, 8(1), 78-88. https://doi.org/10.1016/j.diin.2011.04.002
doi: 10.1016/j.diin.2011.04.002URL
[13] Childers, D. G., & Wu, K. (1991). Gender recognition from speech. Part II: Fine analysis. Journal of the Acoustical Society of America, 90(4 Pt 1), 1841-1856. https://doi.org/10.1121/1.401664
doi: 10.1121/1.401664URLpmid: 1755877
[14] Contreras, J. M., Banaji, M. R., & Mitchell, J. P. (2013). Multivoxel patterns in fusiform face area differentiate faces by sex and race. PloS One, 8(7), e69684. https://doi.org/10.1371/journal.pone.0069684
doi: 10.1371/journal.pone.0069684URLpmid: 23936077
[15] Drake, C. E., Primeaux, S., & Thomas, J. (2017). Comparing implicit gender stereotypes between women and men with the implicit relational assessment procedure. Gender Issues, 35(1), 3-20. https://doi.org/10.1007/s12147-017-9189-6
doi: 10.1007/s12147-017-9189-6URL
[16] Dupuis-Roy, N., Fortin, I., Fiset, D., & Gosselin, F. (2009). Uncovering gender discrimination cues in a realistic setting. Journal of Vision, 9(2), 1-8. https://doi.org/10.1167/9.2.10
doi: 10.1167/9.2.6URLpmid: 19271916
[17] Ellemers, N. (2018). Gender stereotypes. Annual Review of Psychology, 69, 275-298. https://doi.org/10.1146/annurev-psych-122216-011719
doi: 10.1146/annurev-psych-122216-011719URLpmid: 28961059
[18] Fausto-Sterling, A. (Ed.). (2000). Sexing the body: Gender politics and the construction of sexuality. Basic Books.
[19] Freeman, J. B., Ambady, N., & Holcomb, P. J. (2010). The face-sensitive N170 encodes social category information. Neuroreport, 21(1), 24-28. https://doi.org/10.1097/WNR.0b013e3283320d54
doi: 10.1097/WNR.0b013e3283320d54URLpmid: 19864961
[20] Frost, R., Armstrong, B. C., Siegelman, N., & Christiansen, M. H. (2015). Domain generality versus modality specificity: The paradox of statistical learning. Trends in Cognitive Sciences, 19(3), 117-125. https://doi.org/10.1016/j.tics.2014.12.010
doi: 10.1016/j.tics.2014.12.010URLpmid: 25631249
[21] Fuller, C. D., Gaudrain, E., Clarke, J. N., Galvin, J. J., Fu, Q. -J., Free, R. H., & Baskent, D. (2014). Gender categorization is abnormal in cochlear implant users. Journal of the Association for Research in Otolaryngology, 15(6), 1037-1048. https://doi.org/10.1007/s10162-014-0483-7
doi: 10.1007/s10162-014-0483-7URLpmid: 25172111
[22] Ghuman, A. S., McDaniel, J. R., & Martin, A. (2010). Face adaptation without a face. Current Biology, 20(1), 32-36. https://doi.org/10.1016/j.cub.2009.10.077
doi: 10.1016/j.cub.2009.10.077URL
[23] Gilani, S. Z., Rooney, K., Shafait, F., Walters, M., & Mian, A. (2014). Geometric facial gender scoring: Objectivity of perception. PloS One, 9(6), e99483. https://doi.org/10.1371/journal.pone.0099483
doi: 10.1371/journal.pone.0099483URLpmid: 24923319
[24] Hillenbrand, J. M., & Clark,M. J. (2009). The role of f (0) and formant frequencies in distinguishing the voices of men and women. Attention, Perception, & Psychophysics, 71(5), 1150-1166. https://doi.org/10.3758/APP.71.5.1150
[25] Huestegge, S. M., & Raettig, T. (2020). Crossing gender borders: Bidirectional dynamic interaction between face-based and voice-based gender categorization. Journal of Voice, 34(3), 487.e1-487.e9. https://doi.org/10.1016/j.jvoice.2018.09.020
doi: 10.1016/j.jvoice.2018.09.020URL
[26] Hugelschafer, S., Jaudas, A., & Achtziger, A. (2016). Detecting gender before you know it: How implementation intentions control early gender categorization. Brain Research, 1649(Pt A), 9-22. https://doi.org/10.1016/j.brainres.2016.08.026
doi: 10.1016/j.brainres.2016.08.026URLpmid: 27553629
[27] Hyde, J. S., Bigler, R. S., Joel, D., Tate, C. C., & van Anders, S. M. (2019). The future of sex and gender in psychology: Five challenges to the gender binary. American Psychologist, 74(2), 171-193. https://doi.org/10.1037/amp0000307
doi: 10.1037/amp0000307URLpmid: 30024214
[28] Ino, T., Nakai, R., Azuma, T., Kimura, T., & Fukuyama, H. (2010). Gender differences in brain activation during encoding and recognition of male and female faces. Brain Imaging and Behavior, 4(1), 55-67. https://doi.org/10.1007/s11682-009-9085-0
doi: 10.1007/s11682-009-9085-0URL
[29] Ishai, A. (2015). Seeing faces in the brain. In J. O. Lauring (Ed.), An Introduction to Neuroaesthetics: The Neuroscientific Approach to Aesthetic Experience, Artistic Creativity, and Arts Appreciation (pp. 163-183). Museum Tusculanum Press.
[30] Ito, T. A., & Urland,G. R. (2003). Race and gender on the brain: Electrocortical measures of attention to the race and gender of multiply categorizable individuals. Journal of Personality and Social Psychology, 85(4), 616-626. https://doi.org/10.1037/0022-3514.85.4.616
doi: 10.1037/0022-3514.85.4.616URLpmid: 14561116
[31] Johnson, K. L., Freeman, J. B., & Pauker, K. (2012). Race is gendered: How covarying phenotypes and stereotypes bias sex categorization. Journal of Personality and Social Psychology, 102(1), 116-131. https://doi.org/10.1037/a0025335
doi: 10.1037/a0025335URL
[32] Junger, J., Pauly, K., Brohr, S., Birkholz, P., Neuschaefer-Rube, C., Kohler, C., … Habel, U. (2013). Sex matters: Neural correlates of voice gender perception. NeuroImage, 79, 275-287. https://doi.org/10.1016/j.neuroimage.2013.04.105
doi: 10.1016/j.neuroimage.2013.04.105URL
[33] Kaul, C., Rees, G., & Ishai, A. (2011). The gender of face stimuli is represented in multiple regions in the human brain. Frontiers in Human Neuroscience, 4, 238. https://doi.org/10.3389/fnhum.2010.00238
doi: 10.3389/fnhum.2010.00238URLpmid: 21270947
[34] Kelly, M. (2016). Sex versus gender categorization. The Wiley Blackwell Encyclopedia of Gender and Sexuality Studies (pp. 1-3). Wiley Online Library. https://oi.org/10.1002/9781118663219.wbegss028
[35] Kozlowski, D. (2015). The interplay between self-perceived gender and the perception of the gender of others: an examination of exogenous and endogenous factors contributing to judgements of sex and gender (Unpublished doctorial dissertation). Southern Cross University. Lismore, NSW.
[36] Kranz, F., & Ishai, A. (2006). Face perception is modulated by sexual preference. Current Biology, 16(1), 63-68. https://doi.org/10.1016/j.cub.2005.10.070
doi: 10.1016/j.cub.2005.10.070URLpmid: 16401423
[37] Latinus,M., & Taylor,M. J. (2012). Discriminating male and female voices: Differentiating pitch and gender. Brain Topography, 25(2), 194-204. https://doi.org/10.1007/s10548-011-0207-9
doi: 10.1007/s10548-011-0207-9URL
[38] Lattner, S., Meyer, M. E., & Friederici, A. D. (2005). Voice perception: Sex, pitch, and the right hemisphere. Human Brain Mapping, 24(1), 11-20. https://doi.org/10.1002/hbm.20065
doi: 10.1002/hbm.20065URLpmid: 15593269
[39] Lee, P. A., Nordenstrom, A., Houk, C. P., Ahmed, S. F., Auchus, R., Baratz, A., … Global, D. S. D. U. C. (2016). Global disorders of sex development update since 2006: Perceptions, approach and care. Hormone Research in Paediatrics, 85(3), 158-180. https://doi.org/10.1159/000442975
doi: 10.1159/000442975URLpmid: 26820577
[40] Li, Y., Gu, F., Zhang, X. L., Yang, L. Z., Chen, L. J., Wei, Z. D., … Zhang, X. C. (2014). Cerebral activity to opposite-sex voices reflected by event-related potentials. PloS One, 9(4), e94976. https://doi.org/10.1371/journal.pone.0094976
doi: 10.1371/journal.pone.0094976URLpmid: 24727971
[41] Li, Y., Long, J., Huang, B., Yu, T., Wu, W., Liu, Y., Liang, C., & Sun, P. (2015). Crossmodal integration enhances neural representation of task-relevant features in audiovisual face perception. Cerebral Cortex, 25(2), 384-395. https://doi.org/10.1093/cercor/bht228
doi: 10.1093/cercor/bht228URLpmid: 23978654
[42] Liu, C. W., Liu, Y., Iqbal, Z., Li, W. H., Lv, B., & Jiang, Z. Q. (2017). Symmetrical and asymmetrical interactions between facial expressions and gender information in face perception. Frontiers in Psychology, 8, 1383. https://doi.org/10.3389/fpsyg.2017.01383
doi: 10.3389/fpsyg.2017.01383URLpmid: 28855882
[43] Macrae, C. N., Alnwick, K. A., Milne, A. B., & Schloerscheidt, A. M. (2002). Person perception across the menstrual cycle: Hormonal influences on social-cognitive functioning. Psychological Science, 13(6), 532-536. https://doi.org/10.1111/1467-9280.00493
doi: 10.1111/1467-9280.00493URLpmid: 12430837
[44] Minot, T., Dury, H. L., Eguchi, A., Humphreys, G. W., & Stringer, S. M. (2017). The neural representation of the gender of faces in the primate visual system: A computer modeling study. Psychological Review, 124(2), 154-167. https://doi.org/10.1037/rev0000049
doi: 10.1037/rev0000049URLpmid: 28068117
[45] Mouchetant-Rostaing,Y., & Giard,M. H. (2003). Electrophysiological correlates of age and gender perception on human faces. Journal of Cognitive Neuroscience, 15(6), 900-910. https://doi.org/10.1162/089892903322370816
doi: 10.1162/089892903322370816URLpmid: 14511542
[46] Mouchetant-Rostaing, Y., Giard, M. H., Bentin, S., Aguera, P. E., & Pernier, J. (2000). Neurophysiological correlates of face gender processing in humans. European Journal of Neuroscience, 12(1), 303-310. https://doi.org/10.1046/j.1460-9568.2000.00888.x
doi: 10.1046/j.1460-9568.2000.00888.xURLpmid: 10651885
[47] Muehlenhard, C. L., & Peterson,Z. D. (2011). Distinguishing between sex and gender: History, current conceptualizations, and implications. Sex Roles, 64(11-12), 791-803. https://doi.org/10.1007/s11199-011-9932-5
doi: 10.1007/s11199-011-9932-5URL
[48] Ng, M., Ciaramitaro, V. M., Anstis, S., Boynton, G. M., & Fine, I. (2006). Selectivity for the configural cues that identify the gender, ethnicity, and identity of faces in human cortex. Proceedings of the National Academy of Sciences of the United States of America, 103(51), 19552-19557. https://doi.org/10.1073/pnas.0605358104
doi: 10.1073/pnas.0605358104URLpmid: 17164335
[49] Pernet, C. R., & Belin, P. (2012). The role of pitch and timbre in voice gender categorization. Frontiers in Psychology, 3, 23. https://doi.org/10.3389/fpsyg.2012.00023
doi: 10.3389/fpsyg.2012.00023URLpmid: 22347205
[50] Pernet, C. R., Belin, P., & Jones, A. (2013). Behavioral evidence of a dissociation between voice gender categorization and phoneme categorization using auditory morphed stimuli. Frontiers in Psychology, 4, 1018. https://doi.org/10.3389/fpsyg.2013.01018
doi: 10.3389/fpsyg.2013.01018URLpmid: 24474943
[51] Podrebarac, S. K., Goodale, M. A., van der Zwan, R., & Snow, J. C. (2013). Gender-selective neural populations: Evidence from event-related fMRI repetition suppression. Experimental Brain Research, 226(2), 241-252. https://doi.org/10.1007/s00221-013-3429-0
doi: 10.1007/s00221-013-3429-0URL
[52] Pollick, F. E., Kay, J. W., Heim, K., & Stringer, R. (2005). Gender recognition from point-light walkers. Journal of Experimental Psychology: Human Perception and Performance, 31(6), 1247-1265. https://doi.org/10.1037/0096-1523.31.6.1247
doi: 10.1037/0096-1523.31.6.1247URLpmid: 16366787
[53] Posner, M. I., Nissen, M. J., & Klein, R. M. (1976). Visual dominance: An information-processing account of its origins and significance. Psychological Review, 83(2), 157-171. https://doi.org/10.1037/0033-295X.83.2.157
URLpmid: 769017
[54] Proverbio, A. M., Riva, F., Martin, E., & Zani, A. (2010). Neural markers of opposite-sex bias in face processing. Frontiers in Psychology, 1, 169. https://doi.org/10.3389/fpsyg.2010.00169
doi: 10.3389/fpsyg.2010.00169URLpmid: 21833232
[55] Reddy, L., Wilken, P., & Koch, C. (2004). Face-gender discrimination is possible in the near-absence of attention. Journal of Vision, 4(2), 106-117. https://doi.org/10.1167/4.2.4
doi: 10.1167/4.2.4URLpmid: 15005651
[56] Rennels, J. L., & Verba,S. A. (2019). Gender typicality of faces affects children’s categorization and judgments of women more than of men. Sex Roles, 81(5-6), 355-369. https://doi.org/10.1007/s11199-018-0997-2
doi: 10.1007/s11199-018-0997-2URL
[57] Semin, G. R., Palma, T., Acarturk, C., & Dziuba, A. (2018). Gender is not simply a matter of black and white, or is it? Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 373(1752). https://doi.org/10.1098/rstb.2017.0126
doi: 10.1098/rstb.2017.0125URLpmid: 29914993
[58] Simpson, A. P. (2009). Phonetic differences between male and female speech. Language and Linguistics Compass, 3(2), 621-640. https://doi.org/10.1111/j.1749-818X.2009.00125.x
doi: 10.1111/j.1749-818X.2009.00125.xURL
[59] Singh, O., Bommagani, G., Ravula, S. R., & Gunjan, V. K. (2013). Pattern based gender classification. International Journal of Advanced Research in Computer Science and Software Engineering, 3(10), 888-895. https://doi.org/10. 13140/2.1.2420.9604
[60] Slepian, M. L., Weisbuch, M., Rule, N. O., & Ambady, N. (2011). Tough and tender: Embodied categorization of gender. Psychological Science, 22(1), 26-28. https://doi.org/10.1177/0956797610390388
doi: 10.1177/0956797610390388URLpmid: 21106884
[61] Smith, E., Junger, J., Pauly, K., Kellermann, T., Neulen, J., Neuschaefer-Rube, C., … Habel, U. (2018). Gender incongruence and the brain - behavioral and neural correlates of voice gender perception in transgender people. Hormones and Behavior, 105, 11-21. https://doi.org/10.1016/j.yhbeh.2018.07.001
doi: 10.1016/j.yhbeh.2018.07.001URLpmid: 29981752
[62] Smith, E. L., Grabowecky, M., & Suzuki, S. (2007). Auditory-visual crossmodal integration in perception of face gender. Current Biology, 17(19), 1680-1685. https://doi.org/10.1016/j.cub.2007.08.043
doi: 10.1016/j.cub.2007.08.043URLpmid: 17825561
[63] Sokhi, D. S., Hunter, M. D., Wilkinson, I. D., & Woodruff, P. W. (2005). Male and female voices activate distinct regions in the male brain. NeuroImage, 27(3), 572-578. https://doi.org/10.1016/j.neuroimage.2005.04.023
doi: 10.1016/j.neuroimage.2005.04.023URLpmid: 15978839
[64] Stolier, R. M., & Freeman,J. B. (2016). Neural pattern similarity reveals the inherent intersection of social categories. Nature Neuroscience, 19(6), 795-797. https://doi.org/10.1038/nn.4296
doi: 10.1038/nn.4296URLpmid: 27135216
[65] Su, J. Z., Tan, Q. L., & Fang, F. (2013). Neural correlates of face gender discrimination learning. Experimental Brain Research, 225(4), 569-578. https://doi.org/10.1007/s00221-012-3396-x
doi: 10.1007/s00221-012-3396-xURL
[66] Titze, I. R., & Martin,D. W. (Eds.). (1998). Principles of voice production. Acoustical Society of America.
[67] Tomelleri, S., & Castelli, L. (2012). On the nature of gender categorization pervasive but flexible. Social Psychology, 43(1), 14-27. https://doi.org/10.1027/1864-9335/a000076
doi: 10.1027/1864-9335/a000076URL
[68] Valdes-Conroy, B., Aguado, L., Fernandez-Cahill, M., Romero-Ferreiro, V., & Dieguez-Risco, T. (2014). Following the time course of face gender and expression processing: A task-dependent ERP study. International Journal of Psychophysiology, 92(2), 59-66. https://doi.org/10.1016/j.ijpsycho.2014.02.005
doi: 10.1016/j.ijpsycho.2014.02.005URL
[69] Watson, R., Charest, I., Rouger, J., Casper, C., Latinus, M., & Belin, P. (2013). Audiovisual integration of face-voice gender studied using “morphed videos”. In P. Belin, S. Campanella, T. Ethofer (Eds.), Integrating Face and Voice in Person Perception (pp. 135-148). Springer.
[70] Weston, P. S. J., Hunter, M. D., Sokhi, D. S., Wilkinson, I. D., & Woodruff, P. W. (2015). Discrimination of voice gender in the human auditory cortex. NeuroImage, 105, 208-214. https://doi.org/10.1016/j.neuroimage.2014.10.056
doi: 10.1016/j.neuroimage.2014.10.056URLpmid: 25449748
[71] Wiese, H., Kloth, N., Gullmar, D., Reichenbach, J. R., & Schweinberger, S. R. (2012). Perceiving age and gender in unfamiliar faces: An fMRI study on face categorization. Brain and Cognition, 78(2), 163-168. https://doi.org/10.1016/j.bandc.2011.10.012
doi: 10.1016/j.bandc.2011.10.012URL
[72] Wu, N., Kemter, K., Schweinberger, S. R., & Wiese, H. (2014). What drives social in-group biases in face recognition memory? ERP evidence from the own-gender bias. Social Cognitive and Affective Neuroscience, 9(5), 580-590. https://doi.org/10.1093/scan/nst024
doi: 10.1093/scan/nst024URL
[73] Xu, W., Zhuang, Y., Long, X., Wu, Y., & Lin, F. (2016). Human gender classification: a review. International Journal of Biometrics, 8(3/4), 1-22. https://doi.org/10.1504/ijbm.2016.10003589
[74] Yamaguchi, M. K., Hirukawa, T., & Kanazawa, S. (2013). Judgment of gender through facial parts. Perception, 42(11), 1253-1265. https://doi.org/10.1068/p240563n
doi: 10.1068/p240563nURLpmid: 24601037
[75] Yang, G. C., Li, Z. H., Fu, D., Xu, H., Wu, H. Y., & Liu, X. (2020). Independent multisensory integration and crossmodal attention processing. OSF Preprints. https://doi.org/10.31219/osf.io/p9x2c
[76] Yokoyama, T., Noguchi, Y., Tachibana, R., Mukaida, S., & Kita, S. (2014). A critical role of holistic processing in face gender perception. Frontiers in Human Neuroscience, 8, 477. https://doi.org/10.3389/fnhum.2014.00477
doi: 10.3389/fnhum.2014.00477URLpmid: 25018727
[77] Yovel, G., & Belin, P. (2013). A unified coding strategy for processing faces and voices. Trends in Cognitive Sciences, 17(6), 263-271. https://doi.org/10.1016/j.tics.2013.04.004
doi: 10.1016/j.tics.2013.04.004URLpmid: 23664703
[78] Zaske, R., Schweinberger, S. R., Kaufmann, J. M., & Kawahara, H. (2009). In the ear of the beholder: Neural correlates of adaptation to voice gender. European Journal of Neuroscience, 30(3), 527-534. https://doi.org/10.1111/j.1460-9568.2009.06839.x
doi: 10.1111/j.1460-9568.2009.06839.xURLpmid: 19656175
[79] Zhang, X. B., Li, Q., Eskine, K. J., Zuo, B., & Allen, P. (2014). Perceptual simulation in gender categorization: Associations between gender, vertical height, and spatial size. PloS One, 9(1), e89768. https://doi.org/10.1371/journal.pone.0089768
doi: 10.1371/journal.pone.0089768URL
[80] Zhang, X. B., Li, Q., Sun, S., & Zuo, B. (2018). The time course from gender categorization to gender-stereotype activation. Social Neuroscience, 13(1), 52-60. https://doi.org/10.1080/17470919.2016.1251965
doi: 10.1080/17470919.2016.1251965URLpmid: 27778758
[81] Zhao,M., & Hayward,W. G. (2010). Holistic processing underlies gender judgments of faces. Attention, Perception, & Psychophysics, 72(3), 591-596. https://doi.org/10.3758/APP.72.3.591
[82] Zhou, W., Yang, X. Y., Chen, K., Cai, P., He, S., & Jiang, Y. (2014). Chemosensory communication of gender through two human steroids in a sexually dimorphic manner. Current Biology, 24(10), 1091-1095. https://doi.org/10.1016/j.cub.2014.03.035
doi: 10.1016/j.cub.2014.03.035URL




[1]霍鹏辉, 冯成志, 陈庭继. 注视者及观察者因素对注视知觉的影响[J]. 心理科学进展, 2021, 29(2): 238-251.
[2]王葛彤, 席洁, 陈霓虹, 黄昌兵. 双眼视差的神经机制与知觉学习效应[J]. 心理科学进展, 2021, 29(1): 56-69.
[3]郭滢, 龚先旻, 王大华. 错误记忆产生的认知与神经机制:信息加工视角[J]. 心理科学进展, 2021, 29(1): 79-92.
[4]刘启鹏, 赵小云, 王翠艳, 徐艺雅, 王淑燕. 反刍思维与注意脱离损坏的关系及其神经机制[J]. 心理科学进展, 2021, 29(1): 102-111.
[5]翁纯纯, 王宁. 时距知觉的动物研究范式及相关神经机制[J]. 心理科学进展, 2020, 28(9): 1478-1492.
[6]杨晓梦, 王福兴, 王燕青, 赵婷婷, 高春颍, 胡祥恩. 瞳孔是心灵的窗口吗?——瞳孔在心理学研究中的应用及测量[J]. 心理科学进展, 2020, 28(7): 1029-1041.
[7]程士静, 何文广. 语义认知的习得、发展和老化及其神经机制[J]. 心理科学进展, 2020, 28(7): 1156-1163.
[8]温芳芳, 佐斌, 马书瀚, 谢志杰. 面孔识别的自我群体偏向[J]. 心理科学进展, 2020, 28(7): 1164-1171.
[9]范晓壮, 毕小彬, 谢宇, 贺荟中. 高功能自闭症个体对威胁性情绪面孔的注意偏向[J]. 心理科学进展, 2020, 28(7): 1172-1186.
[10]张晶晶, 梁啸岳, 陈伊笛, 陈庆荣. 音乐句法加工的认知机制与音乐结构的影响模式[J]. 心理科学进展, 2020, 28(6): 883-892.
[11]李庆功, 王震炎, 孙捷元, 师妍. 网约车场景中声誉和面孔可信度对女性信任判断的影响以及直觉性思维的调节作用[J]. 心理科学进展, 2020, 28(5): 746-751.
[12]刘昕鹤, 王宁, 王锦琰, 罗非. 疼痛背景下时距知觉的变化[J]. 心理科学进展, 2020, 28(5): 766-777.
[13]贺则宇, 张紫琦, 李可轩, 何蔚祺. 空间频率影响恐惧面孔表情加工的神经通路[J]. 心理科学进展, 2020, 28(4): 579-587.
[14]于全磊, 陈建文, 谭秀娟, 邓雪菲, 赵庆柏, 周治金. 父子(女)间面孔相似性的进化适应机制及其影响[J]. 心理科学进展, 2020, 28(3): 476-485.
[15]冉光明, 李睿, 张琪. 高社交焦虑者识别动态情绪面孔的神经机制[J]. 心理科学进展, 2020, 28(12): 1979-1988.





PDF全文下载地址:

http://journal.psych.ac.cn/xlkxjz/CN/article/downloadArticleFile.do?attachType=PDF&id=5251
相关话题/科学 心理 神经 信息 经费