删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

语法的进化连续性及进化起源解释

本站小编 Free考研考试/2022-01-01

殷融, 赵嘉()
潍坊学院教师教育学院, 山东 潍坊 261061
收稿日期:2020-07-17出版日期:2021-07-15发布日期:2021-05-24
通讯作者:赵嘉E-mail:yorkns@sina.cn

基金资助:山东省教育科学规划项目(2020YB037)

Evolutionary continuity and origin explanation of syntax

YIN Rong, ZHAO Jia()
School of Teacher Education, Weifang University, Weifang 261061, China
Received:2020-07-17Online:2021-07-15Published:2021-05-24
Contact:ZHAO Jia E-mail:yorkns@sina.cn






摘要/Abstract


摘要: 语法是人类交流系统有别于其他动物的关键特征之一。行为比较研究表明, 除人类外的其他灵长目动物也能理解并掌握抽象的顺序排序规则; 神经生物学比较研究表明, 支持排序处理的神经机制来自人类与其他灵长目动物共同具有的脑区。因此语法所依赖的序列学习能力在人类与其他灵长目动物间具有进化连续性。词汇限制假说、事件感知假说与自我驯化假说分别从不同角度对人类语法的进化起源进行了解释。未来研究需要探讨人工语法任务中所发现的脑神经机制是否是层级结构加工的通用处理器, 并进一步澄清语义加工与语法加工的关系。


表1近年来部分以其他灵长目动物为被试的人工语法任务实验
研究者 任务内容 实验结果 研究结论
Reber等(2019) 首先训练狨猴掌握听觉序列规则, 具体规则内容为:一段音节序列的最初项与最终项是低音, 中间项全部是高音。 在测试阶段, 狨猴表现出了对熟悉模式声音序列的偏好:如果它们听到的是与规则模式一致的声音序列, 它们会更倾向于朝向扬声器。 狨猴、恒河猴、狒狒和黑猩猩(与人类亲缘关系依次从远到近)都可以掌握不相邻的排序关系, 并且与人类亲缘关系最近的黑猩猩可以做到将之前掌握的规则泛化到新的刺激序列中。
Versace等 (2019) 以4只绒顶柽柳猴为被试, 选择了3类视觉刺激:A (3种图形)、B (包含4种图形)与X (包含4种图形)组成图形序列, 设定规则为, 当出现一组图形时, 无论X类图形的数量与位置, A类图形必须在B类图形的左边。 在测试阶段, 向狨猴提供一些新的刺激序列。研究发现, 有两只狨猴可以明显区分出符合设定规则的刺激序列。
Milne等(2016) 训练两只恒河猴学习具有非相邻排序关系的三音节序列, 其中, 第1个音节与第3个音节为配对搭配, 中间音节则随意。在后期测试阶段, 向恒河猴播放符合或不符合规则的刺激序列, 同时使用ERPs记录它们的脑电信号。 当出现违规序列时, 恒河猴大脑的脑电模式会出现明显的“失配反应” (mismatch response)。
Malassis等(2018) 触摸屏上向狒狒呈现3行3列9个点组成的矩阵, 在学习阶段, 矩阵上3个点依次亮起, 每一个点亮起后, 狒狒用手触摸, 在完成符合特定规律的序列后, 狒狒获得奖励, 完成其他序列则不给奖励。在测试阶段, 狒狒依然按亮点顺序触摸屏幕。 当一个序列中第3个点的位置与第1个点位置符合序列规律时, 狒狒触摸的反应时显著更快。当增加序列的刺激数量后, 狒狒也具有相同表现。
Sonnweber等(2015) 学习阶段, 在屏幕上向黑猩猩同时呈现两个图形序列, 每个序列都包含3或4个图形, 其中一个序列符合预定的规则(最左边与最右边的图形形状一致, 颜色无所谓), 一个序列不符合, 黑猩猩要从中选择其中一个, 如果选择了符合规则的序列可以得到奖励, 之后进行测试。 在测试阶段, 黑猩猩更倾向选择符合预定规则的序列; 此外, 即便扩展图形数量或引入新的形状, 也有一些黑黑猩猩可以完成测试。
Ravignani和Sonnweber (2017)
首先训练黑猩猩掌握图形序列的对称规则(如XYX是合规则的图形序列, 而XYY不是)。随后, 再训练黑猩猩掌握新的听觉序列规则。 相比其他规则(如高音-低音-低音), 如果听觉序列规则也属于对称规则(如高音-低音-高音), 黑猩猩掌握规则的速度明显更快。 其他灵长目动物可以同人类一样将一种感觉通道的序列规则泛化到其他感觉通道, 因此, 序列加工能力与特定感觉通道无关。
Mueller等(2018) 以猕猴和人类为被试, 使用5种图形和5种声音分别进行了视觉序列加工测试和听觉序列加工测试, 两种测试中使用的规则一致。 猕猴在两种感觉通道的测试中表现出了高度相似的反应模式。而人类被试在视觉序列与听觉序列的加工任务中也会表现出一致的相关性。

表1近年来部分以其他灵长目动物为被试的人工语法任务实验
研究者 任务内容 实验结果 研究结论
Reber等(2019) 首先训练狨猴掌握听觉序列规则, 具体规则内容为:一段音节序列的最初项与最终项是低音, 中间项全部是高音。 在测试阶段, 狨猴表现出了对熟悉模式声音序列的偏好:如果它们听到的是与规则模式一致的声音序列, 它们会更倾向于朝向扬声器。 狨猴、恒河猴、狒狒和黑猩猩(与人类亲缘关系依次从远到近)都可以掌握不相邻的排序关系, 并且与人类亲缘关系最近的黑猩猩可以做到将之前掌握的规则泛化到新的刺激序列中。
Versace等 (2019) 以4只绒顶柽柳猴为被试, 选择了3类视觉刺激:A (3种图形)、B (包含4种图形)与X (包含4种图形)组成图形序列, 设定规则为, 当出现一组图形时, 无论X类图形的数量与位置, A类图形必须在B类图形的左边。 在测试阶段, 向狨猴提供一些新的刺激序列。研究发现, 有两只狨猴可以明显区分出符合设定规则的刺激序列。
Milne等(2016) 训练两只恒河猴学习具有非相邻排序关系的三音节序列, 其中, 第1个音节与第3个音节为配对搭配, 中间音节则随意。在后期测试阶段, 向恒河猴播放符合或不符合规则的刺激序列, 同时使用ERPs记录它们的脑电信号。 当出现违规序列时, 恒河猴大脑的脑电模式会出现明显的“失配反应” (mismatch response)。
Malassis等(2018) 触摸屏上向狒狒呈现3行3列9个点组成的矩阵, 在学习阶段, 矩阵上3个点依次亮起, 每一个点亮起后, 狒狒用手触摸, 在完成符合特定规律的序列后, 狒狒获得奖励, 完成其他序列则不给奖励。在测试阶段, 狒狒依然按亮点顺序触摸屏幕。 当一个序列中第3个点的位置与第1个点位置符合序列规律时, 狒狒触摸的反应时显著更快。当增加序列的刺激数量后, 狒狒也具有相同表现。
Sonnweber等(2015) 学习阶段, 在屏幕上向黑猩猩同时呈现两个图形序列, 每个序列都包含3或4个图形, 其中一个序列符合预定的规则(最左边与最右边的图形形状一致, 颜色无所谓), 一个序列不符合, 黑猩猩要从中选择其中一个, 如果选择了符合规则的序列可以得到奖励, 之后进行测试。 在测试阶段, 黑猩猩更倾向选择符合预定规则的序列; 此外, 即便扩展图形数量或引入新的形状, 也有一些黑黑猩猩可以完成测试。
Ravignani和Sonnweber (2017)
首先训练黑猩猩掌握图形序列的对称规则(如XYX是合规则的图形序列, 而XYY不是)。随后, 再训练黑猩猩掌握新的听觉序列规则。 相比其他规则(如高音-低音-低音), 如果听觉序列规则也属于对称规则(如高音-低音-高音), 黑猩猩掌握规则的速度明显更快。 其他灵长目动物可以同人类一样将一种感觉通道的序列规则泛化到其他感觉通道, 因此, 序列加工能力与特定感觉通道无关。
Mueller等(2018) 以猕猴和人类为被试, 使用5种图形和5种声音分别进行了视觉序列加工测试和听觉序列加工测试, 两种测试中使用的规则一致。 猕猴在两种感觉通道的测试中表现出了高度相似的反应模式。而人类被试在视觉序列与听觉序列的加工任务中也会表现出一致的相关性。







[1] Arnold, K., & Zuberbühler, K. (2006). Language evolution: Semantic combinations in primate calls. Nature, 441(7091), 303-303.
pmid: 16710411
[2] Arnold, K., & Zuberbühler, K. (2008). Meaningful call combinations in a non-human primate. Current Biology, 18(5), 202-203.
doi: 10.1016/j.cub.2008.01.040pmid: 18334192
[3] Atkinson, E. G., Audesse, A. J., Palacios, J. A., Bobo, D. M., Webb, A. E., Ramachandran, S., & Henn, B. M. (2018). No Evidence for recent selection at FOXP2 among diverse human populations. Cell, 174(6), 1424-1435.
doi: 10.1016/j.cell.2018.06.048
[4] Bauernfeind, A. L., de Sousa, A. A., Avasthi, T., Dobson, S. D., Raghanti, M. A., Lewandowski, A. H., ... Sherwood, C. C. (2013). A volumetric comparison of the insular cortex and its subregions in primates. Journal of Human Evolution, 64(4), 263-279.
doi: 10.1016/j.jhevol.2012.12.003URL
[5] Bemis, D. K., & Pylkkanen, L. (2011). Simple composition: A magnetoencephalography investigation into the comprehension of minimal linguistic phrases. Journal of Neuroscience, 31(8), 2801-2814.
doi: 10.1523/JNEUROSCI.5003-10.2011URL
[6] Benítez-Burraco, A., & Kempe, V. (2018). The emergence of modern languages: Has human self-domestication optimized language transmission? Frontiers in Psychology, 9, 551.
doi: 10.3389/fpsyg.2018.00551pmid: 29719524
[7] Bergen, B. K. (2016). What the F: What swearing reveals about our language, our brains, and ourselves. New York: Basic Books.
[8] Bozic, M., Fonteneau, E., Su, L., & Marslen-Wilson, W. D. (2015). Grammatical analysis as a distributed neurobiological function. Human Brain Mapping, 36(3), 1190-1201. doi: 10.1002/hbm.22696.
doi: 10.1002/hbm.22696URL
[9] Candiotti, A., Zuberbühler, K., & Lemasson, A. (2012). Context- related call combinations in female Diana monkeys. Animal Cognition, 15(3), 327-339.
doi: 10.1007/s10071-011-0456-8pmid: 21947942
[10] Cartmill, E. A., & Byrne, R. W. (2007). Orangutans modify their gestural signaling according to their audience's comprehension. Current Biology, 17(15), 1345-1348.
pmid: 17683939
[11] Chen, L. Y., Wu, J. J., Fu, Y. B., Kang, H., & Feng, L. P. (2019). Neural substrates of word category information as the basis of syntactic processing. Human Brain Mapping, 40(2), 451-464.
doi: 10.1002/hbm.v40.2URL
[12] Cheung, V. K. M., Meyer, L., Friederici, A. D., & Koelsch, S. (2018). The right inferior frontal gyrus processes nested non-local dependencies in music. Scientific Reports, 8(1), 3822.
doi: 10.1038/s41598-018-22144-9URL
[13] Chomsky, N. (1965). Aspects of the theory of syntax. Cambridge, MA: MIT Press.
[14] Chomsky, N. (2002). On nature and language. Cambridge, England: Cambridge University Press.
[15] Chomsky, N. (2010). Some simple evo devo theses: How true might they be for language? In R. K. Larson, V. M. Déprez, & H. Yamakido (Eds.),The evolution of human language (Vol. 45-62). Cambridge University Press.
[16] Clay, Z., Archbold, J., & Zuberbuhler, K. (2015). Functional flexibility in wild bonobo vocal behaviour. PeerJ, 3, e1124.
doi: 10.7717/peerj.1124URL
[17] Clay, Z., & Zuberbühler, K. (2011). Bonobos extract meaning from call sequences. Plos One, 6(4), e18786.
doi: 10.1371/journal.pone.0018786URL
[18] Code, C. (2005). First in, last out? The evolution of aphasic lexical speech automatisms to agrammatism and the evolution of human communication. Interaction Studies, 6(2), 311-334.
[19] Cope, T. E., Wilson, B., Robson, H., Drinkall, R., Dean, L., Grube, M., ... Petkov, C. I. (2017). Artificial grammar learning in vascular and progressive non-fluent aphasias. Neuropsychologia, 104, 201-213.
doi: 10.1016/j.neuropsychologia.2017.08.022URL
[20] Crockford, C., & Boesch, C. (2005). Call combinations in wild chimpanzees. Behaviour, 142(4), 397-421.
doi: 10.1163/1568539054012047URL
[21] Dubois, J., Dehaene-Lambertz, G., Kulikova, S., Poupon, C., Hüppi, P. S., & Hertz-Pannier, L. (2014). The early development of brain white matter: A review of imaging studies in fetuses, newborns and infants. Neuroscience, 276, 48-71.
doi: 10.1016/j.neuroscience.2013.12.044pmid: 24378955
[22] Enard, W. (2011). FOXP2 and the role of cortico-basal ganglia circuits in speech and language evolution. Current Opinion in Neurobiology, 21(3), 415-424.
doi: 10.1016/j.conb.2011.04.008URL
[23] Fedorenko, E., Blank, I. A., Siegelman, M., & Mineroff, Z. (2020). Lack of selectivity for syntax relative to word meanings throughout the language network. Cognition, 203, 104348.
doi: S0010-0277(20)30167-0pmid: 32569894
[24] Ferrigno, S., Cheyette, S. J., Piantadosi, S. T., & Cantlon, J. F. (2020). Recursive sequence generation in monkeys, children, U.S. adults, and native Amazonians. Science Advances, 6(26), eaaz1002.
[25] Fitch, W. T. (2017). Empirical approaches to the study of language evolution. Psychonomic Bulletin & Review, 24, 3-33.
doi: 10.3758/s13423-017-1236-5URL
[26] Fitch, W. T. (2019). Animal cognition and the evolution of human language: Why we cannot focus solely on communication. Philosophical Transactions of the Royal Society B: Biological Sciences, 375(1789),20190046.
doi: 10.1098/rstb.2019.0046URL
[27] French, C. A., & Fisher, S. E. (2014). What can mice tell us about Foxp2 function? Current Opinion in Neurobiology, 28(28), 72-79.
doi: 10.1016/j.conb.2014.07.003URL
[28] Friederici, A. D. (2017). Evolution of the neural language network. Psychonomic Bulletin & Review, 24(1), 41-47.
doi: 10.3758/s13423-016-1090-xURL
[29] Friederici, A. D. (2020). Hierarchy processing in human neurobiology: How specific is it? Philosophical Transactions of the Royal Society B, 375(1789),20180391.
doi: 10.1098/rstb.2018.0391URL
[30] Friederici, A. D., Bahlmann, J., Heim, S., Schubotz, R. I., & Anwander, A. (2006). The brain differentiates human and non-human grammars: Functional localization and structural connectivity. Proceedings of the National Academy of Sciences of the United States of America, 103(7), 2458-2463.
[31] Friedrich, R., & Friederici, A. D. (2009). Mathematical logic in the human brain: Syntax. Plos One, 4(5), e5599.
doi: 10.1371/journal.pone.0005599URL
[32] Fröhlich, M., Sievers, C., Townsend, S. W., Gruber, T., & van Schaik, C. P. (2019). Multimodal communication and language origins: Integrating gestures and vocalizations. Biological Reviews, 94(5), 1809-1829.
doi: 10.1111/brv.v94.5URL
[33] Fröhlich, M., & van Schaik, C. P. (2018). The function of primate multimodal communication. Animal Cognition, 21(5), 619-629.
doi: 10.1007/s10071-018-1197-8pmid: 29876698
[34] Gabay, Y., Thiessen, E. D., & Holt, L. L. (2015). Impaired statistical learning in developmental dyslexia. Journal of Speech Language and Heaingr Research, 58(3), 934-945.
[35] Genty, E., Clay, Z., Hobaiter, C., & Zuberbühler, K. (2014). Multi-Modal use of a socially directed call in bonobos. Plos One, 9(1), e84738.
doi: 10.1371/journal.pone.0084738URL
[36] Goucha, T., & Friederici, A. D. (2015). The language skeleton after dissecting meaning: A functional segregation within Broca’s Area. NeuroImage, 114, 294-302.
doi: 10.1016/j.neuroimage.2015.04.011pmid: 25871627
[37] Goucha, T., Zaccarella, E., & Friederici, A. D. (2017). A revival of Homo loquens as a builder of labeled structures: Neurocognitive considerations. Neuroscience & Biobehavioral Reviews, 81, 213-224.
doi: 10.1016/j.neubiorev.2017.01.036URL
[38] Gruber, T., & Grandjean, D. (2017). A comparative neurological approach to emotional expressions in primate vocalizations. Neuroscience & Biobehavioral Reviews, 73, 182-190.
doi: 10.1016/j.neubiorev.2016.12.004URL
[39] Hare, B. (2001). Can competitive paradigms increase the validity of experiments on primate social cognition? Animal Cognition, 4(3-4),269-280.
[40] Hare, B., Call, J., & Tomasello, M. (2006). Chimpanzees deceive a human competitor by hiding. Cognition, 101(3), 495-514.
doi: 10.1016/j.cognition.2005.01.011URL
[41] Hauser, M. D., Chomsky, N., & Fitch, W. (2002). The faculty of language: What is it, who has it, and how did it evolve. Science, 298, 1569-1579.
doi: 10.1126/science.298.5598.1569URL
[42] Heard, M., & Lee, Y. S. (2020). Shared neural resources of rhythm and syntax: An ALE meta-analysis. Neuropsychologia, 137, 107284.
doi: 10.1016/j.neuropsychologia.2019.107284URL
[43] Hecht, E. E., Gutman, D. A., Khreisheh, N., Taylor, S. V., Kilner, J., Faisal, A. A., ... Stout, D. (2015). Acquisition of paleolithic toolmaking abilities involves structural remodeling to inferior frontoparietal regions. Brain Structure & Function, 220(4), 2315-2331.
[44] Hobaiter, C., Byrne, R. W., & Zuberbühler, K. (2017). Wild chimpanzees’ use of single and combined vocal and gestural signals. Behavioral Ecology & Sociobiology, 71(6), 96.
[45] Hsu, H. J., Tomblin, J. B., & Christiansen, M. H. (2014). Impaired statistical learning of non-adjacent dependencies in adolescents with specific language impairment. Frontiers in Psychology, 5, 175.
[46] Jackendoff, R., & Wittenberg, E. (2017). Linear grammar as a possible stepping-stone in the evolution of language. Psychonomic Bulletin & Review, 24(1), 219-224.
doi: 10.3758/s13423-016-1073-yURL
[47] Jarvis, E. D. (2019). Evolution of vocal learning and spoken language. Science, 366(6461), 50-54.
doi: 10.1126/science.aax0287URL
[48] Jeon, H.-A., Kuhl, U., & Friederici, A. D. (2019). Mathematical expertise modulates the architecture of dorsal and cortico- thalamic white matter tracts. Scientific Reports, 9(1), 6825.
doi: 10.1038/s41598-019-43400-6URL
[49] Jeon, H. A., & Friederici, A. D. (2016). What does "Being an Expert" mean to the brain? Functional specificity and connectivity in expertise. Cerebral Cortex, 27(12), 5603-5615.
[50] Jiang, X. J., Long, T. H., Cao, W. C., Li, J. R., Dehaene, S., & Wang, L. P. (2018). Production of supra-regular spatial sequences by macaque monkeys. Current Biology, 28(12), 1851-1859.
doi: 10.1016/j.cub.2018.04.047URL
[51] Kabdebon, C., & Dehaene-Lambertz, G. (2019). Symbolic labeling in 5-month-old human infants. Proceedings of the National Academy of Sciences, 116(12), 5805-5810.
doi: 10.1073/pnas.1809144116URL
[52] Keller, S. S., Deppe, M., Herbin, M., & Gilissen, E. (2012). Variability and asymmetry of the sulcal contours defining Broca's Area homologue in the chimpanzee brain. The Journal of Comparative Neurology, 520(6), 1165-1180.
doi: 10.1002/cne.22747pmid: 21826664
[53] Kerkhoff, A., de Bree, E., de Klerk, M., & Wijnen, F. (2013). Non-adjacent dependency learning in infants at familial risk of dyslexia. Journal of Child Language, 40(1), 11-28.
doi: 10.1017/S0305000912000098URL
[54] Kikuchi, Y., Attaheri, A., Wilson, B., Rhone, A. E., Nourski, K. V., Gander, P. E., ... Petkov, C. I. (2017). Sequence learning modulates neural responses and oscillatory coupling in human and monkey auditory cortex. Plos Biology, 15(4), e2000219.
doi: 10.1371/journal.pbio.2000219URL
[55] Kochiyama, T., Ogihara, N., Tanabe, H. C., Kondo, O., Amano, H., Hasegawa, K., ... Akazawa, T. (2018). Reconstructing the Neanderthal brain using computational anatomy. Scientific Reports, 8(1), 6296.
doi: 10.1038/s41598-018-24331-0URL
[56] Kolodny, O., & Edelman, S. (2018). The evolution of the capacity for language: The ecological context and adaptive value of a process of cognitive hijacking. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1743),20170052.
doi: 10.1098/rstb.2017.0052URL
[57] Krupenye, C., Kano, F., Hirata, S., Call, J., & Tomasello, M. (2016). Great apes anticipate that other individuals will act according to false beliefs. Science, 354(6308), 110-114.
doi: 10.1126/science.aaf8110URL
[58] Lai, C. S. L., Fisher, S. E., Hurst, J. A., Vargha-Khadem, F., & Monaco, A. P. (2001). A forkhead-domain gene is mutated in a severe speech and language disorder. Nature, 413(6855), 519-523.
pmid: 11586359
[59] Laland, K. N. (2017). The origins of language in teaching. Psychonomic Bulletin & Review, 24, 225-231.
doi: 10.3758/s13423-016-1077-7URL
[60] López-Barroso, D., Catani, M., Ripollés, P., Dell'Acqua, F., Rodríguez-Fornells, A., & de Diego-Balaguer, R. (2013). Word learning is mediated by the left arcuate fasciculus. Proceedings of the National Academy of Sciences, 110(32), 13168-13173.
doi: 10.1073/pnas.1301696110URL
[61] Loui, P., Alsop, D. C., & Schlaug, G. (2009). Tone deafness: A new disconnection syndrome? The Journal of Neuroscience, 29(33), 10215-10220.
doi: 10.1523/JNEUROSCI.1701-09.2009URL
[62] Malassis, R., Rey, A., & Fagot, J. (2018). Non-adjacent Dependencies Processing in Human and Non-human Primates. Cognitive Science, 42(5), 1677-1699.
doi: 10.1111/cogs.2018.42.issue-5URL
[63] Marslen-Wilson, W. D., & Bozic, M. (2018). Dual neurobiological systems underlying language evolution: Inferring the ancestral state. Current Opinion in Behavioral Sciences, 21, 176-181.
doi: 10.1016/j.cobeha.2018.05.004URL
[64] Matchin, W., Hammerly, C., & Lau, E. (2017). The role of the IFG and pSTS in syntactic prediction: Evidence from a parametric study of hierarchical structure in fMRI. Cortex, 88, 106-123.
doi: 10.1016/j.cortex.2016.12.010URL
[65] Milne, A. E., Mueller, J. L., Männel, C., Attaheri, A., Friederici, A. D., & Petkov, C. I. (2016). Evolutionary origins of non-adjacent sequence processing in primate brain potentials. Scientific Reports, 6(1), 36259.
doi: 10.1038/srep36259URL
[66] Moeller, K., Willmes, K., & Klein, E. (2015). A review on functional and structural brain connectivity in numerical cognition. Frontiers in Human Neuroscience, 9, 227-227.
[67] Mueller, J. L., Milne, A., & Männel, C. (2018). Non-adjacent auditory sequence learning across development and primate species. Current Opinion in Behavioral Sciences, 21, 112-119.
doi: 10.1016/j.cobeha.2018.04.002URL
[68] Nowak, M. A., Plotkin, J. B., & Jansen, V. A. A. (2000). The evolution of syntactic communication. Nature, 404(6777), 495-498.
pmid: 10761917
[69] Pallier, C., Devauchelle, A.-D., & Dehaene, S. (2011). Cortical representation of the constituent structure of sentences. Proceedings of the National Academy of Sciences, 108(6), 2522-2527.
doi: 10.1073/pnas.1018711108URL
[70] Perani, D., Saccuman, M. C., Scifo, P., Anwander, A., Spada, D., Baldoli, C., ... Friederici, A. D. (2011). Neural language networks at birth. Proceedings of the National Academy of Sciences of the United States of America, 108(38), 16056-16061.
[71] Petersson, K. M., Folia, V., & Hagoort, P. (2012). What artificial grammar learning reveals about the neurobiology of syntax. Brain & Language, 120(2), 83-95.
[72] Poletiek, F. H., Fitz, H., & Bocanegra, B. R. (2016). What baboons can (not) tell us about natural language grammars. Cognition, 151, 108-112.
doi: S0010-0277(15)00094-3pmid: 26026382
[73] Progovac, L., & Benítez-Burraco, A. (2019). From physical aggression to verbal behavior: Language evolution and self-domestication feedback loop. Frontiers in Psychology, 10, 2807.
doi: 10.3389/fpsyg.2019.02807URL
[74] Progovac, L., Rakhlin, N., Angell, W., Liddane, R., Tang, L. F., & Ofen, N. (2018a). Diversity of grammars and their diverging evolutionary and processing paths: Evidence from functional MRI study of serbian. Frontiers in Psychology, 9, 278.
doi: 10.3389/fpsyg.2018.00278URL
[75] Progovac, L., Rakhlin, N., Angell, W., Liddane, R., Tang, L. F., & Ofen, N. (2018b). Neural correlates of syntax and proto-syntax: Evolutionary Dimension. Frontiers in Psychology, 9(2415)
doi: 10.3389/fpsyg.2018.02415URL
[76] Ravignani, A., & Sonnweber, R. (2017). Chimpanzees process structural isomorphisms across sensory modalities. Cognition, 161, 74-79.
doi: S0010-0277(17)30005-7pmid: 28135575
[77] Reber, S. A., Šlipogor, V., Oh, J., Ravignani, A., Hoeschele, M., Bugnyar, T., & Fitch, W. T. (2019). Common marmosets are sensitive to simple dependencies at variable distances in an artificial grammar. Evolution and Human Behavior, 40(2), 214-221.
doi: 10.1016/j.evolhumbehav.2018.11.006URL
[78] Rey, A., Minier, L., Malassis, R., Bogaerts, L., & Fagot, J. (2019). Regularity extraction across species: Associative learning mechanisms shared by human and non-human primates. Topics in Cognitive Science, 11(3), 573-586.
doi: 10.1111/tops.2019.11.issue-3URL
[79] Rilling, J. K., Glasser, M. F., Jbabdi, S., Andersson, J., & Preuss, T. M. (2012). Continuity, divergence, and the evolution of brain language pathways. Frontiers in Evolutionary Neuroscience, 3, 11-11.
[80] Rodd, J. M., Vitello, S., Woollams, A. M., & Adank, P. (2015). Localising semantic and syntactic processing in spoken and written language comprehension: An Activation Likelihood Estimation meta-analysis. Brain and Language, 141, 89-102.
doi: 10.1016/j.bandl.2014.11.012URL
[81] Schell, M., Zaccarella, E., & Friederici, A. D. (2017). Differential cortical contribution of syntax and semantics: An fMRI study on two-word phrasal processing. Cortex, 96, 105-120.
doi: 10.1016/j.cortex.2017.09.002URL
[82] Schlenker, P., Chemla, E., Schel, A. M., Fuller, J., Gautier, J.-P., Kuhn, J., ... Zuberbühler, K. (2016). Formal monkey linguistics. Theoretical Linguistics, 42(1-2),1-90.
doi: 10.1515/tl-2016-0001URL
[83] Senghas, R. J., Senghas, A., & Pyers, J. E. (2005). The emergence of Nicaraguan Sign Language: Questions of development, acquisition and evolution. In S. T. Parker, J. Langer, & C. Milbrath (Eds.), Biology and knowledge revisited: From neurogenesis to psychogenesis (pp.287-306). Mahwah, NJ: Erlbaum.
[84] Skeide, M. A., Brauer, J., & Friederici, A. D. (2016). Brain functional and structural predictors of language performance. Cerebral Cortex, 26(5), 2127-2139.
doi: 10.1093/cercor/bhv042URL
[85] Sonnweber, R., Ravignani, A., & Fitch, W. T. (2015). Non- adjacent visual dependency learning in chimpanzees. Animal Cognition, 18(3), 733-745.
doi: 10.1007/s10071-015-0840-xpmid: 25604423
[86] ten Cate, C. (2017). Assessing the uniqueness of language: Animal grammatical abilities take center stage. Psychonomic Bulletin & Review, 24(1), 91-96.
doi: 10.3758/s13423-016-1091-9URL
[87] Terrace, H. S., Petitto, L. A., Sanders, R. J., & Bever, T. G. (1979). Can an ape create a sentence? Science, 206(4421), 891-902.
doi: 10.1126/science.504995URL
[88] Thomas, J., & Kirby, S. (2018). Self domestication and the evolution of language. Biology and Philosophy, 33(1), 9.
doi: 10.1007/s10539-018-9612-8URL
[89] Tomasello, M. (2018). How children come to understand false beliefs: A shared intentionality account. Proceedings of the National Academy of Sciences, 115(34), 8491-8498.
doi: 10.1073/pnas.1804761115URL
[90] Tomasello, M., & Call, J. (2019). Thirty years of great ape gestures. Animal Cognition, 22(4), 461-469.
doi: 10.1007/s10071-018-1167-1pmid: 29468285
[91] Townsend, S. W., Koski, S. E., Byrne, R. W., Slocombe, K. E., Bickel, B., Boeckle, M., ... Manser, M. B. (2017). Exorcising Grice's ghost: An empirical approach to studying intentional communication in animals. Biological Reviews, 92(3), 1427-1433.
doi: 10.1111/brv.2017.92.issue-3URL
[92] Tyler, L. K., Marslen-Wilson, W. D., Randall, B., Wright, P., Devereux, B. J., Zhuang, J., ... Stamatakis, E. A. (2011). Left inferior frontal cortex and syntax: Function, structure and behaviour in patients with left hemisphere damage. Brain, 134(2), 415-431.
doi: 10.1093/brain/awq369URL
[93] Varley, R. A., Klessinger, N. J. C., Romanowski, C. A. J., & Siegal, M. (2005). Agrammatic but numerate. Proceedings of the National Academy of Sciences of the United States of America, 102(9), 3519-3524.
[94] Versace, E., Rogge, J. R., Shelton-May, N., & Ravignani, A. (2019). Positional encoding in cotton-top tamarins (Saguinus oedipus). Animal Cognition, 22, 825-838.
doi: 10.1007/s10071-019-01277-yURL
[95] Wang, L. P., Uhrig, L., Jarraya, B., & Dehaene, S. (2015). Representation of numerical and sequential patterns in macaque and human brains. Current Biology, 25(15), 1966-1974.
doi: 10.1016/j.cub.2015.06.035URL
[96] Wilson, B., Kikuchi, Y., Sun, L., Hunter, D., Dick, F., Smith, K., ... Petkov, C. I. (2015). Auditory sequence processing reveals evolutionarily conserved regions of frontal cortex in macaques and humans. Nature Communications, 6(2), 8901.
doi: 10.1038/ncomms9901URL
[97] Wilson, B., Marslen-Wilson, W. D., & Petkov, C. I. (2017). Conserved sequence processing in primate frontal cortex. Trends in Neurosciences, 40(2), 72-82.
doi: 10.1016/j.tins.2016.11.004URL
[98] Wilson, B., Slater, H., Kikuchi, Y., Milne, A. E., Marslen- Wilson, W. D., Smith, K., & Petkov, C. I. (2013). Auditory artificial grammar learning in macaque and marmoset monkeys. Journal of Neuroscience, 33(48), 18825-18835.
doi: 10.1523/JNEUROSCI.2414-13.2013URL
[99] Wilson, B., Smith, K., & Petkov, C. I. (2015). Mixed-complexity artificial grammar learning in humans and macaque monkeys: Evaluating learning strategies. European Journal of Neuroscience, 41(5), 568-578.
doi: 10.1111/ejn.12834URL
[100] Wilson, B., Spierings, M., Ravignani, A., Mueller, J. L., Mintz, T. H., Wijnen, F., ... Rey, A. (2020). Non-adjacent dependency learning in humans and other animals. Topics in Cognitive Science, 12(3), 843-858.
doi: 10.1111/tops.v12.3URL
[101] Winkler, M., Mueller, J. L., Friederici, A. D., & Männel, C. (2018). Infant cognition includes the potentially human- unique ability to encode embedding. Science Advances, 4(11), eaar8334.
doi: 10.1126/sciadv.aar8334URL
[102] Wright, P., Stamatakis, E. A., & Tyler, L. K. (2012). Differentiating hemispheric contributions to syntax and semantics in patients with left-hemisphere lesions. The Journal of Neuroscience, 32(24), 8149-8157.
doi: 10.1523/JNEUROSCI.0485-12.2012pmid: 22699896
[103] Wu, C. Y., Zaccarella, E., & Friederici, A. D. (2019). Universal neural basis of structure building evidenced by network modulations emerging from Broca's area: The case of Chinese. Human Brain Mapping, 40(6), 1705-1717.
doi: 10.1002/hbm.v40.6URL
[104] Yang, Y.-H., Marslen-Wilson, W. D., & Bozic, M. (2017). Syntactic complexity and frequency in the neurocognitive language system. Journal of Cognitive Neuroscience, 29(9), 1605-1620.
doi: 10.1162/jocn_a_01137URL
[105] Zaccarella, E., & Friederici, A. D. (2015a). Merge in the human brain: A sub-region based functional investigation in the left pars opercularis. Frontiers in Psychology, 6, 1818.
[106] Zaccarella, E., & Friederici, A. D. (2015b). Reflections of word processing in the insular cortex: A sub-regional parcellation based functional assessment. Brain & Language, 142, 1-7.
[107] Zaccarella, E., & Friederici, A. D. (2017). The neurobiological nature of syntactic hierarchies. Neuroscience & Biobehavioral Reviews, 81, 205-212.
doi: 10.1016/j.neubiorev.2016.07.038URL
[108] Zaccarella, E., Meyer, L., Makuuchi, M., & Friederici, A. D. (2017). Building by syntax: The neural basis of minimal linguistic structures. Cerebral Cortex, 27(1), 411-421.
[109] Zimmerer, V. C., Cowell, P. E., & Varley, R. A. (2014). Artificial grammar learning in individuals with severe aphasia. Neuropsychologia, 53, 25-38.
doi: 10.1016/j.neuropsychologia.2013.10.014pmid: 24184437
[110] Zuberbühler, K. (2019). Evolutionary roads to syntax. Animal Behaviour, 151, 259-265.
doi: 10.1016/j.anbehav.2019.03.006URL
[111] Zuberbühler, K. (2020). Syntax and compositionality in animal communication. Philosophical Transactions of the Royal Society B, 375(1789)




[1]于文勃, 梁丹丹. 口语加工中的词语切分线索[J]. 心理科学进展, 2018, 26(10): 1765-1774.
[2]张剑心;汤旦;查德华;黄建平;刘电芝. 内隐序列学习意识的具身机制[J]. 心理科学进展, 2016, 24(2): 203-216.
[3]张启睿;舒华;刘友谊. 汉语个体量词认知研究述评[J]. 心理科学进展, 2011, 19(4): 510-520.
[4]刘涵慧;姚梅林. 效应器在动作序列学习中的作用机制探析[J]. 心理科学进展, 2009, 17(6): 1170-1176.
[5]盖笑松;杨薇;邰宇. 儿童语言样本的分析技术[J]. 心理科学进展, 2009, 17(6): 1242-1249.
[6]付秋芳;傅小兰
. 内隐序列学习与注意的关系[J]. 心理科学进展, 2006, 14(6): 817-821.
[7]郭秀艳;朱磊;魏知超. 内隐学习的人工神经网络模型[J]. 心理科学进展, 2006, 14(6): 837-843.
[8]黄贤军,高路. 语法启动与言语产生中的语法表征[J]. 心理科学进展, 2005, 13(2): 147-155.
[9]陈玲丽,吴家舵. 序列学习是否是内隐学习?[J]. 心理科学进展, 2004, 12(4): 500-504.
[10]袁汝兵,郭春彦,方平. 内隐序列学习的研究进展[J]. 心理科学进展, 2003, 11(1): 22-27.
[11]胡琳丽;刘永芳;于广涛. 某些应用领域中内隐学习现象研究综述[J]. 心理科学进展, 2000, 8(1): 24-283.
[12]刘永芳;赵海;李莉. 内隐学习研究的现状及其争议[J]. 心理科学进展, 1998, 6(2): 17-21.
[13]施建农;查子秀;周林. 智力超常与常态学生技术创造性思维的比较研究[J]. 心理科学进展, 1995, 3(1): 51-56.





PDF全文下载地址:

http://journal.psych.ac.cn/xlkxjz/CN/article/downloadArticleFile.do?attachType=PDF&id=5509
相关话题/序列 测试 人类 心理 科学

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 人们如何设想未来:未来情景思维对个体心理和行为的影响
    卢蕾安,王春生,任俊()浙江师范大学教育与人类发展学院心理系,金华321004收稿日期:2020-07-09出版日期:2021-06-15发布日期:2021-04-25通讯作者:任俊E-mail:drinren@163.com基金资助:国家社会科学基金“十三五”规划教育学一般课题“基于积极心理学理念 ...
    本站小编 Free考研考试 2022-01-01
  • 姓名对个体心理与行为的实际影响:证据和理论
    包寒吴霜,蔡华俭()中国科学院心理研究所人格与社会心理研究中心,北京100101中国科学院大学心理学系,北京100049收稿日期:2020-09-02出版日期:2021-06-15发布日期:2021-04-25通讯作者:蔡华俭E-mail:caihj@psych.ac.cn基金资助:国家社会科学基金 ...
    本站小编 Free考研考试 2022-01-01
  • 傅斯年的心理学探索及其贡献
    陈彦垒(),胡志坚聊城大学教育科学学院,山东聊城252059收稿日期:2020-08-13出版日期:2021-06-15发布日期:2021-04-25通讯作者:陈彦垒E-mail:chenyanlei@lcu.edu.cn基金资助:聊城市社科规划专项(ZXYB202002019)FuSsu-nien ...
    本站小编 Free考研考试 2022-01-01
  • 基于社交媒体数据的心理指标识别建模: 机器学习的方法
    苏悦1,2,刘明明1,3,赵楠1,刘晓倩1,朱廷劭1,2()1中国科学院心理研究所,北京1001012中国科学院大学心理学系,北京1000493联想研究院,北京100094收稿日期:2020-01-14出版日期:2021-04-15发布日期:2021-02-22基金资助:国家社科基金重点项目(17A ...
    本站小编 Free考研考试 2022-01-01
  • 基于游戏的心理测评
    徐俊怡,李中权()南京大学社会学院心理学系,南京210023收稿日期:2020-05-24出版日期:2021-03-15发布日期:2021-01-26通讯作者:李中权E-mail:zqli@nju.edu.cn基金资助:教育部人文社科规划基金项目(20YJA190004);江苏省教育厅高校哲学社会科 ...
    本站小编 Free考研考试 2022-01-01
  • 恐惧管理理论的争议及其对死亡心理研究的启示
    孟祥寒1,李强1,2(),周彦榜1,王进31南开大学社会心理学系,天津3003502南开大学滨海学院,天津3002703天津职业技术师范大学,天津300222收稿日期:2020-02-29出版日期:2021-03-15发布日期:2021-01-26通讯作者:李强E-mail:liqiangp@126 ...
    本站小编 Free考研考试 2022-01-01
  • 敬畏的心理模型及其认知神经机制
    赵小红1,2,童薇3,陈桃林1,2(),吴冬梅4,张蕾1,2,陈正举1,方晓义3,龚启勇1,2,唐小蓉21四川大学华西医院放射科华西磁共振研究中心,成都6100412四川大学公共管理学院社会学与心理学系,成都6100653北京师范大学心理学部,北京1008754成都市第四人民医院,成都610036收 ...
    本站小编 Free考研考试 2022-01-01
  • 老年人心理韧性与幸福感的关系:一项元分析
    叶静,张戌凡()南京师范大学金陵女子学院,南京210097收稿日期:2020-07-23出版日期:2021-02-15发布日期:2020-12-29通讯作者:张戌凡E-mail:xufanzhang@163.com基金资助:国家自然科学青年基金项目“工会实践对员工工作幸福感的影响:基于工具-情感的双 ...
    本站小编 Free考研考试 2022-01-01
  • 催产素调控心理韧性:基于对海马的作用机制
    薛冰,王雪娇,马宁,高军()认知与人格教育部重点实验室,重庆400715收稿日期:2020-04-27出版日期:2021-02-15发布日期:2020-12-29通讯作者:高军E-mail:gaojunscience@126.com基金资助:国家自然科学基金(32071059);重庆市自然科学基金( ...
    本站小编 Free考研考试 2022-01-01
  • 计算模型视角下信任形成的心理和神经机制——基于信任博弈中投资者的角度
    高青林,周媛()中国科学院心理研究所行为科学重点实验室,北京100101中国科学院大学心理学系,北京100049收稿日期:2020-04-18出版日期:2021-01-15发布日期:2020-11-23通讯作者:周媛E-mail:zhouyuan@psych.ac.cn基金资助:*中国科学院心理研究 ...
    本站小编 Free考研考试 2022-01-01