
中国科学院心理研究所, 脑与认知科学国家重点实验室, 脑科学与智能技术卓越创新中心, 北京 100101;中国科学院大学心理学系, 北京 100049;北京脑科学与类脑研究中心, 北京 102206
收稿日期:
2020-05-14出版日期:
2021-03-15发布日期:
2021-01-26通讯作者:
袁祥勇E-mail:yuanxy@psych.ac.cn基金资助:
国家自然科学基金(31830037);国家自然科学基金(31525011);中国科学院战略性先导科技专项(XDB32010300);中国科学院前沿科学重点研究计划项目(QYZDB-SSW-SMC030);中央高校基本科研业务费专项资金资助The cognitive characteristics of and the brain mechanisms underlying social interaction processing from a third-person perspective
CHENG Yuhui, YUAN Xiangyong(
State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China;Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China;Chinese Institute for Brain Research, Beijing 102206, China
Received:
2020-05-14Online:
2021-03-15Published:
2021-01-26Contact:
YUAN Xiangyong E-mail:yuanxy@psych.ac.cn摘要/Abstract
摘要: 在日常生活中, 从“第三人称”的视角识别并理解他人的社会互动至关重要。这种社会互动加工具有两种认知特性:构形整体性和动作关联性; 体现为一个由众多脑区共同参与的层级加工过程, 主要包括个体知觉网络、动作观察网络和心智化网络。其中, 后颞上沟等脑区在表征社会互动关系中起着关键作用。未来的研究需要结合多种技术手段进一步揭示社会互动加工的遗传特性和神经机制, 并关注它在实际生活中的应用。
图/表 1

图1社会互动加工过程的脑网络。各个脑区分别对应着下方相同颜色的脑网络。

参考文献 71
[1] | Abassi, E., & Papeo, L. (2020). The representation of two-body shapes in the human visual cortex. The Journal of Neuroscience, 40(4), 852-863. doi: 10.1523/JNEUROSCI.1378-19.2019URLpmid: 31801812 |
[2] | Arioli, M., & Canessa, N. (2019). Neural processing of social interaction: Coordinate-based meta-analytic evidence from human neuroimaging studies. Human Brain Mapping, 40(13), 3712-3737. doi: 10.1002/hbm.24627URLpmid: 31077492 |
[3] | Arioli, M., Perani, D., Cappa, S., Proverbio, A. M., Zani, A., Falini, A., & Canessa, N. (2018). Affective and cooperative social interactions modulate effective connectivity within and between the mirror and mentalizing systems. Human Brain Mapping, 39(3), 1412-1427. doi: 10.1002/hbm.23930URLpmid: 29265483 |
[4] | Canessa, N., Alemanno, F., Riva, F., Zani, A., Proverbio, A. M., Mannara, N., ... Cappa, S. F. (2012). The neural bases of social intention understanding: The role of interaction goals. PLoS ONE, 7(7), e42347. doi: 10.1371/journal.pone.0042347URLpmid: 22848759 |
[5] | Capozzi, F., & Ristic, J. (2018). How attention gates social interactions. Annals of the New York Academy of Sciences, 1426(1), 179-198. doi: 10.1111/nyas.2018.1426.issue-1URL |
[6] | Caspers, S., Zilles, K., Laird, A. R., & Eickhoff, S. B. (2010). ALE meta-analysis of action observation and imitation in the human brain. Neuroimage, 50(3), 1148-1167. URLpmid: 20056149 |
[7] | Centelles, L., Assaiante, C., Etchegoyhen, K., Bouvard, M., & Schmitz, C. (2013). From action to interaction: Exploring the contribution of body motion cues to social understanding in typical development and in autism spectrum disorders. Journal of Autism and Developmental Disorders, 43(5), 1140-1150. doi: 10.1007/s10803-012-1655-0URL |
[8] | Costanzo, M., & Archer, D. (1989). Interperting the expressive behavior of others: The interpersonal perception task. Journal of Nonverbal Behavior, 13(4), 225-245. doi: 10.1007/BF00990295URL |
[9] | Deen, B., Koldewyn, K., Kanwisher, N., & Saxe, R. (2015). Functional organization of social perception and cognition in the superior temporal sulcus. Cerebral Cortex, 25(11), 4596-4609. URLpmid: 26048954 |
[10] | Ding, X. W., Gao, Z. F., & Shen, M. W. (2017). Two equals one: Two human actions during social interaction are grouped as one unit in working memory. Psychological Science, 28(9), 1311-1320. doi: 10.1177/0956797617707318URLpmid: 28719763 |
[11] | Downing, P. E., Peelen, M. V., Wiggett, A. J., & Tew, B. D. (2006). The role of the extrastriate body area in action perception. Social Neuroscience, 1(1), 52-62. doi: 10.1080/17470910600668854URLpmid: 18633775 |
[12] | Farah, M. J., Tanaka, J. W., & Drain, H. M. (1995). What causes the face inversion effect? Journal of Experimental Psychology: Human Perception and Performance, 21(3), 628-634. doi: 10.1037//0096-1523.21.3.628URLpmid: 7790837 |
[13] | Fedorov, L. A., Chang, D. S., Giese, M. A., Bulthoff, H. H., & de la Rosa, S. (2018). Adaptation aftereffects reveal representations for encoding of contingent social actions. Proceedings of the National Academy of Sciences, 115(29), 7515-7520. doi: 10.1073/pnas.1801364115URL |
[14] | Floyd, K., & Erbert, L. A. (2003). Relational message interpretations of nonverbal matching behavior: An application of the social meaning model. The Journal of Social Psychology, 143(5), 581-597. doi: 10.1080/00224540309598465URLpmid: 14609054 |
[15] | Galazka, M., & Nystr?m, P. (2016). Infants’ preference for individual agents within chasing interactions. Journal of Experimental Child Psychology, 147, 53-70. doi: 10.1016/j.jecp.2016.02.010URLpmid: 27017143 |
[16] | Galazka, M. A., Roche, L., Nystrom, P., & Falck-Ytter, T. (2014). Human infants detect other people's interactions based on complex patterns of kinematic information. PLoS ONE, 9(11), e112432. doi: 10.1371/journal.pone.0112432URLpmid: 25409449 |
[17] | Gao, T., Scholl, B. J., & McCarthy, G. (2012). Dissociating the detection of intentionality from animacy in the right posterior superior temporal sulcus. The Journal of Neuroscience, 32(41), 14276-14280. URLpmid: 23055497 |
[18] | Georgescu, A. L., Kuzmanovic, B., Santos, N. S., Tepest, R., Bente, G., Tittgemeyer, M., & Vogeley, K. (2014). Perceiving nonverbal behavior: Neural correlates of processing movement fluency and contingency in dyadic interactions. Human Brain Mapping, 35(4), 1362-1378. URLpmid: 23813661 |
[19] | Goffaux, V., Peters, J. C., Haubrechts, J., Schiltz, C., Jansma, B., & Goebel, R. (2011). From coarse to fine? Spatial and temporal dynamics of cortical face processing. Cerebral Cortex, 21(2), 467-476. doi: 10.1093/cercor/bhq112URLpmid: 20576927 |
[20] | Hartmann, M., Mavrolampados, A., Allingham, E., Carlson, E., Burger, B., & Toiviainen, P. (2019). Kinematics of perceived dyadic coordination in dance. Scientific Reports, 9(1), 15594. doi: 10.1038/s41598-019-52097-6URLpmid: 31666586 |
[21] | Hauser, M., & Wood, J. (2010). Evolving the capacity to understand actions, intentions, and goals. Annual Review of Psychology, 61(1), 303-324. doi: 10.1146/annurev.psych.093008.100434URL |
[22] | Isik, L., Koldewyn, K., Beeler, D., & Kanwisher, N. (2017). Perceiving social interactions in the posterior superior temporal sulcus. Proceedings of the National Academy of Sciences, 114(43), E9145-E9152. doi: 10.1073/pnas.1714471114URL |
[23] | Ji, H. C., Yin, J., Huang, Y. S., & Ding, X. W. (2020). Selective attention operates on the group level for interactive biological motion. Journal of Experimental Psychology: Human Perception and Performance, 46(12), 1434-1442. doi: 10.1037/xhp0000866URL |
[24] | Jiang, J., Dai, B. H., Peng, D. L., Zhu, C. Z., Liu, L., & Lu, C. M. (2012). Neural synchronization during face-to-face communication. Journal of Neuroscience, 32(45), 16064-16069. doi: 10.1523/JNEUROSCI.2926-12.2012URL |
[25] | Keysers, C., & Gazzola, V. (2007). Integrating simulation and theory of mind: from self to social cognition. Trends in Cognitive Sciences, 11(5), 194-196. doi: 10.1016/j.tics.2007.02.002URLpmid: 17344090 |
[26] | Kingsbury, L., & Hong, W. (2020). A multi-brain framework for social interaction. Trends in neurosciences, 43(9), 651-666. URLpmid: 32709376 |
[27] | Kuschefski, M., Falter-Wagner, C. M., Bente, G., Vogeley, K., & Georgescu, A. L. (2019). Inferring power and dominance from dyadic nonverbal interactions in autism spectrum disorder. Autism Research, 12(3), 505-516. URLpmid: 30629333 |
[28] | Lahnakoski, J. M., Glerean, E., Salmi, J., Jaaskelainen, I. P., Sams, M., Hari, R., & Nummenmaa, L. (2012). Naturalistic fMRI mapping reveals superior temporal sulcus as the hub for the distributed brain network for social perception. Frontiers in Human Neuroscience, 6(8), 233. |
[29] | Liu, R., Yuan, X. Y., Chen, K. P., Jiang, Y., & Zhou, W. (2018). Perception of social interaction compresses subjective duration in an oxytocin-dependent manner. Elife, 7, e32100. doi: 10.7554/eLife.32100URLpmid: 29784084 |
[30] | Manera, V., Becchio, C., Schouten, B., Bara, B. G., & Verfaillie, K. (2011). Communicative interactions improve visual detection of biological motion. PLoS ONE, 6(1), e14594. doi: 10.1371/journal.pone.0014594URLpmid: 21297865 |
[31] | Manera, V., Giudice, M. D., Bara, B. G., Verfaillie, K., & Becchio, C. (2011). The second-agent effect: Communicative gestures increase the likelihood of perceiving a second agent. PLoS ONE, 6(7), e22650. URLpmid: 21829472 |
[32] | Manera, V., Iani, F., Bourgeois, J., Haman, M., Okruszek, L. P., Rivera, S. M., ... Becchio, C. (2015). The Multilingual CID-5: A new tool to study the perception of communicative interactions in different languages. Frontiers in Psychology, 6, 1724. doi: 10.3389/fpsyg.2015.01724URLpmid: 26635651 |
[33] | Manera, V., Schouten, B., Becchio, C., Bara, B. G., & Verfaillie, K. (2010). Inferring intentions from biological motion: A stimulus set of point-light communicative interactions. Behavior Research Methods, 42(1), 168-178. doi: 10.3758/BRM.42.1.168URL |
[34] | Manera, V., Schouten, B., Verfaillie, K., & Becchio, C. (2013). Time will show: Real time predictions during interpersonal action perception. PLoS ONE, 8(1), e54949. URLpmid: 23349992 |
[35] | Manera, V., von der Lühe, T., Schilbach, L., Verfaillie, K., & Becchio, C. (2016). Communicative interactions in point-light displays: Choosing among multiple response alternatives. Behavior Research Methods, 48(4), 1580-1590. doi: 10.3758/s13428-015-0669-xURLpmid: 26487054 |
[36] | Marsh, K. L., Richardson, M. J., & Schmidt, R. C. (2009). Social connection through joint action and interpersonal coordination. Topics in Cognitive Science, 1(2), 320-339. URLpmid: 25164936 |
[37] | Mast, M. S., & Hall, J. A. (2004). Who is the boss and who is not? Accuracy of judging status. Journal of Nonverbal Behavior, 28(3), 145-165. doi: 10.1023/B:JONB.0000039647.94190.21URL |
[38] | Matheson, H., Moore, C., & Akhtar, N. (2013). The development of social learning in interactive and observational contexts. Journal of Experimental Child Psychology, 114(2), 161-172. doi: 10.1016/j.jecp.2012.09.003URLpmid: 23164286 |
[39] | Milinski, M. (2016). Reputation, a universal currency for human social interactions. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1687), 20150100. |
[40] | Neri, P., Luu, J. Y., & Levi, D. M. (2006). Meaningful interactions can enhance visual discrimination of human agents. Nature Neuroscience, 9(9), 1186-1192. doi: 10.1038/nn1759URLpmid: 16936721 |
[41] | Okruszek, L., Haman, M., Kalinowski, K., Talarowska, M., Becchio, C., & Manera, V. (2015). Impaired recognition of communicative interactions from biological motion in schizophrenia. PLoS ONE, 10(2), e0116793. doi: 10.1371/journal.pone.0116793URLpmid: 25664584 |
[42] | Okruszek, L., Piejka, A., Wysokinski, A., Szczepocka, E., & Manera, V. (2018). Biological motion sensitivity, but not interpersonal predictive coding is impaired in schizophrenia. Journal of Abnormal Psychology, 127(3), 305-313. doi: 10.1037/abn0000335URLpmid: 29369645 |
[43] | Okruszek, L., Piejka, A., Wysokiński, A., Szczepocka, E., & Manera, V. (2019). The second agent effect: Interpersonal predictive coding in people with schizophrenia. Social Neuroscience, 14(2), 208-213. doi: 10.1080/17470919.2017.1415969URLpmid: 29227757 |
[44] | Papeo, L., & Abassi, E. (2019). Seeing social events: The visual specialization for dyadic human-human interactions. Journal of Experimental Psychology: Human Perception and Performance, 45(7), 877-888. doi: 10.1037/xhp0000646URLpmid: 30998069 |
[45] | Papeo, L., Goupil, N., & Soto-Faraco, S. (2019). Visual search for people among people. Psychological Science, 30(10), 1483-1496. URLpmid: 31532709 |
[46] | Papeo, L., Stein, T., & Soto-Faraco, S. (2017). The two-body inversion effect. Psychological Science, 28(3), 369-379. URLpmid: 28140764 |
[47] | Peng, Y. J., Ichien, N., & Lu, H. J. (2020). Causal actions enhance perception of continuous body movements. Cognition, 194, 104060. URLpmid: 31518908 |
[48] | Pesquita, A., Whitwell, R. L., & Enns, J. T. (2018). Predictive joint-action model: A hierarchical predictive approach to human cooperation. Psychonomic Bulletin & Review, 25(5), 1751-1769. URLpmid: 29119405 |
[49] | Quadflieg, S., Gentile, F., & Rossion, B. (2015). The neural basis of perceiving person interactions. Cortex, 70, 5-20. doi: 10.1016/j.cortex.2014.12.020URLpmid: 25697049 |
[50] | Quadflieg, S., & Koldewyn, K. (2017). The neuroscience of people watching: How the human brain makes sense of other people's encounters. Annals of the New York Academy of Sciences, 1396(1), 166-182. URLpmid: 28405964 |
[51] | Reed, C. L., Stone, V. E., Bozova, S., & Tanaka, J. (2003). The body-inversion effect. Psychological Science, 14(4), 302-308. URLpmid: 12807401 |
[52] | Schilbach, L., Timmermans, B., Reddy, V., Costall, A., Bente, G., Schlicht, T., & Vogeley, K. (2013). Toward a second- person neuroscience. Behavioral and Brain Sciences, 36(4), 393-414. doi: 10.1017/S0140525X12000660URL |
[53] | Schurz, M., Radua, J., Aichhorn, M., Richlan, F., & Perner, J. (2014). Fractionating theory of mind: A meta-analysis of functional brain imaging studies. Neuroscience & Biobehavioral Reviews, 42, 9-34. doi: 10.1016/j.neubiorev.2014.01.009URLpmid: 24486722 |
[54] | Shen, M. W., Yin, J., Ding, X. W., Shui, R., & Zhou, J. F. (2016). Deployment of attention on handshakes. Frontiers in Psychology, 7, 681. URLpmid: 27242595 |
[55] | Sinke, C. B. A., Sorger, B., Goebel, R., & de Gelder, B. (2010). Tease or threat? Judging social interactions from bodily expressions. Neuroimage, 49(2), 1717-1727. doi: 10.1016/j.neuroimage.2009.09.065URL |
[56] | Sliwa, J., & Freiwald, W. A. (2017). A dedicated network for social interaction processing in the primate brain. Science, 356(6339), 745-745. doi: 10.1126/science.aam6383URLpmid: 28522533 |
[57] | Su, J. Z., van Boxtel, J. J. A., & Lu, H. J. (2016). Social interactions receive priority to conscious perception. PLoS ONE, 11(8), e0160468. URLpmid: 27509028 |
[58] | Vestner, T., Gray, K. L. H., & Cook, R. (2020). Why are social interactions found quickly in visual search tasks? Cognition, 200, 104270. URLpmid: 32220782 |
[59] | Vestner, T., Tipper, S. P., Hartley, T., Over, H., & Rueschemeyer, S. A. (2019). Bound together: Social binding leads to faster processing, spatial distortion, and enhanced memory of interacting partners. Journal of Experimental Psychology: General, 148(7), 1251-1268. doi: 10.1037/xge0000545URL |
[60] | von der Luhe, T., Manera, V., Barisic, I., Becchio, C., Vogeley, K., & Schilbach, L. (2016). Interpersonal predictive coding, not action perception, is impaired in autism. Philosophical Transactions of the Royal Society B Biological Sciences, 371(1693), 20150373. doi: 10.1098/rstb.2015.0373URL |
[61] | Walbrin, J., Downing, P., & Koldewyn, K. (2018). Neural responses to visually observed social interactions. Neuropsychologia, 112, 31-39. doi: 10.1016/j.neuropsychologia.2018.02.023URLpmid: 29476765 |
[62] | Walbrin, J., & Koldewyn, K. (2019). Dyadic interaction processing in the posterior temporal cortex. Neuroimage, 198, 296-302. doi: 10.1016/j.neuroimage.2019.05.027URLpmid: 31100434 |
[63] | Walter, H., Ciaramidaro, A., Adenzato, M., Vasic, N., Ardito, R. B., Erk, S., & Bara, B. G. (2009). Dysfunction of the social brain in schizophrenia is modulated by intention type: An fMRI study. Social Cognitive and Affective Neuroscience, 4(2), 166-176. URLpmid: 19287044 |
[64] | Wang, Y., Wang, L., Xu, Q., Liu, D., Chen, L. H., Troje, N. F., ... Jiang, Y. (2018). Heritable aspects of biological motion perception and its covariation with autistic traits. Proceedings of the National Academy of Sciences, 115(8), 1937-1942. doi: 10.1073/pnas.1714655115URL |
[65] | Wu, X. Y., Hua, R., Yang, Z. X., & Yin, J. (2018). The influence of intention and outcome on evaluations of social interaction. Acta Psychologica, 182, 75-81. URLpmid: 29149691 |
[66] | Yang, D. Y.-J., Rosenblau, G., Keifer, C., & Pelphrey, K. A. (2015). An integrative neural model of social perception, action observation, and theory of mind. Neuroscience & Biobehavioral Reviews, 51, 263-275. URLpmid: 25660957 |
[67] | Yin, J., Ding, X. W., Zhou, J. F., Shui, R., Li, X. Y., & Shen, M. W. (2013). Social grouping: Perceptual grouping of objects by cooperative but not competitive relationships in dynamic chase. Cognition, 129(1), 194-204. doi: 10.1016/j.cognition.2013.06.013URL |
[68] | Yin, J., Xu, H. K., Duan, J. P., & Shen, M. W. (2018). Object-based attention on social units: Visual selection of hands performing a social interaction. Psychological Science, 29(7), 1040-1048. URLpmid: 29741989 |
[69] | Zaini, H., Fawcett, J. M., White, N. C., & Newman, A. J. (2013). Communicative and noncommunicative point-light actions featuring high-resolution representation of the hands and fingers. Behavior Research Methods, 45(2), 319-328. URLpmid: 23073730 |
[70] | Zhou, C., Han, M., Liang, Q., Hu, Y. F., & Kuai, S. G. (2019). A social interaction field model accurately identifies static and dynamic social groupings. Nature Human Behaviour, 3(8), 847-855. doi: 10.1038/s41562-019-0618-2URLpmid: 31182793 |
[71] | Zillekens, I. C., Brandi, M.-L., Lahnakoski, J. M., Koul, A., Manera, V., Becchio, C., & Schilbach, L. (2019). Increased functional coupling of the left amygdala and medial prefrontal cortex during the perception of communicative point-light stimuli. Social Cognitive and Affective Neuroscience, 14(1), 97-107. doi: 10.1093/scan/nsy105URLpmid: 30481356 |
相关文章 15
[1] | 卫垌圻, 曹慧, 毕鸿燕, 杨炀. 发展性阅读障碍书写加工缺陷及其神经机制[J]. 心理科学进展, 2020, 28(1): 75-84. |
[2] | 郭容, 傅鑫媛. 社会阶层信号及其对人际水平社会互动的影响[J]. 心理科学进展, 2019, 27(7): 1268-1274. |
[3] | 杜碧煊, 张明明, 张珂烨, 任杰, 何蔚祺. 肢体形状和肢体动作表征的早期发展[J]. 心理科学进展, 2019, 27(10): 1703-1712. |
[4] | 张珂烨, 张明明, 刘田田, 罗文波, 何蔚祺. 肢体识别的倒置效应[J]. 心理科学进展, 2019, 27(1): 27-36. |
[5] | 尹述飞, 李添, 朱心怡. 主观记忆减退老年人情节记忆的行为表现及其脑机制[J]. 心理科学进展, 2019, 27(1): 51-59. |
[6] | 刘迪迪, 王美萍, 陈翩, 张文新. COMT基因Val158Met多态性与抑郁的关系[J]. 心理科学进展, 2018, 26(8): 1429-1437. |
[7] | 孙岩, 房林, 王亭予, 崔丽. 自闭症谱系障碍者抑制控制的影响因素及神经机制[J]. 心理科学进展, 2018, 26(8): 1450-1464. |
[8] | 赵书松, 张一杰, 赵君. 第三方组织公平:研究视角、内容与设计[J]. 心理科学进展, 2018, 26(12): 2216-2229. |
[9] | 刘立敏, 田相娟, 张文新, 王美萍. MAOA基因与环境对反社会行为的交互作用 及其可能的脑机制[J]. 心理科学进展, 2017, 25(6): 970-979. |
[10] | 钱浩悦;朱敏;高湘萍. 老年人面孔构形加工特点[J]. 心理科学进展, 2017, 25(2): 230-236. |
[11] | 李琎; 范伟; 张文洁; 钟毅平. 旋转自我面孔识别及其认知机制[J]. 心理科学进展, 2016, 24(Suppl.): 50-. |
[12] | 岳童;黄希庭. 共情特质的神经生物学基础[J]. 心理科学进展, 2016, 24(9): 1368-1376. |
[13] | 任俊, 朱琼嫦. 内隐情绪调节:一种有效的自我保护[J]. 心理科学进展, 2015, 23(12): 2054-2063. |
[14] | 孙泽坤, 王锦琰, 罗非. 疼痛与注意的交互作用:自下而上的捕获效应#br# 和自上而下的调节作用[J]. 心理科学进展, 2015, 23(12): 2096-2106. |
[15] | 刘超. 人类的笑:进化论与社会互动论的视角[J]. 心理科学进展, 2015, 23(11): 2020-2028. |
PDF全文下载地址:
http://journal.psych.ac.cn/xlkxjz/CN/article/downloadArticleFile.do?attachType=PDF&id=5382