删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

人际互动中社会学习的计算神经机制

本站小编 Free考研考试/2022-01-01

黎穗卿, 陈新玲, 翟瑜竹, 张怡洁, 章植鑫, 封春亮()
教育部脑认知与教育科学重点实验室(华南师范大学); 华南师范大学心理学院; 华南师范大学心理应用研究中心; 华南师范大学广东省心理健康与认知科学重点实验室, 广州 510631
收稿日期:2020-08-10出版日期:2021-04-15发布日期:2021-02-22


基金资助:国家自然科学基金(31900757);国家自然科学基金(32020103008)

The computational and neural substrates underlying social learning

LI Suiqing, CHEN Xinling, ZHAI Yuzhu, ZHANG Yijie, ZHANG Zhixing, FENG Chunliang()
Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education; School of Psychology, South China Normal University; Center for Studies of Psychological Application, South China Normal University; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
Received:2020-08-10Online:2021-04-15Published:2021-02-22







摘要/Abstract


摘要: 人类在社会互动中通过他人的行为对他人特质、意图及特定情境下的社会规范进行学习, 是优化决策、维护积极社会互动的重要条件。近年来, 越来越多的研究通过结合计算模型与神经影像技术对社会学习的认知计算机制及其神经基础进行了深入考察。已有研究发现, 人类的社会学习过程能够较好地被强化学习模型与贝叶斯模型刻画, 主要涉及的认知计算过程包括主观期望、预期误差和不确定性的表征以及信息整合的过程。大脑对这些计算过程的执行主要涉及奖惩加工相关脑区(如腹侧纹状体与腹内侧前额叶)、社会认知加工相关脑区(如背内侧前额叶和颞顶联合区)及认知控制相关脑区(如背外侧前额叶)。需要指出的是, 计算过程与大脑区域之间并不是一一映射的关系, 提示未来研究可借助多变量分析与脑网络分析等技术从系统神经科学的角度来考察大尺度脑网络如何执行不同计算过程。此外, 将来研究应注重生态效度, 利用超扫描技术考察真实互动下的社会学习过程, 并更多地关注内隐社会学习的计算与神经机制。



图1社会学习的计算神经机制 A:社会学习的计算模型及神经基础。强化学习模型下社会学习的认知过程主要包括主观期望和预期误差的计算, 贝叶斯模型下社会学习的认知过程包括主观期望、预期误差的计算、不确定性的表征以及信息整合。主观期望的计算涉及奖赏系统与社会认知系统; 预期误差的计算涉及奖赏系统、情感系统与社会认知系统; 不确定性的表征及信息整合涉及奖赏系统、情感系统、社会认知系统与认知控制系统。B:社会学习涉及的大脑系统:奖赏系统主要包括VS、vmPFC; 情感系统主要包括ACC、AI、amygdala ; 社会认知系统主要包括dmPFC、TPJ、STS、PCC; 认知控制系统主要包括dlPFC、IPL。 VS:ventral striatum, 腹侧纹状体; vmPFC:ventromedial prefrontal cortex, 腹内侧前额叶皮层; ACC:anterior cingulate cortex, 前扣带皮层; AI:anterior insula, 前侧脑岛; amygdala:杏仁核; dmPFC:dorsalmedial prefrontal cortex, 背内侧前额叶皮层; TPJ:temporo-parietal junction, 颞顶联合区; STS, superior temporal sulcus, 颞上沟; PCC:posterior cingulate cortex, 后扣带皮层; dlPFC:dorsolateral prefrontal cortex, 背外侧前额叶皮层; IPL:inferior parietal lobule, 顶下小叶。
图1社会学习的计算神经机制 A:社会学习的计算模型及神经基础。强化学习模型下社会学习的认知过程主要包括主观期望和预期误差的计算, 贝叶斯模型下社会学习的认知过程包括主观期望、预期误差的计算、不确定性的表征以及信息整合。主观期望的计算涉及奖赏系统与社会认知系统; 预期误差的计算涉及奖赏系统、情感系统与社会认知系统; 不确定性的表征及信息整合涉及奖赏系统、情感系统、社会认知系统与认知控制系统。B:社会学习涉及的大脑系统:奖赏系统主要包括VS、vmPFC; 情感系统主要包括ACC、AI、amygdala ; 社会认知系统主要包括dmPFC、TPJ、STS、PCC; 认知控制系统主要包括dlPFC、IPL。 VS:ventral striatum, 腹侧纹状体; vmPFC:ventromedial prefrontal cortex, 腹内侧前额叶皮层; ACC:anterior cingulate cortex, 前扣带皮层; AI:anterior insula, 前侧脑岛; amygdala:杏仁核; dmPFC:dorsalmedial prefrontal cortex, 背内侧前额叶皮层; TPJ:temporo-parietal junction, 颞顶联合区; STS, superior temporal sulcus, 颞上沟; PCC:posterior cingulate cortex, 后扣带皮层; dlPFC:dorsolateral prefrontal cortex, 背外侧前额叶皮层; IPL:inferior parietal lobule, 顶下小叶。







[1] 高青林, 周媛. (2021). 计算模型视角下信任形成的心理和神经机制——基于信任博弈中投资者的角度. 心理科学进展, 29(1),178-189.
[2] 张银花, 李红, 吴寅. (2020). 计算模型在道德认知研究中的应用. 心理科学进展, 28(7),1042-1055.
[3] Ahn, W.-Y., Haines, N., & Zhang, L. (2017). Revealing neurocomputational mechanisms of reinforcement learning and decision-making with the hBayesDM package. Computational Psychiatry, 1,24-57.
doi: 10.1162/CPSY_a_00002URLpmid: 29601060
[4] Alcalá-López, D., Smallwood, J., Jefferies, E., van Overwalle, F., Vogeley, K., Mars, R. B., ... Bzdok, D. (2018). Computing the social brain connectome across systems and states. Cerebral Cortex, 28(7),2207-2232.
URLpmid: 28521007
[5] Anderson, C., Brion, S., Moore, D. A., & Kennedy, J. A. (2012). A status-enhancement account of overconfidence. Journal of Personality and Social Psychology, 103(4),718-735.
doi: 10.1037/a0029395URLpmid: 22800286
[6] Apps, M. A., Rushworth, M. F., & Chang, S. W. (2016). The anterior cingulate gyrus and social cognition: Tracking the motivation of others. Neuron, 90(4),692-707.
URLpmid: 27196973
[7] Barrett, L. F., & Satpute, A. B. (2013). Large-scale brain networks in affective and social neuroscience: Towards an integrative functional architecture of the brain. Current Opinion in Neurobiology, 23(3),361-372.
doi: 10.1016/j.conb.2012.12.012URLpmid: 23352202
[8] Basile, B. M., Schafroth, J. L., Karaskiewicz, C. L., Chang, S. W., & Murray, E. A. (2020). The anterior cingulate cortex is necessary for forming prosocial preferences from vicarious reinforcement in monkeys. Plos Biology, 18(6),e3000677.
URLpmid: 32530910
[9] Bassett, D. S., & Sporns, O. (2017). Network neuroscience. Nature Neuroscience, 20(3),353-364.
doi: 10.1038/nn.4502URLpmid: 28230844
[10] Behrens, T. E., Hunt, L. T., Woolrich, M. W., & Rushworth, M. F. (2008). Associative learning of social value. Nature, 456(7219),245-249.
URLpmid: 19005555
[11] Bellucci, G., Molter, F., & Park, S. Q. (2019). Neural representations of honesty predict future trust behavior. Nature Communications, 10(1),1-12.
doi: 10.1038/s41467-018-07882-8URLpmid: 30602773
[12] Bellucci, G., & Park, S. Q. (2020). Honesty biases trustworthiness impressions. Journal of Experimental Psychology: General, 149(8),1567-1586.
doi: 10.1037/xge0000730URL
[13] Blair, K., Marsh, A. A., Morton, J., Vythilingam, M., Jones, M., Mondillo, K., ... Blair, J. R. (2006). Choosing the lesser of two evils, the better of two goods: Specifying the roles of ventromedial prefrontal cortex and dorsal anterior cingulate in object choice. Journal of Neuroscience, 26(44),11379-11386.
doi: 10.1523/JNEUROSCI.1640-06.2006URLpmid: 17079666
[14] Boorman, E. D., O'Doherty, J. P., Adolphs, R., & Rangel, A. (2013). The behavioral and neural mechanisms underlying the tracking of expertise. Neuron, 80(6),1558-1571.
doi: 10.1016/j.neuron.2013.10.024URL
[15] Burke, C. J., Tobler, P. N., Schultz, W., & Baddeley, M. (2010). Striatal BOLD response reflects the impact of herd information on financial decisions. Frontiers in Human Neuroscience, 4,48.
doi: 10.3389/fnhum.2010.00048URLpmid: 20589242
[16] Campbell-Meiklejohn, D. K., Simonsen, A., Frith, C. D., & Daw, N. D. (2017). Independent neural computation of value from other people's confidence. Journal of Neuroscience, 37(3),673-684.
doi: 10.1523/JNEUROSCI.4490-15.2016URLpmid: 28100748
[17] Chang, L. J., Doll, B. B., van't Wout, M., Frank, M. J., & Sanfey, A. G. (2010). Seeing is believing: Trustworthiness as a dynamic belief. Cognitive Psychology, 61(2),87-105.
doi: 10.1016/j.cogpsych.2010.03.001URL
[18] Charpentier, C. J., & O'Doherty, J. P. (2018). The application of computational models to social neuroscience: Promises and pitfalls. Social Neuroscience, 13(6),637-647.
doi: 10.1080/17470919.2018.1518834URLpmid: 30173633
[19] Chien, S., Wiehler, A., Spezio, M., & Gl?scher, J. (2016). Congruence of inherent and acquired values facilitates reward-based decision-making. Journal of Neuroscience, 36(18),5003-5012.
doi: 10.1523/JNEUROSCI.3084-15.2016URLpmid: 27147653
[20] Cohen, J. D., Daw, N., Engelhardt, B., Hasson, U., Li, K. Niv, Y., ... Willke, T.L (2017). Computational approaches to fMRI analysis. Nature Neuroscience, 20(3),304-313.
doi: 10.1038/nn.4499URLpmid: 28230848
[21] Collins, A. G., & Cockburn, J. (2020). Beyond dichotomies in reinforcement learning. Nature Reviews Neuroscience, 21,576-586.
doi: 10.1038/s41583-020-0355-6URLpmid: 32873936
[22] Cone, J., Mann, T. C., & Ferguson, M. J. (2017). Changing our implicit minds: How, when, and why implicit evaluations can be rapidly revised. In Advances in experimental social psychology, (Vol. 56, pp.131-199). Elsevier.
[23] Corrado, G. S., Sugrue, L. P., Brown, J. R., & Newsome, W. T. (2017). The trouble with choice:Studying decision variables in the brain. Neuroeconomics: Decision making and the brain: Chap. 30 (pp.463-480). Londen, UK: Elsevier Academic Press.
[24] Daunizeau, J., Adam, V., & Rigoux, L. (2014). VBA: A probabilistic treatment of nonlinear models for neurobiological and behavioural data. PLoS Computational biology, 10(1),e1003441.
doi: 10.1371/journal.pcbi.1003441URLpmid: 24465198
[25] Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P., & Dolan, R. J. (2011). Model-based influences on humans' choices and striatal prediction errors. Neuron, 69(6),1204-1215.
doi: 10.1016/j.neuron.2011.02.027URLpmid: 21435563
[26] Dayan, P., Kakade, S., & Montague, P. R. (2000). Learning and selective attention. Nature Neuroscience, 3(11),1218-1223.
doi: 10.1038/81504URL
[27] de Martino, B., Bobadilla-Suarez, S., Nouguchi, T., Sharot, T., & Love, B. C. (2017). Social information is integrated into value and confidence judgments according to its reliability. Journal of Neuroscience, 37(25),6066-6074.
doi: 10.1523/JNEUROSCI.3880-16.2017URLpmid: 28566360
[28] DeMayo, M. M., Young, L. J., Hickie, I. B., Song, Y. J. C., & Guastella, A. J. (2019). Circuits for social learning: A unified model and application to Autism Spectrum Disorder. Neuroscience & Biobehavioral Reviews, 107,388-398.
doi: 10.1016/j.neubiorev.2019.09.034URLpmid: 31560922
[29] Devaine, M., Hollard, G., & Daunizeau, J. (2014). The social Bayesian brain: Does mentalizing make a difference when we learn? PLoS Computational Biology, 10(12),e1003992.
doi: 10.1371/journal.pcbi.1003992URLpmid: 25474637
[30] Diaconescu, A. O., Mathys, C., Weber, L. A., Daunizeau, J., Kasper, L., Lomakina, E. I., ... Stephan, K. E. (2014). Inferring on the intentions of others by hierarchical Bayesian learning. PLoS Computational Biology, 10(9),e1003952.
doi: 10.1371/journal.pcbi.1003952URL
[31] Diaconescu, A. O., Mathys, C., Weber, L. A., Kasper, L., Mauer, J., & Stephan, K. E. (2017). Hierarchical prediction errors in midbrain and septum during social learning. Social Cognitive and Affective Neuroscience, 12(4),618-634.
doi: 10.1093/scan/nsw171URLpmid: 28119508
[32] Diaconescu, A. O., Stecy, M., Kasper, L., Burke, C. J., Nagy, Z., Mathys, C., & Tobler, P. (2020). Neural Arbitration between Social and Individual Learning Systems. eLife, 9,e54051.
doi: 10.7554/eLife.54051URLpmid: 32779568
[33] Dolan, R. J., & Dayan, P. (2013). Goals and habits in the brain. Neuron, 80(2),312-325.
doi: 10.1016/j.neuron.2013.09.007URL
[34] FeldmanHall, O., Otto, A. R., & Phelps, E. A. (2018). Learning moral values: Another's desire to punish enhances one's own punitive behavior. Journal of Experimental Psychology: General, 147(8),1211-1224.
doi: 10.1037/xge0000405URL
[35] Feng, C., Azarian, B., Ma, Y., Feng, X., Wang, L., Luo, Y. J., & Krueger, F. (2017). Mortality salience reduces the discrimination between in‐group and out‐group interactions: A functional MRI investigation using multi‐voxel pattern analysis. Human Brain Mapping, 38(3),1281-1298.
doi: 10.1002/hbm.23454URLpmid: 27859936
[36] Ferguson, M. J., Mann, T. C., Cone, J., & Shen, X. (2019). When and how implicit first impressions can be updated. Current Directions in Psychological Science, 28(4),331-336.
doi: 10.1177/0963721419835206URL
[37] Franklin, N. T., & Frank, M. J. (2015). A cholinergic feedback circuit to regulate striatal population uncertainty and optimize reinforcement learning. eLife, 4,e12029.
URLpmid: 26705698
[38] Garvert, M. M., Moutoussis, M., Kurth-Nelson, Z., Behrens, T. E., & Dolan, R. J. (2015). Learning-induced plasticity in medial prefrontal cortex predicts preference malleability. Neuron, 85(2),418-428.
URLpmid: 25611512
[39] Gershman, S. J. (2015). A unifying probabilistic view of associative learning. PLoS Computational Biology, 11(11),e1004567.
URLpmid: 26535896
[40] Gl?scher, J. P., & O'Doherty, J. P. (2010). Model‐based approaches to neuroimaging: Combining reinforcement learning theory with fMRI data. Wiley Interdisciplinary Reviews: Cognitive Science, 1(4),501-510.
[41] Gmytrasiewicz, P. J., & Doshi, P. (2005). A framework for sequential planning in multi-agent settings. Journal of Artificial Intelligence Research, 24,49-79.
doi: 10.1613/jair.1579URL
[42] Greaves, C. J., & Farbus, L. (2006). Effects of creative and social activity on the health and well-being of socially isolated older people: Outcomes from a multi-method observational study. The Journal of the Royal Society for the Promotion of Health, 126(3),134-142.
[43] Gu, X., Wang, X., Hula, A., Wang, S., Xu, S., Lohrenz, T. M., ... Montague, P. R. (2015). Necessary, yet dissociable contributions of the insular and ventromedial prefrontal cortices to norm adaptation: Computational and lesion evidence in humans. Journal of Neuroscience, 35(2),467-473.
URLpmid: 25589742
[44] Hackel, L. M., Doll, B. B., & Amodio, D. M. (2015). Instrumental learning of traits versus rewards: Dissociable neural correlates and effects on choice. Nature Neuroscience, 18(9),1233-1235.
[45] Hackel, L. M., & Zaki, J. (2018). Propagation of economic inequality through reciprocity and reputation. Psychological Science, 29(4),604-613.
URLpmid: 29474134
[46] Hampton, A. N., Bossaerts, P., & O'Doherty, J. P. (2008). Neural correlates of mentalizing-related computations during strategic interactions in humans. Proceedings of the National Academy of Sciences, 105(18),6741-6746.
[47] Hedge, C., Bompas, A., & Sumner, P. (2020). Task reliability considerations in computational psychiatry. Biological psychiatry: Cognitive Neuroscience and Neuroimaging, 5, (9),837-839.
[48] Henco, L., Brandi, M.-L., Lahnakoski, J. M., Diaconescu, A. O., Mathys, C., & Schilbach, L. (2020). Bayesian modelling captures inter-individual differences in social belief computations in the putamen and insula. Cortex, 131,221-236.
[49] Hétu, S., Luo, Y., D'Ardenne, K., Lohrenz, T., & Montague, P. R. (2017). Human substantia nigra and ventral tegmental area involvement in computing social error signals during the ultimatum game. Social Cognitive and Affective Neuroscience, 12,1972-1982.
URLpmid: 28981876
[50] Hill, C. A., Suzuki, S., Polania, R., Moisa, M., O'Doherty, J. P., & Ruff, C. C. (2017). A causal account of the brain network computations underlying strategic social behavior. Nature Neuroscience, 20(8),1142-1149.
[51] Hill, M. R., Boorman, E. D., & Fried, I. (2016). Observational learning computations in neurons of the human anterior cingulate cortex. Nature Communications, 7(1),1-12.
[52] Hula, A., Montague, P. R., & Dayan, P. (2015). Monte carlo planning method estimates planning horizons during interactive social exchange. PLoS Computational Biology, 11(6),e1004254.
URLpmid: 26053429
[53] Hula, A., Vilares, I., Lohrenz, T., Dayan, P., & Montague, P. R. (2018). A model of risk and mental state shifts during social interaction. PLoS Computational Biology, 14(2),e1005935.
[54] Ivanchei, I. I., Moroshkina, N., Tikhonov, R., & Ovchinnikova, I. (2019). Implicit learning in attractiveness evaluation: The role of conformity and analytical processing. Journal of Experimental Psychology: General, 148(9),1505-1516.
[55] Jocham, G., Klein, T. A., & Ullsperger, M. (2011). Dopamine-mediated reinforcement learning signals in the striatum and ventromedial prefrontal cortex underlie value-based choices. Journal of Neuroscience, 31(5),1606-1613.
URLpmid: 21289169
[56] Joiner, J., Piva, M., Turrin, C., & Chang, S. W. (2017). Social learning through prediction error in the brain. NPJ Science of Learning, 2(1),1-9.
[57] Jones, R. M., Somerville, L. H., Li, J., Ruberry, E. J., Libby, V., Glover, G., ... Casey, B.. (2011). Behavioral and neural properties of social reinforcement learning. Journal of Neuroscience, 31(37),13039-13045.
URLpmid: 21917787
[58] Khalvati, K., Mirbagheri, S., Park, S. A., Dreher, J. -C., & Rao, R. P. (2019). A Bayesian theory of conformity in collective decision making. Paper presented at the Advances in Neural Information Processing Systems,
[59] Khalvati, K., Park, S. A., Mirbagheri, S., Philippe, R., Sestito, M., Dreher, J. -C., & Rao, R. P. (2019). Modeling other minds: Bayesian inference explains human choices in group decision-making. Science Advances, 5(11),eaax8783.
URLpmid: 31807706
[60] Kumar, S., Rusch, T., Doshi, P., Spezio, M., & Gl?scher, J. (2019). Modeling cooperative and competitive decision-making in the Tiger Task. Paper presented at the The Multidisciplinary Conference on Reinforcement Learning and Decision Making,
[61] Kumaran, D., Banino, A., Blundell, C., Hassabis, D., & Dayan, P. (2016). Computations underlying social hierarchy learning: Distinct neural mechanisms for updating and representing self-relevant information. Neuron, 92(5),1135-1147.
URLpmid: 27930904
[62] Kuss, K., Falk, A., Trautner, P., Elger, C. E., Weber, B., & Fliessbach, K. (2013). A reward prediction error for charitable donations reveals outcome orientation of donators. Social Cognitive and Affective Neuroscience, 8(2),216-223.
doi: 10.1093/scan/nsr088URLpmid: 22198972
[63] Lamba, A., Frank, M. J., & FeldmanHall, O. (2020). Anxiety impedes adaptive social learning under uncertainty. Psychological Science, 31(5),592-603.
URLpmid: 32343637
[64] Lawson, R. P., Mathys, C., & Rees, G. (2017). Adults with autism overestimate the volatility of the sensory environment. Nature Neuroscience, 20(9),1293-1299.
URLpmid: 28758996
[65] Lee, M. D., Criss, A. H., Devezer, B., Donkin, C., Etz, A., Leite, F. P., ... Vandekerckhove, J. (2019). Robust modeling in cognitive science. Computational Brain & Behavior, 2(3-4),141-153.
[66] Leong, Y. C., & Zaki, J. (2018). Unrealistic optimism in advice taking: A computational account. Journal of Experimental Psychology: General, 147(2),170-189.
[67] Li, L., Li, K. K., & Li, J. (2019). Private but not social information validity modulates social conformity bias. Human Brain Mapping, 40(8),2464-2474.
URLpmid: 30697880
[68] Ligneul, R., Obeso, I., Ruff, C. C., & Dreher, J.-C. (2016). Dynamical representation of dominance relationships in the human rostromedial prefrontal cortex. Current Biology, 26(23),3107-3115.
URLpmid: 28094034
[69] Lockwood, P. L., Apps, M. A., Valton, V., Viding, E., & Roiser, J. P. (2016). Neurocomputational mechanisms of prosocial learning and links to empathy. Proceedings of the National Academy of Sciences, 113(35),9763-9768.
[70] Lockwood, P. L., Apps, M.A. J., & Chang, S.W. C. (2020). Is There a ‘Social' Brain? Implementations and Algorithms. Trends in Cognitive Sciences, 24(10),802-813.
URLpmid: 32736965
[71] Lockwood, P. L., Klein-Flügge, M. C., Abdurahman, A., & Crockett, M. J. (2020). Model-free decision making is prioritized when learning to avoid harming others. Proceedings of the National Academy of Sciences, 117(44),27719-27730.
doi: 10.1073/pnas.2010890117URL
[72] Lockwood, P. L., O'Nell, K. C., & Apps, M. A. (2020). Anterior cingulate cortex: A brain system necessary for learning to reward others? Plos Biology, 18(6),e3000735.
doi: 10.1371/journal.pbio.3000735URLpmid: 32530924
[73] Lockwood, P. L., Wittmann, M. K., Apps, M. A., Klein-Flügge, M. C., Crockett, M. J., Humphreys, G. W., & Rushworth, M. F. (2018). Neural mechanisms for learning self and other ownership. Nature Communications, 9(1),1-11.
doi: 10.1038/s41467-017-02088-wURL
[74] Loughrey, D. G., Feeney, J., Kee, F., Lawlor, B. A., Woodside, J. V., Setti, A., & Power, J. M. (2020). Social factors may mediate the relationship between subjective age-related hearing loss and episodic memory. Aging & Mental Health,1-8.
URLpmid: 33719753
[75] Madva, A., & Brownstein, M. (2018). Stereotypes, prejudice, and the taxonomy of the implicit social mind1. No?s, 52(3),611-644.
[76] Maia, T. V., Huys, Q. J., & Frank, M. J. (2017). Theory-based computational psychiatry. Biological Psychiatry, 82(6),382-384.
doi: 10.1016/j.biopsych.2017.07.016URLpmid: 28838466
[77] Mathys, C., Daunizeau, J., Friston, K. J., & Stephan, K. E. (2011). A Bayesian foundation for individual learning under uncertainty. Frontiers in Human Neuroscience, 5,39.
URLpmid: 21629826
[78] Mathys, C. D., Lomakina, E. I., Daunizeau, J., Iglesias, S., Brodersen, K. H., Friston, K. J., & Stephan, K. E. (2014). Uncertainty in perception and the Hierarchical Gaussian Filter. Frontiers in Human Neuroscience, 8,825.
doi: 10.3389/fnhum.2014.00825URLpmid: 25477800
[79] Meshi, D., Biele, G., Korn, C. W., & Heekeren, H. R. (2012). How expert advice influences decision making. PloS One, 7(11),e49748.
doi: 10.1371/journal.pone.0049748URLpmid: 23185425
[80] Mileti?, S., Boag, R. J., & Forstmann, B. U. (2020). Mutual benefits: Combining reinforcement learning with sequential sampling models. Neuropsychologia, 136,107261.
doi: 10.1016/j.neuropsychologia.2019.107261URLpmid: 31733237
[81] Montague, P. R., Berns, G. S., Cohen, J. D., McClure, S. M., Pagnoni, G., Dhamala, M., ... Fisher, R. E. (2002). Hyperscanning: Simultaneous fMRI during linked social interactions. NeuroImage, 16(4),1159-1164.
URLpmid: 12202103
[82] Morris, R. W., Dezfouli, A., Griffiths, K. R., Le Pelley, M. E., & Balleine, B. W. (2017). The algorithmic neuroanatomy of action-outcome learning. bioRxiv, 137851.
doi: 10.1101/2021.03.22.436465URLpmid: 33791707
[83] Nosek, B. A., Hawkins, C. B., & Frazier, R. S. (2011). Implicit social cognition: From measures to mechanisms. Trends in Cognitive Sciences, 15(4),152-159.
URLpmid: 21376657
[84] O'Doherty, J. P., Cockburn, J., & Pauli, W. M. (2017). Learning, reward, and decision making. Annual Review of Psychology, 68,73-100.
URLpmid: 27687119
[85] O'Doherty, J. P., Dayan, P., Schultz, J., Deichmann, R., Friston, K., & Dolan, R. J. (2004). Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science, 304(5669),452-454.
URLpmid: 15087550
[86] O'Doherty, J. P., Hampton, A., & Kim, H. (2007). Model‐based fMRI and its application to reward learning and decision making. Annals of the New York Academy of Sciences, 1104(1),35-53.
[87] Ottaway, S. A., Hayden, D. C., & Oakes, M. A. (2001). Implicit attitudes and racism: Effects of word familiarity and frequency on the implicit association test. Social Cognition, 19(2),97-144.
[88] Palminteri, S., Khamassi, M., Joffily, M., & Coricelli, G. (2015). Contextual modulation of value signals in reward and punishment learning. Nature Communications, 6(1),1-14.
[89] Palminteri, S., Wyart, V., & Koechlin, E. (2017). The importance of falsification in computational cognitive modeling. Trends in Cognitive Sciences, 21(6),425-433.
[90] Panagopoulos, C., & van der Linden, S. (2016). Conformity to implicit social pressure: The role of political identity. Social Influence, 11(3),177-184.
[91] Park, S. A., Go?ame, S., O'Connor, D. A., & Dreher, J.-C. (2017). Integration of individual and social information for decision-making in groups of different sizes. PLoS Biology, 15(6),e2001958.
URLpmid: 28658252
[92] Park, S. A., Miller, D. S., Nili, H., Ranganath, C., & Boorman, E. D. (2020). Map making: Constructing, combining, and inferring on abstract cognitive maps. Neuron, 107(6),1-13.
[93] Park, S. A., Sestito, M., Boorman, E. D., & Dreher, J.-C. (2019). Neural computations underlying strategic social decision-making in groups. Nature Communications, 10(1),1-12.
doi: 10.1038/s41467-018-07882-8URLpmid: 30602773
[94] Paulus, M. P., Huys, Q. J., & Maia, T. V. (2016). A roadmap for the development of applied computational psychiatry. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 1(5),386-392.
[95] Pedersen, M. L., & Frank, M. J. (2020). Simultaneous Hierarchical Bayesian Parameter Estimation for Reinforcement Learning and Drift Diffusion Models: A Tutorial and Links to Neural Data. Computational Brain & Behavior, 3,458-471.
[96] Piray, P., Dezfouli, A., Heskes, T., Frank, M. J., & Daw, N. D. (2019). Hierarchical Bayesian inference for concurrent model fitting and comparison for group studies. PLoS Computational Biology, 15(6),e1007043.
URLpmid: 31211783
[97] Piray, P., & Daw, N. D. (2020). A simple model for learning in volatile environments. PLoS Computational Biology. 16(7),e1007963.
doi: 10.1371/journal.pcbi.1007963URLpmid: 32609755
[98] Powers, A. R., Mathys, C., & Corlett, P. (2017). Pavlovian conditioning-induced hallucinations result from overweighting of perceptual priors. Science, 357(6351),596-600.
doi: 10.1126/science.aan3458URLpmid: 28798131
[99] Pulcu, E., & Browning, M. (2019). The misestimation of uncertainty in affective disorders. Trends in Cognitive Sciences, 23(10),865-875.
doi: 10.1016/j.tics.2019.07.007URLpmid: 31431340
[100] Ratcliff, R., Smith, P. L., Brown, S. D., & McKoon, G. (2016). Diffusion decision model: Current issues and history. Trends in Cognitive Sciences, 20(4),260-281.
doi: 10.1016/j.tics.2016.01.007URLpmid: 26952739
[101] Reiter, A. M., Suzuki, S., O'Doherty, J. P., Li, S.-C., & Eppinger, B., (2019). Risk contagion by peers affects learning and decision-making in adolescents. Journal of Experimental Psychology: General, 148(9),1494-1504.
[102] Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. Classical Conditioning II: Current Research and Theory, 2,64-99.
[103] Ruff, C. C., & Fehr, E. (2014). The neurobiology of rewards and values in social decision making. Nature Reviews Neuroscience, 15(8),549-562.
URLpmid: 24986556
[104] Rusch, T., Steixner-Kumar, S., Doshi, P., Spezio, M., & Gl?scher, J. (2020). Theory of mind and decision science: Towards a typology of tasks and computational models. Neuropsychologia, 146,107488.
URLpmid: 32407906
[105] Seppala, E., Rossomando, T., & Doty, J. R. (2013). Social connection and compassion: Important predictors of health and well-being. Social Research: An International Quarterly, 80(2),411-430.
[106] Siegel, J. Z., Mathys, C., Rutledge, R. B., & Crockett, M. J. (2018). Beliefs about bad people are volatile. Nature Human Behaviour, 2(10),750-756.
URLpmid: 31406285
[107] Soltani, A., & Izquierdo, A. (2019). Adaptive learning under expected and unexpected uncertainty. Nature Reviews Neuroscience, 20(10),635-644.
doi: 10.1038/s41583-019-0180-yURLpmid: 31147631
[108] Soon, V. (2020). Implicit bias and social schema: A transactive memory approach. Philosophical Studies, 177(7),1857-1877.
[109] Stanley, D. A. (2016). Getting to know you: General and specific neural computations for learning about people. Social Cognitive and Affective Neuroscience, 11(4),525-536.
[110] Steingroever, H., Wetzels, R., & Wagenmakers, E.-J. (2014). Absolute performance of reinforcement-learning models for the Iowa Gambling Task. Decision, 1(3),161-183.
[111] Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. Cambridge, MA: MIT press,
[112] Suzuki, S., Adachi, R., Dunne, S., Bossaerts, P., & O'Doherty, J. P. (2015). Neural mechanisms underlying human consensus decision-making. Neuron, 86(2),591-602.
URLpmid: 25864634
[113] Suzuki, S., Harasawa, N., Ueno, K., Gardner, J. L., Ichinohe, N., Haruno, M., ... Nakahara, H. (2012). Learning to simulate others' decisions. Neuron, 74(6),1125-1137.
doi: 10.1016/j.neuron.2012.04.030URLpmid: 22726841
[114] Suzuki, S., Jensen, E. L., Bossaerts, P., & O'Doherty, J. P. (2016). Behavioral contagion during learning about another agent's risk-preferences acts on the neural representation of decision-risk. Proceedings of the National Academy of Sciences, 113(14),3755-3760.
doi: 10.1073/pnas.1600092113URL
[115] Suzuki, S., & O'Doherty, J. P. (2020). Breaking human social decision making into multiple components and then putting them together again. Cortex, 127,221-230.
doi: 10.1016/j.cortex.2020.02.014URLpmid: 32224320
[116] Thornton, M. A., & Tamir, D. I. (2017). Mental models accurately predict emotion transitions. Proceedings of the National Academy of Sciences, 114(23),5982-5987.
[117] Toelch, U., Bach, D. R., & Dolan, R. J. (2014). The neural underpinnings of an optimal exploitation of social information under uncertainty. Social Cognitive and Affective Neuroscience, 9(11),1746-1753.
doi: 10.1093/scan/nst173URLpmid: 24194580
[118] Toyokawa, W., Whalen, A., & Laland, K. N. (2019). Social learning strategies regulate the wisdom and madness of interactive crowds. Nature Human Behaviour, 3(2),183-193.
doi: 10.1038/s41562-018-0518-xURLpmid: 30944445
[119] Tump, A. N., Pleskac, T. J., & Kurvers, R. H. (2020). Wise or mad crowds? The cognitive mechanisms underlying information cascades. Science Advances, 6(29),eabb0266.
doi: 10.1126/sciadv.abb0266URLpmid: 32832634
[120] van, Baar, J.M., Chang, L. J., & Sanfey, A. G. (2019). The computational and neural substrates of moral strategies in social decision-making. Nature Communications, 10(1),1-14.
doi: 10.1038/s41467-018-07882-8URLpmid: 30602773
[121] Wang, Y., & Olson, I. R. (2018). The original social network: White matter and social cognition. Trends in Cognitive Sciences, 22(6),504-516.
doi: 10.1016/j.tics.2018.03.005URLpmid: 29628441
[122] Wilson, R. C., & Collins, A. G. (2019). Ten simple rules for the computational modeling of behavioral data. Elife, 8,e49547.
URLpmid: 31769410
[123] Wittmann, M. K., Kolling, N., Faber, N. S., Scholl, J., Nelissen, N., & Rushworth, M. F. (2016). Self-other mergence in the frontal cortex during cooperation and competition. Neuron, 91(2),482-493.
doi: 10.1016/j.neuron.2016.06.022URLpmid: 27477020
[124] Xiang, T., Lohrenz, T., & Montague, P. R. (2013). Computational substrates of norms and their violations during social exchange. Journal of Neuroscience, 33(3),1099-1108.
URLpmid: 23325247
[125] Xiang, T., Ray, D., Lohrenz, T., Dayan, P., & Montague, P. R. (2012). Computational phenotyping of two-person interactions reveals differential neural response to depth-of-thought. PLoS Computational Biology, 8(12),e1002841.
doi: 10.1371/journal.pcbi.1002841URLpmid: 23300423
[126] Yang, J., Zhang, H., Ni, J., de Dreu, C. K., & Ma, Y. (2020). Within-group synchronization in the prefrontal cortex associates with intergroup conflict. Nature Neuroscience, 23(6),754-760.
URLpmid: 32341541
[127] Yoshida, W., Seymour, B., Friston, K. J., & Dolan, R. J. (2010). Neural mechanisms of belief inference during cooperative games. Journal of Neuroscience, 30(32),10744-10751.
doi: 10.1523/JNEUROSCI.5895-09.2010URLpmid: 20702705
[128] Yu, A., & Dayan, P. (2003). Expected and unexpected uncertainty: ACh and NE in the neocortex. Paper presented at the Advances in neural information processing systems.
[129] Zhang, L., & Gl?scher, J. (2020). A brain network supporting social influences in human decision-making. Science Advances, 6(34),eabb4159.
doi: 10.1126/sciadv.abb4159URLpmid: 32875112
[130] Zhang, L., Lengersdorff, L., Mikus, N., Gl?scher, J., & Lamm, C. (2020). Using reinforcement learning models in social neuroscience: Frameworks, pitfalls and suggestions of best practices. Social Cognitive and Affective Neuroscience, 15(6),695-707.
doi: 10.1093/scan/nsaa089URLpmid: 32608484
[131] Zhu, L., Mathewson, K. E., & Hsu, M. (2012). Dissociable neural representations of reinforcement and belief prediction errors underlie strategic learning. Proceedings of the National Academy of Sciences, 109(5),1419-1424.




[1]高青林, 周媛. 计算模型视角下信任形成的心理和神经机制——基于信任博弈中投资者的角度[J]. 心理科学进展, 2021, 29(1): 178-189.
[2]张银花, 李红, 吴寅. 计算模型在道德认知研究中的应用[J]. 心理科学进展, 2020, 28(7): 1042-1055.
[3]李精精, 张剑, 田慧荣, Jeffrey B.Vancouver. 动态计算模型在组织行为学研究中的应用[J]. 心理科学进展, 2020, 28(2): 368-380.
[4]陈维扬, 谢天. 文化演化的认知视角——从个体社会学习出发探究文化动态性[J]. 心理科学进展, 2020, 28(12): 2137-2149.
[5]区健新, 吴寅, 刘金婷, 李红. 计算精神病学:抑郁症研究和临床应用的新视角[J]. 心理科学进展, 2020, 28(1): 111-127.
[6]徐胜, 田蜜, 罗天瑞, 赛李阳. 基于选择反应的学习迁移效应:从个人情境到社会情境[J]. 心理科学进展, 2019, 27(7): 1215-1223.
[7]严瑜, 李彤. 工作场所不文明行为受害者向实施者反转的机制[J]. 心理科学进展, 2018, 26(7): 1307-1318.
[8]文鹏;史硕. 团队内非伦理行为的社会互动机制[J]. 心理科学进展, 2012, 20(6): 805-814.
[9]庄锦英;徐璟;张森;余菲. 择偶复制:一种适应性的性选择策略[J]. 心理科学进展, 2012, 20(10): 1672-1678.
[10]侯建成;刘昌. 语言与音乐活动的脑机制研究述评[J]. 心理科学进展, 2008, 16(1): 50-58.
[11]阎书昌. 俄勒冈社会学习中心反社会行为预防与干预研究述评[J]. 心理科学进展, 2007, 15(4): 642-647.
[12]王翠艳;刘昌. 杏仁核情绪功能偏侧化的成像研究述评[J]. 心理科学进展, 2007, 15(2): 313-318.
[13]林冲宇;翁旭初. 运动、语言和学习:小脑的功能磁共振成像研究[J]. 心理科学进展, 2006, 14(4): 532-539.
[14]任衍具;傅小兰. 图表加工的理论模型[J]. 心理科学进展, 2006, 14(1): 23-31.
[15]乐国安,张彦彦,陈浩. 西方有关择偶启事的研究和论争[J]. 心理科学进展, 2005, 13(2): 248-256.





PDF全文下载地址:

http://journal.psych.ac.cn/xlkxjz/CN/article/downloadArticleFile.do?attachType=PDF&id=5411
相关话题/社会 系统 计算 心理 科学

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 让智慧插上创造的翅膀:创造动力系统的激活及其条件
    张亚坤1,3,陈宁1,陈龙安2(),施建农1,4,5,6()1中国科学院心理研究所,北京1001012中华创造力训练发展协会,台北106833北京理工大学,北京1000814中国科学院大学,北京1000495中国科学院行为科学重点实验室,北京1001016DepartmentofLearningan ...
    本站小编 Free考研考试 2022-01-01
  • 基于游戏的心理测评
    徐俊怡,李中权()南京大学社会学院心理学系,南京210023收稿日期:2020-05-24出版日期:2021-03-15发布日期:2021-01-26通讯作者:李中权E-mail:zqli@nju.edu.cn基金资助:教育部人文社科规划基金项目(20YJA190004);江苏省教育厅高校哲学社会科 ...
    本站小编 Free考研考试 2022-01-01
  • 社会互动加工的认知特性及脑机制——第三人称的视角
    程羽慧,袁祥勇(),蒋毅中国科学院心理研究所,脑与认知科学国家重点实验室,脑科学与智能技术卓越创新中心,北京100101;中国科学院大学心理学系,北京100049;北京脑科学与类脑研究中心,北京102206收稿日期:2020-05-14出版日期:2021-03-15发布日期:2021-01-26通讯 ...
    本站小编 Free考研考试 2022-01-01
  • 恐惧管理理论的争议及其对死亡心理研究的启示
    孟祥寒1,李强1,2(),周彦榜1,王进31南开大学社会心理学系,天津3003502南开大学滨海学院,天津3002703天津职业技术师范大学,天津300222收稿日期:2020-02-29出版日期:2021-03-15发布日期:2021-01-26通讯作者:李强E-mail:liqiangp@126 ...
    本站小编 Free考研考试 2022-01-01
  • 亲社会行为中的从众效应
    魏真瑜1(),邓湘树1,赵治瀛21西南财经大学社会发展研究院,成都6111302耶鲁大学医学院,美国收稿日期:2020-03-31出版日期:2021-03-15发布日期:2021-01-26通讯作者:魏真瑜E-mail:weizhenyu@swufe.edu.cn基金资助:西南财经大学中央高校基本科 ...
    本站小编 Free考研考试 2022-01-01
  • 敬畏的心理模型及其认知神经机制
    赵小红1,2,童薇3,陈桃林1,2(),吴冬梅4,张蕾1,2,陈正举1,方晓义3,龚启勇1,2,唐小蓉21四川大学华西医院放射科华西磁共振研究中心,成都6100412四川大学公共管理学院社会学与心理学系,成都6100653北京师范大学心理学部,北京1008754成都市第四人民医院,成都610036收 ...
    本站小编 Free考研考试 2022-01-01
  • 老年人心理韧性与幸福感的关系:一项元分析
    叶静,张戌凡()南京师范大学金陵女子学院,南京210097收稿日期:2020-07-23出版日期:2021-02-15发布日期:2020-12-29通讯作者:张戌凡E-mail:xufanzhang@163.com基金资助:国家自然科学青年基金项目“工会实践对员工工作幸福感的影响:基于工具-情感的双 ...
    本站小编 Free考研考试 2022-01-01
  • 同胞冲突及其解决:家庭子系统的影响
    屈国梁,曹晓君()西华师范大学教育学院,四川南充637002收稿日期:2020-03-17出版日期:2021-02-15发布日期:2020-12-29通讯作者:曹晓君E-mail:cxj841118@aliyun.comSiblingconflictanditsresolution:Theeffec ...
    本站小编 Free考研考试 2022-01-01
  • 催产素调控心理韧性:基于对海马的作用机制
    薛冰,王雪娇,马宁,高军()认知与人格教育部重点实验室,重庆400715收稿日期:2020-04-27出版日期:2021-02-15发布日期:2020-12-29通讯作者:高军E-mail:gaojunscience@126.com基金资助:国家自然科学基金(32071059);重庆市自然科学基金( ...
    本站小编 Free考研考试 2022-01-01
  • 计算模型视角下信任形成的心理和神经机制——基于信任博弈中投资者的角度
    高青林,周媛()中国科学院心理研究所行为科学重点实验室,北京100101中国科学院大学心理学系,北京100049收稿日期:2020-04-18出版日期:2021-01-15发布日期:2020-11-23通讯作者:周媛E-mail:zhouyuan@psych.ac.cn基金资助:*中国科学院心理研究 ...
    本站小编 Free考研考试 2022-01-01