删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

时距知觉的动物研究范式及相关神经机制

本站小编 Free考研考试/2022-01-01

翁纯纯, 王宁()
中国科学院心理研究所, 心理健康院重点实验室, 北京 100101
中国科学院大学心理学系, 北京 100049
收稿日期:2019-11-19出版日期:2020-09-15发布日期:2020-07-24
通讯作者:王宁E-mail:wangn@psych.ac.cn

基金资助:* 国家自然科学基金面上项目(31671140)

Animal research paradigm and related neural mechanism of interval timing

WENG Chunchun, WANG Ning()
CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101 China
Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049 China
Received:2019-11-19Online:2020-09-15Published:2020-07-24
Contact:WANG Ning E-mail:wangn@psych.ac.cn






摘要/Abstract


摘要: 在探索时距知觉的脑机制的过程中, 相对于人类被试相关研究, 动物研究可以提供较多的药理学、分子生物学、单个神经元电生理学以及光遗传等方面的研究证据。目前较为常用的时距知觉动物研究范式包括时间二分法、峰值间隔法以及低比率差别强化法等。根据不同的研究需求, 动物研究的范式常会进行调整。对时距知觉的动物研究的探讨将基于两方面展开:(1) 常用的时距知觉动物研究范式的介绍及比较; (2) 基于动物研究范式的时距知觉神经机制研究进展, 旨在为深入探索时间知觉的心理学相关研究提供参考。


表1时距知觉的动物研究范式的比较
范式类别 重要参数 参数意义 优点 缺点
时间二分任务 主观相等点 时距知觉加工速度 更适用于考察时间敏感性 动物需要进行二分判断, 而不是直接估计时距
韦伯分数 时间敏感性
峰值间隔法 峰值时间 时距知觉加工速度 动物在操作过程中较为自由, 可以主观判断时距 动物反复按压杠杆, 在记录神经元时容易受到运动的影响
峰值反应率 个体兴奋度
韦伯分数 时间敏感性
低比率差别强化法 峰值时间 时距知觉加工速度 动物需要等待特定时长, 更接近人类研究的产生式法 容易受到个体冲动性的影响
冲动反应数&未强化反应数 个体冲动性
自由操作心理物理法 无差别点 时距知觉加工速度 行为操作快速, 适用于长时距研究 自由操作过程中易混杂其他因素
失匹配负波 波幅和潜伏期 对时距的辨别 不受注意限制, 可考察时距知觉的自动加工过程 观察的时间窗较小
录制观察法 某种行为的时长 时距知觉加工速度 可观察动物在自然状态下日常行为的时距知觉变化, 不受到训练因素的影响 可量化的日常行为目前仍然较少

表1时距知觉的动物研究范式的比较
范式类别 重要参数 参数意义 优点 缺点
时间二分任务 主观相等点 时距知觉加工速度 更适用于考察时间敏感性 动物需要进行二分判断, 而不是直接估计时距
韦伯分数 时间敏感性
峰值间隔法 峰值时间 时距知觉加工速度 动物在操作过程中较为自由, 可以主观判断时距 动物反复按压杠杆, 在记录神经元时容易受到运动的影响
峰值反应率 个体兴奋度
韦伯分数 时间敏感性
低比率差别强化法 峰值时间 时距知觉加工速度 动物需要等待特定时长, 更接近人类研究的产生式法 容易受到个体冲动性的影响
冲动反应数&未强化反应数 个体冲动性
自由操作心理物理法 无差别点 时距知觉加工速度 行为操作快速, 适用于长时距研究 自由操作过程中易混杂其他因素
失匹配负波 波幅和潜伏期 对时距的辨别 不受注意限制, 可考察时距知觉的自动加工过程 观察的时间窗较小
录制观察法 某种行为的时长 时距知觉加工速度 可观察动物在自然状态下日常行为的时距知觉变化, 不受到训练因素的影响 可量化的日常行为目前仍然较少







[1] Asaoka, R., & Gyoba, J. (2016). Sounds modulate the perceived duration of visual stimuli via crossmodal integration. Multisensory Research, 29(4-5), 319-335.
doi: 10.1163/22134808-00002518URLpmid: 29384606
[2] Azabou, E., Rohaut, B., Porcher, R., Heming, N., Kandelman, S., Allary, J., … the GENeR. (2018). Mismatch negativity to predict subsequent awakening in deeply sedated critically ill patients. British Journal of Anaesthesia, 121(6), 1290-1297.
doi: 10.1016/j.bja.2018.06.029URLpmid: 30442256
[3] Bernardinis, M., Atashzar, S. F., Jog, M. S., & Patel, R. V. (2019). Differential temporal perception abilities in Parkinson's disease patients based on timing magnitude. Scientific Reports, 9(1), 19638.
doi: 10.1038/s41598-019-55827-yURLpmid: 31873093
[4] Blankenship, P. A., Cheatwood, J. L., & Wallace, D. G. (2017). Unilateral lesions of the dorsocentral striatum (DCS) disrupt spatial and temporal characteristics of food protection behavior. Brain Structure and Function, 222(6), 2697-2710.
URLpmid: 28154968
[5] Blomeley, F. J., Lowe, C. F., & Wearden, J. H. (2004). Reinforcer concentration effects on a fixed-interval schedule. Behavioural Processes, 67(1), 55-66.
URLpmid: 15182926
[6] Body, S., Cheung, T. H. C., Bezzina, G., Asgari, K., Fone, K. C. F., Glennon, J. C., … Szabadi, E. (2006). Effects of d-amphetamine and DOI (2, 5-dimethoxy-4-iodoamphetamine) on timing behavior: Interaction between D1 and 5-HT2A receptors. Psychopharmacology, 189(3), 331-343.
URLpmid: 17051415
[7] Body, S., Chiang, T. J., Mobini, S., Ho, M. Y., Bradshaw, C. M., & Szabadi, E. (2002). Effect of 8-OH-DPAT on temporal discrimination following central 5-hydroxytryptamine depletion. Pharmacology Biochemistry and Behavior, 71(4), 787-793.
doi: 10.1016/S0091-3057(01)00674-8URL
[8] Body, S., Kheramin, S., Mobini, S., Ho, M. Y., Velazquez-Martinez, D. N., Bradshaw, C. M., & Szabadi, E. (2002). Antagonism by WAY-100635 of the effects of 8-OH-DPAT on performance on a free-operant timing schedule in intact and 5-HT-depleted rats. Behavioural Pharmacology, 13(8), 603-614.
doi: 10.1097/00008877-200212000-00001URLpmid: 12478210
[9] Buhusi, C. V., & Meck, W. H. (2005). What makes us tick? Functional and neural mechanisms of interval timing. Nature Reviews Neuroscience, 6(10), 755-765.
URLpmid: 16163383
[10] Buhusi, C. V., & Meck, W. H. (2006). Time sharing in rats: A peak-interval procedure with gaps and distracters. Behavioural Processes, 71(2-3), 107-115.
URLpmid: 16413701
[11] Buhusi, C. V., & Meck, W. H. (2009). Relativity theory and time perception: Single or multiple clocks? Plos One, 4(7), e6268.
doi: 10.1371/journal.pone.0006268URLpmid: 19623247
[12] Buonomano, D. V. (2000). Decoding temporal information: A model based on short-term synaptic plasticity. Journal of Neuroscience, 20(3), 1129-1141.
URLpmid: 10648718
[13] Cheng, R. K., MacDonald, C. J., & Meck, W. H. (2006). Differential effects of cocaine and ketamine on time estimation: Implications for neurobiological models of interval timing. Pharmacology Biochemistry and Behavior, 85(1), 114-122.
[14] Cheng, R. K., Scott, A. C., Penney, T. B., Williams, C. L., & Meck, W. H. (2008). Prenatal-choline supplementation differentially modulates timing of auditory and visual stimuli in aged rats. Brain Research, 1237, 167-175.
URLpmid: 18801344
[15] Church, R. M., & Deluty, M. Z. (1977). Bisection of temporal intervals. Journal of Experimental Psychology-Animal Behavior Processes, 3(3), 216-228.
URLpmid: 881613
[16] Church, R. M., Meck, W. H., & Gibbon, J. (1994). Application of scalar timing theory to individual trials. Journal of Experimental Psychology-Animal Behavior Processes, 20(2), 135-155.
URLpmid: 8189184
[17] Coull, J. T., Cheng, R. K., & Meck, W. H. (2011). Neuroanatomical and neurochemical substrates of timing. Neuropsychopharmacology, 36(1), 3-25.
doi: 10.1038/npp.2010.113URLpmid: 20668434
[18] Daniels, C. W., Watterson, E., Garcia, R., Mazur, G. J., Brackney, R. J., & Sanabria, F. (2015). Revisiting the effect of nicotine on interval timing. Behavioural Brain Research, 283, 238-250.
URLpmid: 25637907
[19] Deane, A. R., Millar, J., Bilkey, D. K., & Ward, R. D. (2017). Maternal immune activation in rats produces temporal perception impairments in adult offspring analogous to those observed in schizophrenia. Plos One, 12(11), e0187719.
URLpmid: 29108010
[20] de Corte, B. J., Wagner, L. M., Matell, M. S., & Narayanan, N. S. (2019). Striatal dopamine and the temporal control of behavior. Behavioural Brain Research, 356, 375-379.
[21] Dews, P. B. (1978). Studies on responding under fixed-interval schedules of reinforcement: II. The scalloped pattern of the cumulative record. Journal of the Experimental Analysis of Behavior, 29(1), 67-75.
URLpmid: 16812040
[22] Doenyas, C., Mutluer, T., Genc, E., & Balc?, F. (2019). Error monitoring in decision-making and timing is disrupted in autism spectrum disorder. Autism Research, 12(2), 239-248.
doi: 10.1002/aur.2041URLpmid: 30485714
[23] Droit-Volet, S. (2013). Time perception, emotions and mood disorders. Journal of Physiology-Paris, 107(4), 255-264.
[24] Eckard, M. L., & Kyonka, E. G. E. (2018). Differential reinforcement of low rates differentially decreased timing precision. Behavioural Processes, 151, 111-118.
URLpmid: 29608943
[25] Eichenbaum, H. (2014). Time cells in the hippocampus: A new dimension for mapping memories. Nature Reviews Neuroscience, 15(11), 732-744.
doi: 10.1038/nrn3827URLpmid: 25269553
[26] Faure, A., Es-Seddiqi, M., Brown, B. L., Nguyen, H. P., Riess, O., von Horsten, S., … Doyère, V. (2013). Modified impact of emotion on temporal discrimination in a transgenic rat model of Huntington disease. Frontiers in Behavioral Neuroscience, 7, 130.
URLpmid: 24133419
[27] Garces, D., El Massioui, N., Lamirault, C., Riess, O., Nguyen, H. P., Brown, B. L., & Doyère, V. (2018). The alteration of emotion regulation precedes the deficits in interval timing in the BACHD rat model for Huntington disease. Frontiers in Integrative Neuroscience, 12, 14.
URLpmid: 29867384
[28] Gibbon, J., Church, R. M., & Meck, W. H. (1984). Scalar timing in memory. Annals of the New York Academy Sciences, 423(1), 52-77.
[29] Graham, S., Ho, M. Y., Bradshaw, C. M., & Szabadi, E. (1994). Facilitated acquisition of a temporal discrimination following destruction of the ascending 5-hydroxytryptaminergic pathways. Psychopharmacology, 116(3), 373-378.
URLpmid: 7534424
[30] Grommet, E. K., Hemmes, N. S., & Brown, B. L. (2019). The role of clock and memory processes in the timing of fear cues by humans in the temporal bisection task. Behavioural Processes, 164, 217-229.
URLpmid: 31102605
[31] Halberstadt, A. L., Sindhunata, I. S., Scheffers, K., Flynn, A. D., Sharp, R. F., Geyer, M. A., & Young, J. W. (2016). Effect of 5-HT2A and 5-HT2C receptors on temporal discrimination by mice. Neuropharmacology, 107, 364-375.
doi: 10.1016/j.neuropharm.2016.03.038URLpmid: 27020041
[32] Hass, J., & Durstewitz, D. (2016). Time at the center, or time at the side? Assessing current models of time perception. Current Opinion in Behavioral Sciences, 8, 238-244.
[33] Hata, T. (2011). Glutamate - A forgotten target for interval timing. Frontiers in Integrative Neuroscience, 5, 27.
doi: 10.3389/fnint.2011.00027URLpmid: 21734871
[34] Herrnstein, R. J. (1964). Aperiodicity as a factor in choice. Journal of the Experimental Analysis of Behavior, 7(2), 179-182.
[35] Hilgard, E. R. (1939). The behavior of organisms. Psychological Bulletin, 36(2), 121-125.
[36] H?hn, S., Dallérac, G., Faure, A., Urbach, Y. K., Nguyen, H. P., Riess, O., … Doyère, V. (2011). Behavioral and in vivo electrophysiological evidence for presymptomatic alteration of prefrontostriatal processing in the transgenic rat model for huntington disease. Journal of Neuroscienc, 31(24), 8986-8997.
[37] Ito, M. (1981). Control of monkey's spaced responding by sample durations. Japanese Psychological Research, 23(4), 213-218.
[38] Jaldow, E. J., & Oakley, D. A. (1990). Performance on a differential reinforcement of low-rate schedule in neodecorticated rats and rats with hippocampal lesions. Psychobiology, 18(4), 394-403.
[39] Jones, C. R., & Jahanshahi, M. (2009). The substantia nigra, the basal ganglia, dopamine and temporal processing. Journal of Neural Transmission Supplementa, (73), 161-171.
[40] Jurek, L., Longuet, Y., Baltazar, M., Amestoy, A., Schmitt, V., Desmurget, M., & Geoffray, M. M. (2019). How did I get so late so soon? A review of time processing and management in autism. Behavioural Brain Research, 374, 112121.
doi: 10.1016/j.bbr.2019.112121URLpmid: 31376445
[41] Kamada, T., & Hata, T. (2018). Insular cortex inactivation generalizes fear-induced underestimation of interval timing in a temporal bisection task. Behavioural Brain Research, 347, 219-226.
URLpmid: 29551731
[42] Kamada, T., & Hata, T. (2019). Basolateral amygdala inactivation eliminates fear-induced underestimation of time in a temporal bisection task. Behavioural Brain Research, 356, 227-235.
URLpmid: 30098408
[43] Kim, J., Ghim, J. W., Lee, J. H., & Jung, M. W. (2013). Neural correlates of interval timing in rodent prefrontal cortex. Journal of Neuroscience, 33(34), 13834-13847.
URLpmid: 23966703
[44] Kim, J., Jung, A. H., Byun, J., Jo, S., & Jung, M. W. (2009). Inactivation of medial prefrontal cortex impairs time interval discrimination in rats. Frontiers in Behavioral Neuroscience, 3, 38.
URLpmid: 19915730
[45] Kim, Y. C., Han, S. W., Alberico, S. L., Ruggiero, R. N., de Corte, B., Chen, K. H., & Narayanan, N. S. (2017). Optogenetic stimulation of frontal D1 neurons compensates for impaired temporal control of action in dopamine-depleted mice. Current Biology, 27(1), 39-47.
URLpmid: 27989675
[46] Kim, Y. C., & Narayanan, N. S. (2019). Prefrontal D1 dopamine-receptor neurons and delta resonance in interval timing. Cerebral Cortex, 29(5), 2051-2060.
doi: 10.1093/cercor/bhy083URLpmid: 29897417
[47] Kleinman, M. R., Sohn, H., & Lee, D. (2016). A two-stage model of concurrent interval timing in monkeys. Journal of Neurophysiology, 116(3), 1068-1081.
URLpmid: 27334954
[48] Kurti, A. N., & Matell, M. S. (2011). Nucleus accumbens dopamine modulates response rate but not response timing in an interval timing task. Behavioral Neuroscience, 125(2), 215-225.
URLpmid: 21463023
[49] Lejeune, H., Ferrara, A., Soffie, M., Bronchart, M., & Wearden, J. H. (1998). Peak procedure performance in young adult and aged rats: Acquisition and adaptation to a changing temporal criterion. Quarterly Journal of Experimental Psychology Section B-Comparative and Physiological Psychology, 51(3), 193-217.
[50] Lejeune, H., Wearden, J. H. (1991). The comparative psychology of fixed-interval responding: Some quantitative analyses. Learning and Motivation, 22(1-2), 84-111.
[51] Leon, M. I., & Shadlen, M. N. (2003). Representation of time by neurons in the posterior parietal cortex of the macaque. Neuron, 38(2), 317-327.
doi: 10.1016/s0896-6273(03)00185-5URLpmid: 12718864
[52] Lipponen, A., Kurkela, J. L. O., Kyl?heiko, I., H?ltt?, S., Ruusuvirta, T., H?m?l?inen, J. A., & Astikainen, P. (2019). Auditory-evoked potentials to changes in sound duration in urethane-anaesthetized mice. European Journal of Neuroscience, 50(2), 1911-1919.
URLpmid: 30687973
[53] Liu, X. H., Wang, N., Wang, J. Y., & Luo, F. (2019). Formalin-induced and neuropathic pain altered time estimation in a temporal bisection task in rats. Scientific Reports, 9, 18683.
doi: 10.1038/s41598-019-55168-wURLpmid: 31822729
[54] Marinho, V., Oliveira, T., Bandeira, J., Pinto, G. R., Gomes, A., Lima, V., … Teixeira, S. (2018). Genetic influence alters the brain synchronism in perception and timing. Journal of Biomedical Science, 25(1), 61.
doi: 10.1186/s12929-018-0463-zURLpmid: 30086746
[55] Marshall, A. T., Smith, A. P., & Kirkpatrick, K. (2014). Mechanisms of impulsive choice: I. Individual differences in interval timing and reward processing. Journal of the Experimental Analysis of Behavior, 102(1), 86-101.
URLpmid: 24965705
[56] Matell, M. S., Kim, J. S., & Hartshorne, L. (2014). Timing in a variable interval procedure: Evidence for a memory singularity. Behavioural Processes, 101, 49-57.
URLpmid: 24012783
[57] Matell, M. S., & Meck, W. H. (2004). Cortico-striatal circuits and interval timing: Coincidence detection of oscillatory processes. Cognitive Brain Research, 21(2), 139-170.
doi: 10.1016/j.cogbrainres.2004.06.012URLpmid: 15464348
[58] Matell, M. S., Meck, W. H., & Nicolelis, M. A. L. (2003). Interval timing and the encoding of signal duration by ensembles of cortical and striatal neurons. Behavioral Neuroscience, 117(4), 760-773.
doi: 10.1037/0735-7044.117.4.760URLpmid: 12931961
[59] Meck, W. H. (1996). Neuropharmacology of timing and time perception. Cognitive Brain Research, 3(3-4), 227-242.
doi: 10.1016/0926-6410(96)00009-2URLpmid: 8806025
[60] Meck, W. H. (2006). Neuroanatomical localization of an internal clock: A functional link between mesolimbic, nigrostriatal, and mesocortical dopaminergic systems. Brain Research, 1109(1), 93-107.
doi: 10.1016/j.brainres.2006.06.031URLpmid: 16890210
[61] Meck, W. H., Cheng, R. K., MacDonald, C. J., Gainetdinov, R. R., Caron, M. G., & Cevik, M. ?. (2012). Gene-dose dependent effects of methamphetamine on interval timing in dopamine-transporter knockout mice. Neuropharmacology, 62(3), 1221-1229.
[62] Meck, W. H., & Church, R. M. (1987). Cholinergic modulation of the content of temporal memory. Behavioral Neuroscience, 101(4), 457-464.
URLpmid: 2820435
[63] Meck, W. H., Church, R. M., & Matell, M. S. (2013). Hippocampus, time, and memory-A retrospective analysis. Behavioral Neuroscience, 127(5), 642-654.
URLpmid: 24128354
[64] Meck, W. H., Penney, T. B., & Pouthas, V. (2008). Cortico-striatal representation of time in animals and humans. Current Opinion in Neurobiology, 18(2), 145-152.
URLpmid: 18708142
[65] Mello, G. B. M., Soares, S., & Paton, J. J. (2015). A scalable population code for time in the striatum. Current Biology, 25(9), 1113-1122.
URLpmid: 25913405
[66] Monterosso, J., & Ainslie, G. (1999). Beyond discounting: Possible experimental models of impulse control. Psychopharmacology, 146(4), 339-347.
doi: 10.1007/pl00005480URLpmid: 10550485
[67] N??t?nen, R., Paavilainen, P., Rinne, T., & Alho, K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clinical Neurophysiology, 118(12), 2544-2590.
doi: 10.1016/j.clinph.2007.04.026URLpmid: 17931964
[68] Nowak, K., Oron, A., Szymaszek, A., Leminen, M., N??t?nen, R., & Szelag, E. (2016). Electrophysiological indicators of the age-related deterioration in the sensitivity to auditory duration deviance. Frontiers in Aging Neuroscience, 8, 2.
URLpmid: 26834628
[69] Oprisan, S. A., Aft, T., Buhusi, M., & Buhusi, C. V. (2018). Scalar timing in memory: A temporal map in the hippocampus. Journal of Theoretical Biology, 438, 133-142.
URLpmid: 29155279
[70] Ordu?a, V., García, A., Menez, M., Hong, E., & Bouzas, A. (2008). Performance of spontaneously hypertensive rats in a peak-interval procedure with gaps. Behavioural Brain Research, 191(1), 72-76.
doi: 10.1016/j.bbr.2008.03.012URLpmid: 18436313
[71] Parker, K. L., Chen, K. H., Kingyon, J. R., Cavanagh, J. F., & Narayanan, N. S. (2014). D1-dependent 4 Hz oscillations and ramping activity in rodent medial frontal cortex during interval timing. Journal of Neuroscience, 34(50), 16774-16783.
doi: 10.1523/JNEUROSCI.2772-14.2014URLpmid: 25505330
[72] Parker, K. L., Ruggiero, R. N., & Narayanan, N. S. (2015). Infusion of D1 dopamine receptor agonist into medial frontal cortex disrupts neural correlates of interval timing. Frontiers in Behavioral Neuroscience, 9, 294.
doi: 10.3389/fnbeh.2015.00294URLpmid: 26617499
[73] Rey, A. E., Michael, G. A., Dondas, C., Thar, M., Garcia-Larrea, L., & Mazza, S. (2017). Pain dilates time perception. Scientific Reports, 7(1), 15682.
doi: 10.1038/s41598-017-15982-6URLpmid: 29146989
[74] Roberts, S. (1981). Isolation of an internal clock. Journal of Experimental Psychology: Animal Behavior Processes, 7(3), 242-268.
URLpmid: 7252428
[75] Roger, C., Hasbroucq, T., Rabat, A., Vidal, F., & Burle, B. (2009). Neurophysics of temporal discrimination in the rat: A mismatch negativity study. Psychophysiology, 46(5), 1028-1032.
doi: 10.1111/j.1469-8986.2009.00840.xURLpmid: 19497011
[76] Sidman, M. (1956). Time discrimination and behavioral interaction in a free operant situation. Journal of comparative and physiological psychology, 49(5), 469-473.
doi: 10.1037/h0041892URLpmid: 13376755
[77] Smith, A. P., Marshall, A. T., & Kirkpatrick, K. (2015). Mechanisms of impulsive choice: II. Time-based interventions to improve self-control. Behavioural Processes, 112, 29-42.
doi: 10.1016/j.beproc.2014.10.010URLpmid: 25444771
[78] Stubbs, A. (1968). The discrimination of stimulus duration by pigeons. Journal of the Experimental Analysis of Behavior, 11(3), 223-238.
doi: 10.1901/jeab.1968.11-223URLpmid: 5660703
[79] Stubbs, D. A. (1980). Temporal discrimination and a free-operant psychophysical procedure. Journal of the Experimental Analysis of Behavior, 33(2), 167-185.
URLpmid: 7365406
[80] Sukhotina, I. A., Dravolina, O. A., Novitskaya, Y., Zvartau, E. E., Danysz, W., & Bespalov, A. Y. (2008). Effects of mGlu1 receptor blockade on working memory, time estimation, and impulsivity in rats. Psychopharmacology (Berl), 196(2), 211-220.
[81] Sussman, E. S. (2007). A new view on the MMN and attention debate - The role of context in processing auditory events. Journal of Psychophysiology, 21(3-4), 164-175.
[82] Swanton, D. N., Matell, M. S. (2011). Stimulus compounding in interval timing: The modality-duration relationship of the anchor durations results in qualitatively different response patterns to the compound cue Journal of Experimental Psychology-Animal Behavioral Processes, 37(1), 94-107.
[83] Tam, S. K. E., Jennings, D. J., & Bonardi, C. (2013). Dorsal hippocampal involvement in conditioned-response timing and maintenance of temporal information in the absence of the CS. Experimental Brain Research, 227(4), 547-559.
doi: 10.1007/s00221-013-3530-4URLpmid: 23652722
[84] Th?nes, S., & Oberfeld, D. (2015). Time perception in depression: A meta-analysis. Journal of Affective Disorders, 175, 359-372.
doi: 10.1016/j.jad.2014.12.057URLpmid: 25665496
[85] Toda, K., Lusk, N. A., Watson, G. D. R., Kim, N., Lu, D., Li, H. E., … Yin, H. H. (2017). Nigrotectal stimulation stops interval timing in mice. Current Biology, 27(24), 3763-3770.
URLpmid: 29199075
[86] Wallace, D. G., Wallace, P. S., Field, E., & Whishaw, I. Q. (2006). Pharmacological manipulations of food protection behavior in rats: Evidence for dopaminergic contributions to time perception during a natural behavior. Brain Research, 1112(1), 213-221.
doi: 10.1016/j.brainres.2006.07.015URLpmid: 16890923
[87] Wilson, M. P., & Keller, F. S. (1953). On the selective reinforcement of spaced responses. Journal of Comparative and Physiological Psychology, 46(3), 190-193.
doi: 10.1037/h0057705URLpmid: 13061646
[88] Wittmann, M. (2013). The inner sense of time: How the brain creates a representation of duration. Nature Reviews Neuroscience, 14(3), 217-223.
doi: 10.1038/nrn3452URLpmid: 23403747
[89] Xu, M., Zhang, S. Y., Dan, Y., & Poo, M. M. (2014). Representation of interval timing by temporally scalable firing patterns in rat prefrontal cortex. Proceedings of the National Academy of Sciences, 111(1), 480-485.
[90] Yamaguchi, K., & Sakurai, Y. (2014). Novel behavioral tasks to explore cerebellar temporal processing in milliseconds in rats. Behavioural Brain Research, 263, 138-143.
URLpmid: 24487009




[1]王琳, 王志丹, 王泓婧. 孤独症儿童动作发展障碍的神经机制[J]. 心理科学进展, 2021, 29(7): 1239-1250.
[2]张照, 张力为, 龚然. 视觉工作记忆的过滤效能[J]. 心理科学进展, 2021, 29(4): 635-651.
[3]周爱保, 胡砚冰, 周滢鑫, 李玉, 李文一, 张号博, 郭彦麟, 胡国庆. 听而不“闻”?人声失认症的神经机制[J]. 心理科学进展, 2021, 29(3): 414-424.
[4]赵小红, 童薇, 陈桃林, 吴冬梅, 张蕾, 陈正举, 方晓义, 龚启勇, 唐小蓉. 敬畏的心理模型及其认知神经机制[J]. 心理科学进展, 2021, 29(3): 520-530.
[5]魏真瑜, 邓湘树, 赵治瀛. 亲社会行为中的从众效应[J]. 心理科学进展, 2021, 29(3): 531-539.
[6]岳童, 黄希庭, 傅安国. 人们何以能够“舍生取义”?基于保护性价值观认知神经机制的解释[J]. 心理科学进展, 2021, 29(3): 540-548.
[7]王葛彤, 席洁, 陈霓虹, 黄昌兵. 双眼视差的神经机制与知觉学习效应[J]. 心理科学进展, 2021, 29(1): 56-69.
[8]郭滢, 龚先旻, 王大华. 错误记忆产生的认知与神经机制:信息加工视角[J]. 心理科学进展, 2021, 29(1): 79-92.
[9]刘启鹏, 赵小云, 王翠艳, 徐艺雅, 王淑燕. 反刍思维与注意脱离损坏的关系及其神经机制[J]. 心理科学进展, 2021, 29(1): 102-111.
[10]杨晓梦, 王福兴, 王燕青, 赵婷婷, 高春颍, 胡祥恩. 瞳孔是心灵的窗口吗?——瞳孔在心理学研究中的应用及测量[J]. 心理科学进展, 2020, 28(7): 1029-1041.
[11]程士静, 何文广. 语义认知的习得、发展和老化及其神经机制[J]. 心理科学进展, 2020, 28(7): 1156-1163.
[12]张晶晶, 梁啸岳, 陈伊笛, 陈庆荣. 音乐句法加工的认知机制与音乐结构的影响模式[J]. 心理科学进展, 2020, 28(6): 883-892.
[13]刘昕鹤, 王宁, 王锦琰, 罗非. 疼痛背景下时距知觉的变化[J]. 心理科学进展, 2020, 28(5): 766-777.
[14]杨国春, 伍海燕, 齐玥, 刘勋. 人类性别加工的认知神经机制[J]. 心理科学进展, 2020, 28(12): 2008-2017.
[15]李灵, 侯晓旭, 张亚, 隋雪. 食物线索注意偏向及其神经机制[J]. 心理科学进展, 2020, 28(12): 2040-2051.





PDF全文下载地址:

http://journal.psych.ac.cn/xlkxjz/CN/article/downloadArticleFile.do?attachType=PDF&id=5147
相关话题/心理 动物 科学 神经 人类

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 统计学习的认知神经机制及其与语言的关系
    徐贵平1,2,范若琳3,金花4,5,6()1暨南大学华文学院2暨南大学应用语言学研究院,广州5106103广东金融学院公共管理学院,广州5105214教育部人文社会科学重点研究基地天津师范大学心理与行为研究院5天津师范大学心理学部6国民心理健康评估与促进协同创新中心,天津300387收稿日期:201 ...
    本站小编 Free考研考试 2022-01-01
  • 急性应激影响工作记忆的生理心理机制
    李婉如1,库逸轩2()1华东师范大学心理与认知科学学院,上海2000622中山大学心理学系,广州510006收稿日期:2019-10-31出版日期:2020-09-15发布日期:2020-07-24通讯作者:库逸轩E-mail:kuyixuan@mail.sysu.edu.cn基金资助:*国家社会科 ...
    本站小编 Free考研考试 2022-01-01
  • 不同注意形式调节听感觉门控的神经机制
    雷铭(),李朋波北京第二外国语学院旅游科学学院,北京100024收稿日期:2020-02-22出版日期:2020-08-15发布日期:2020-06-28通讯作者:雷铭E-mail:minglei@bisu.edu.cn基金资助:*国家自然科学基金青年项目(31800923);北京市教委社科重点项目 ...
    本站小编 Free考研考试 2022-01-01
  • 新生儿语音感知的神经基础:元分析
    陈钰,莫李澄,毕蓉,张丹丹()深圳大学心理学院,深圳518060收稿日期:2020-04-22出版日期:2020-08-15发布日期:2020-06-28通讯作者:张丹丹E-mail:zhangdd05@gmail.com基金资助:*国家自然科学基金项目(31970980);深圳市基础研究自由探索项 ...
    本站小编 Free考研考试 2022-01-01
  • 气温与气温变化对心理健康的影响
    俞国良1,陈婷婷2,赵凤青2()1中国人民大学心理研究所,北京1008722郑州大学教育学院,郑州450001收稿日期:2019-12-11出版日期:2020-08-15发布日期:2020-06-28通讯作者:赵凤青E-mail:susanfair@163.com基金资助:*教育部人文社会科学研究项 ...
    本站小编 Free考研考试 2022-01-01
  • 瞳孔是心灵的窗口吗?——瞳孔在心理学研究中的应用及测量
    杨晓梦,王福兴(),王燕青,赵婷婷,高春颍,胡祥恩()华中师范大学心理学院,武汉430079收稿日期:2019-06-03出版日期:2020-07-15发布日期:2020-05-21通讯作者:王福兴,胡祥恩E-mail:fxwang@mail.ccnu.edu.cn;xiangenhu@mail.c ...
    本站小编 Free考研考试 2022-01-01
  • 语义认知的习得、发展和老化及其神经机制
    程士静,何文广()曲阜师范大学教育学院,山东曲阜273165收稿日期:2019-08-19出版日期:2020-07-15发布日期:2020-05-21通讯作者:何文广E-mail:hewenguang1022@163.com基金资助:*国家社科基金资助(18BYY092)Theacquisition ...
    本站小编 Free考研考试 2022-01-01
  • 心理治疗中的脱落
    何姣1,白宝玉2(),夏勉31武汉大学学生工作部大学生心理健康教育中心2武汉大学哲学学院心理学系,武汉4300723华中师范大学心理学院,武汉430079收稿日期:2019-09-30出版日期:2020-07-15发布日期:2020-05-21通讯作者:白宝玉E-mail:psy_bby@163.c ...
    本站小编 Free考研考试 2022-01-01
  • 慈悲冥想对利他行为的影响及其认知神经机制
    金国敏,李丹()上海师范大学心理学系,上海200234收稿日期:2019-09-05出版日期:2020-06-15发布日期:2020-04-22通讯作者:李丹E-mail:lidan501@126.com基金资助:*上海市教委科研创新计划重大项目(2019-01-07-00-02-E00005)Th ...
    本站小编 Free考研考试 2022-01-01
  • 行为贫困陷阱的心理机制与管理对策:基于认知与动机双视角
    徐富明1,黄龙2,3(),张慧4,相鹏5(),刘腾飞6,李亚红71南宁师范大学教育科学学院,南宁5302992皖南医学院人文与管理学院,芜湖3410023江西师范大学心理学院,南昌3300224华中科技大学社会学院,武汉4300745南京财经大学法学院,南京2100236广东医科大学人文与管理学院, ...
    本站小编 Free考研考试 2022-01-01