上海师范大学音乐学院, 上海 200234
收稿日期:
2020-06-16出版日期:
2021-01-15发布日期:
2020-11-23通讯作者:
周临舒E-mail:zhoulinshu@163.comNeural mechanisms underlying the experience of musical pleasure
ZHOU Can, ZHOU Linshu(), JIANG CunmeiMusic College, Shanghai Normal University, Shanghai 200234, China
Received:
2020-06-16Online:
2021-01-15Published:
2020-11-23Contact:
ZHOU Linshu E-mail:zhoulinshu@163.com摘要/Abstract
摘要: 愉悦情绪体验是音乐活动中最普遍的心理现象。通过系统回顾相关的神经科学研究, 认为音乐愉悦体验与大脑奖赏系统的活动有关, 并涉及伏隔核与听觉皮层等其他脑区的交互。在这个过程中, 多巴胺的传递与音乐愉悦体验存在因果联系。基于预期视角, 奖赏预测误差理论和音乐信息理论模型可以解释音乐愉悦体验的产生机制。未来研究应进一步检验伏隔核及各皮层在音乐愉悦体验中的功能, 并整合不同的预期理论。
参考文献 59
[1] | Belfi, A. M., Evans, E., Heskje, J., Bruss, J., & Tranel, D. (2017). Musical anhedonia after focal brain damage. Neuropsychologia, 97, 29-37. doi: 10.1016/j.neuropsychologia.2017.01.030URLpmid: 28159618 |
[2] | Belfi, A. M., & Loui, P. (2020). Musical anhedonia and rewards of music listening: Current advances and a proposed model. Annals of the New York Academy of Sciences, 1464(1), 99-114. doi: 10.1111/nyas.14241URLpmid: 31549425 |
[3] | Berridge, K. C., & Kringelbach, M. L. (2008). Affective neuroscience of pleasure: Reward in humans and animals. Psychopharmacology, 199(3), 457-480. doi: 10.1007/s00213-008-1099-6URLpmid: 18311558 |
[4] | Berridge, K. C., & Kringelbach, M. L. (2015). Pleasure systems in the brain. Neuron, 86(3), 646-664. doi: 10.1016/j.neuron.2015.02.018URLpmid: 25950633 |
[5] | Blood, A. J., & Zatorre, R. J. (2001). Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proceedings of the National Academy of Sciences of the United States of America, 98(20), 11818-11823. doi: 10.1073/pnas.191355898URLpmid: 11573015 |
[6] | Brodal, H. P., Osnes, B., & Specht, K. (2017). Listening to rhythmic music reduces connectivity within the basal ganglia and the reward system. Frontiers in Neuroscience, 11, 153. doi: 10.3389/fnins.2017.00153URLpmid: 28400717 |
[7] | Cheung, V. K., Harrison, P. M., Meyer, L., Pearce, M. T., Haynes, J.-D., & Koelsch, S. (2019). Uncertainty and surprise jointly predict musical pleasure and amygdala, hippocampus, and auditory cortex activity. Current Biology, 29(23), 4084-4092. doi: 10.1016/j.cub.2019.09.067URLpmid: 31708393 |
[8] | Clark, C. N., Golden, H. L., McCallion, O., Nicholas, J. M., Cohen, M. H., Slattery, C. F., ... Crutch, S. J. (2018). Music models aberrant rule decoding and reward valuation in dementia. Social Cognitive and Affective Neuroscience, 13(2), 192-202. doi: 10.1093/scan/nsx140URLpmid: 29186630 |
[9] | Conard, N. J., Malina, M., & Münzel, S. C. (2009). New flutes document the earliest musical tradition in southwestern Germany. Nature, 460(7256), 737-740. doi: 10.1038/nature08169URLpmid: 19553935 |
[10] | de Fleurian, R., Harrison, P. M., Pearce, M. T., & Quiroga- Martinez, D. R. (2019). Reward prediction tells us less than expected about musical pleasure. Proceedings of the National Academy of Sciences of the United States of America, 116(42), 20813-20814. doi: 10.1073/pnas.1913244116URLpmid: 31537748 |
[11] | Dubé, L., & Le Bel, J. (2003). The content and structure of laypeople's concept of pleasure. Cognition and Emotion, 17(2), 263-295. doi: 10.1080/02699930302295URLpmid: 29715723 |
[12] | Egerton, A., Mehta, M. A., Montgomery, A. J., Lappin, J. M., Howes, O. D., Reeves, S. J., ... Grasby, P. M. (2009). The dopaminergic basis of human behaviors: A review of molecular imaging studies. Neuroscience & Biobehavioral Reviews, 33(7), 1109-1132. doi: 10.1016/j.neubiorev.2009.05.005URLpmid: 19481108 |
[13] | Ferreri, L., Mas-Herrero, E., Zatorre, R. J., Ripollés, P., Gomez-Andres, A., Alicart, H., ... Rodriguez-Fornells, A. (2019). Dopamine modulates the reward experiences elicited by music. Proceedings of the National Academy of Sciences of the United States of America, 116(9), 3793-3798. doi: 10.1073/pnas.1811878116URLpmid: 30670642 |
[14] | Fletcher, P. D., Downey, L., Witoonpanich, P., & Warren, J. (2013). The brain basis of musicophilia: Evidence from frontotemporal lobar degeneration. Frontiers in Psychology, 4, 347. doi: 10.3389/fpsyg.2013.00347URLpmid: 23801975 |
[15] | Freeman, T. P., Pope, R. A., Wall, M. B., Bisby, J. A., Luijten, M., Hindocha, C., ... Curran, H. V. (2018). Cannabis dampens the effects of music in brain regions sensitive to reward and emotion. International Journal of Neuropsychopharmacology, 21(1), 21-32. doi: 10.1093/ijnp/pyx082URL |
[16] | Gold, B. P., Mas-Herrero, E., Zeighami, Y., Benovoy, M., Dagher, A., & Zatorre, R. J. (2019). Musical reward prediction errors engage the nucleus accumbens and motivate learning. Proceedings of the National Academy of Sciences of the United States of America, 116(8), 3310-3315. doi: 10.1073/pnas.1809855116URLpmid: 30728301 |
[17] | Gold, B. P., Pearce, M. T., Mas-Herrero, E., Dagher, A., & Zatorre, R. J. (2019). Predictability and uncertainty in the pleasure of music: A reward for learning? Journal of Neuroscience, 39(47), 9397-9409. doi: 10.1523/JNEUROSCI.0428-19.2019URLpmid: 31636112 |
[18] | Griffiths, T. D., Warren, J. D., Dean, J. L., & Howard, D. (2004). “When the feeling’s gone”: A selective loss of musical emotion. Journal of Neurology, Neurosurgery & Psychiatry, 75(2), 344-345. doi: 10.1007/s00415-020-10157-2URLpmid: 32813052 |
[19] | Hansen, N. C., Dietz, M. J., & Vuust, P. (2017). Commentary: Predictions and the brain: How musical sounds become rewarding. Frontiers in Human Neuroscience, 11, 168. doi: 10.3389/fnhum.2017.00168URLpmid: 28424603 |
[20] | Hansen, N. C., & Pearce, M. T. (2014). Predictive uncertainty in auditory sequence processing. Frontiers in Psychology, 5, 1052. doi: 10.3389/fpsyg.2014.01052URLpmid: 25295018 |
[21] | Heydari, S., & Holroyd, C. B. (2016). Reward positivity: Reward prediction error or salience prediction error? Psychophysiology, 53(8), 1185-1192. doi: 10.1111/psyp.12673URLpmid: 27184070 |
[22] | Huron, D. (2001). Is music an evolutionary adaptation? Annals of the New York Academy of Sciences, 930(1), 43-61. doi: 10.1111/j.1749-6632.2001.tb05724.xURL |
[23] | Jacome, D. E. (1984). Aphasia with elation, hypermusia, musicophilia and compulsive whistling. Journal of Neurology, Neurosurgery & Psychiatry, 47(3), 308-310. doi: 10.1136/jnnp.47.3.308URLpmid: 6707680 |
[24] | Juslin, P. N., & Sloboda, J. A. (2013). Music and Emotion. In D. Deutsch (Ed.), The psychology of music (pp.583-645). San Diego, CA: Academic Press. |
[25] | Koelsch, S. (2012). Brain and music. Oxford, UK: Wiley-Blackwell. |
[26] | Koelsch, S. (2014). Brain correlates of music-evoked emotions. Nature Reviews Neuroscience, 15(3), 170-180. doi: 10.1038/nrn3666URL |
[27] | Koelsch, S., Fritz, T., Schulze, K., Alsop, D., & Schlaug, G. (2005). Adults and children processing music: An fMRI study. NeuroImage, 25(4), 1068-1076. doi: 10.1016/j.neuroimage.2004.12.050URLpmid: 15850725 |
[28] | Koelsch, S., Fritz, T., v. Cramon, D. Y., Müller, K., & Friederici, A. D. (2006). Investigating emotion with music: An fMRI study. Human Brain Mapping, 27(3), 239-250. doi: 10.1002/hbm.20180URLpmid: 16078183 |
[29] | Koelsch, S., Vuust, P., & Friston, K. (2019). Predictive processes and the peculiar case of music. Trends in Cognitive Sciences, 23(1), 63-77. |
[30] | Lehne, M., Rohrmeier, M., & Koelsch, S. (2013). Tension- related activity in the orbitofrontal cortex and amygdala: An fMRI study with music. Social Cognitive and Affective Neuroscience, 9(10), 1515-1523. doi: 10.1093/scan/nst141URLpmid: 23974947 |
[31] | Mallik, A., Chanda, M. L., & Levitin, D. J. (2017). Anhedonia to music and mu-opioids: Evidence from the administration of naltrexone. Scientific Reports, 7, 41952. doi: 10.1038/srep41952URLpmid: 28176798 |
[32] | Martínez-Molina, N., Mas-Herrero, E., Rodríguez-Fornells, A., Zatorre, R. J., & Marco-Pallarés, J. (2016). Neural correlates of specific musical anhedonia. Proceedings of the National Academy of Sciences of the United States of America, 113(46), E7337-E7345. doi: 10.1073/pnas.1611211113URLpmid: 27799544 |
[33] | Martínez-Molina, N., Mas-Herrero, E., Rodríguez-Fornells, A., Zatorre, R. J., & Marco-Pallarés, J. (2019). White matter microstructure reflects individual differences in music reward sensitivity. Journal of Neuroscience, 39(25), 5018-5027. doi: 10.1523/JNEUROSCI.2020-18.2019URLpmid: 31000588 |
[34] | Mas-Herrero, E., Dagher, A., & Zatorre, R. J. (2018). Modulating musical reward sensitivity up and down with transcranial magnetic stimulation. Nature Human Behaviour, 2(1), 27-32. doi: 10.1038/s41562-017-0241-zURLpmid: 30980048 |
[35] | Mas-Herrero, E., Karhulahti, M., Marco-Pallares, J., Zatorre, R. J., & Rodriguez-Fornells, A. (2018). The impact of visual art and emotional sounds in specific musical anhedonia. Progress in Brain Research, 237, 399-413. doi: 10.1016/bs.pbr.2018.03.017URLpmid: 29779745 |
[36] | Mas-Herrero, E., Marco-Pallares, J., Lorenzo-Seva, U., Zatorre, R. J., & Rodriguez-Fornells, A. (2013). Individual differences in music reward experiences. Music Perception: An Interdisciplinary Journal, 31(2), 118-138. |
[37] | Mas-Herrero, E., Zatorre, R. J., Rodriguez-Fornells, A., & Marco-Pallarés, J. (2014). Dissociation between musical and monetary reward responses in specific musical anhedonia. Current Biology, 24(6), 699-704. doi: 10.1016/j.cub.2014.01.068URL |
[38] | Mazzoni, M., Moretti, P., Pardossi, L., Vista, M., Muratorio, A., & Puglioli, M. (1993). A case of music imperception. Journal of Neurology, Neurosurgery, and Psychiatry, 56(3), 322. doi: 10.1136/jnnp.56.3.322URLpmid: 8459254 |
[39] | Menon, V., & Levitin, D. J. (2005). The rewards of music listening: Response and physiological connectivity of the mesolimbic system. NeuroImage, 28(1), 175-184. doi: 10.1016/j.neuroimage.2005.05.053URLpmid: 16023376 |
[40] | Meyer, L. B. (1956). Emotion and meaning in music. London: University of Chicago Press. |
[41] | Mitterschiffthaler, M. T., Fu, C. H., Dalton, J. A., Andrew, C. M., & Williams, S. C. (2007). A functional MRI study of happy and sad affective states induced by classical music. Human Brain Mapping, 28(11), 1150-1162. doi: 10.1002/hbm.20337URLpmid: 17290372 |
[42] | Pearce, M. T. (2018). Statistical learning and probabilistic prediction in music cognition: Mechanisms of stylistic enculturation. Annals of the New York Academy of Sciences, 1423(1), 378-395. doi: 10.1111/nyas.2018.1423.issue-1URL |
[43] | Rohrer, J. D., Smith, S. J., & Warren, J. D. (2006). Craving for music after treatment for partial epilepsy. Epilepsia, 47(5), 939-940. doi: 10.1111/j.1528-1167.2006.00565.xURLpmid: 16686661 |
[44] | Royal, I., Vuvan, D. T., Zendel, B. R., Robitaille, N., Sch?nwiesner, M., & Peretz, I. (2016). Activation in the right inferior parietal lobule reflects the representation of musical structure beyond simple pitch discrimination. PLoS One, 11( 5). doi: 10.1371/journal.pone.0169091URLpmid: 28036384 |
[45] | Sacks, O. (2007). Musicophilia: Tales of music and the brain. London: Picador. |
[46] | Salimpoor, V. N., Benovoy, M., Larcher, K., Dagher, A., & Zatorre, R. J. (2011). Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nature Neuroscience, 14(2), 257-262. doi: 10.1038/nn.2726URLpmid: 21217764 |
[47] | Salimpoor, V. N., Benovoy, M., Longo, G., Cooperstock, J. R., & Zatorre, R. J. (2009). The rewarding aspects of music listening are related to degree of emotional arousal. PloS ONE, 4(10):e7487. doi: 10.1371/journal.pone.0007487URLpmid: 19834599 |
[48] | Salimpoor, V. N., van den. Bosch, I., Kovacevic, N., Mcintosh, A. R., Dagher, A., & Zatorre, R. J. (2013). Interactions between the nucleus accumbens and auditory cortices predict music reward value. Science, 340(6129), 216-219. doi: 10.1126/science.1231059URL |
[49] | Salimpoor, V. N., Zald, D. H., Zatorre, R. J., Dagher, A., & McIntosh, A. R. (2015). Predictions and the brain: How musical sounds become rewarding. Trends in Cognitive Sciences, 19(2), 86-91. doi: 10.1016/j.tics.2014.12.001URLpmid: 25534332 |
[50] | Satoh, M., Kato, N., Tabei, K.-I., Nakano, C., Abe, M., Fujita, R., ... Kondo, K. (2016). A case of musical anhedonia due to right putaminal hemorrhage: A disconnection syndrome between the auditory cortex and insula. Neurocase, 22(6), 518-525. doi: 10.1080/13554794.2016.1264609URLpmid: 27925501 |
[51] | Satoh, M., Nakase, T., Nagata, K., & Tomimoto, H. (2011). Musical anhedonia: Selective loss of emotional experience in listening to music. Neurocase, 17(5), 410-417. doi: 10.1080/13554794.2010.532139URLpmid: 21714738 |
[52] | Schubert, E. (2013). Emotion felt by the listener and expressed by the music: Literature review and theoretical perspectives. Frontiers in Psychology, 4, 1-18. doi: 10.3389/fpsyg.2013.00001URLpmid: 23382719 |
[53] | Schultz, W. (2015). Neuronal reward and decision signals: From theories to data. Physiological Reviews, 95(3), 853-951. doi: 10.1152/physrev.00023.2014URLpmid: 26109341 |
[54] | Schultz, W. (2016). Dopamine reward prediction error coding. Dialogues in Clinical Neuroscience, 18(1), 23-32. URLpmid: 27069377 |
[55] | Schultz, W. (2017). Reward prediction error. Current Biology, 27(10), R369-R371. doi: 10.1016/j.cub.2017.02.064URLpmid: 28535383 |
[56] | Sescousse, G., Caldú, X., Segura, B., & Dreher, J. C. (2013). Processing of primary and secondary rewards: A quantitative meta-analysis and review of human functional neuroimaging studies. Neuroscience & Biobehavioral Reviews, 37(4), 681-696. doi: 10.1016/j.neubiorev.2013.02.002URLpmid: 23415703 |
[57] | Watabe-Uchida, M., Eshel, N., & Uchida, N. (2017). Neural circuitry of reward prediction error. Annual Review of Neuroscience, 40(1), 373-394. doi: 10.1146/annurev-neuro-072116-031109URL |
[58] | Zatorre, R. J. (2015). Musical pleasure and reward: Mechanisms and dysfunction. Annals of the New York Academy of Sciences, 1337(1), 202-211. doi: 10.1111/nyas.12677URL |
[59] | Zatorre, R. J., & Salimpoor, V. N. (2013). From perception to pleasure: Music and its neural substrates. Proceedings of the National Academy of Sciences of the United States of America, 110(Suppl. 2), 10430-10437. |
相关文章 15
[1] | 秦浩方, 黄蓉, 贾世伟. 反馈相关负波:一种抑郁症的生物标记物[J]. 心理科学进展, 2021, 29(3): 404-413. |
[2] | 陈乐乐, 黄蓉, 贾世伟. 反馈相关负波与成瘾[J]. 心理科学进展, 2020, 28(6): 959-968. |
[3] | 易伟, 梅淑婷, 郑亚. 努力:成本还是奖赏?[J]. 心理科学进展, 2019, 27(8): 1439-1450. |
[4] | 陈煦海, 吴茜. 自主选择偏好:表现、机制与应用[J]. 心理科学进展, 2019, 27(8): 1460-1467. |
[5] | 孙庆洲, 邬青渊, 张静, 江程铭, 赵雷, 胡凤培. 风险决策的概率权重偏差:心理机制与优化策略[J]. 心理科学进展, 2019, 27(5): 905-913. |
[6] | 刘浩然, 张晨风, 杨莉. 心理韧性及其神经机制:来自非人类动物模型的证据[J]. 心理科学进展, 2019, 27(2): 312-321. |
[7] | 杨玲, 姚东伟, 曹华, 王斌强, 何圆圆, 苏红婷. 药物成瘾者决策缺陷的特征、机制及干预[J]. 心理科学进展, 2019, 27(2): 329-343. |
[8] | 谢晓非, 邓州, 李慕轼, 朱敏帆. 奏响长者的“生命质量”凯歌[J]. 心理科学进展, 2019, 27(11): 1793-1801. |
[9] | 刘晓婷, 张丽锦, 张宁. 睡眠质量对冒险行为影响的证据及解析[J]. 心理科学进展, 2019, 27(11): 1875-1886. |
[10] | 吴静, 崔睿思, 孙翠翠, 李新旺. 奖赏环路与阿片成瘾:喙内侧被盖核的调节作用[J]. 心理科学进展, 2019, 27(1): 60-69. |
[11] | 李丹阳, 李鹏, 李红. 反馈负波及其近10年理论解释[J]. 心理科学进展, 2018, 26(9): 1642-1650. |
[12] | 张一帆, 齐星亮, 蔡厚德. 啮齿动物主动母性行为动态改变的神经机制[J]. 心理科学进展, 2018, 26(8): 1417-1428. |
[13] | 张燕, 曹慧敏, 郑元杰, 任衍具. 自上而下的目标调节奖赏联结干扰项的注意定向和脱离[J]. 心理科学进展, 2017, 25(suppl.): 52-52. |
[14] | 李 琪, 许晶, 郑亚. 刺激前负波:奖赏期待的电生理指标[J]. 心理科学进展, 2017, 25(7): 1114-1121. |
[15] | 韩艳;舍英;高笑. 肥胖成因的解释——基于食物奖赏研究的视角[J]. 心理科学进展, 2017, 25(3): 452-462. |
PDF全文下载地址:
http://journal.psych.ac.cn/xlkxjz/CN/article/downloadArticleFile.do?attachType=PDF&id=5299