
1脑认知与教育科学教育部重点实验室, 华南师范大学心理学院/心理应用研究中心, 广州 510631
2广州大学外国语学院, 广州 510030
3中国科学院心理研究所行为科学重点实验室, 北京 100101
4中国科学院大学心理学系, 北京 100049
收稿日期:
2020-05-04出版日期:
2021-03-15发布日期:
2021-01-26通讯作者:
王瑞明E-mail:wruiming@163.com基金资助:
本文系广东省哲学社会科学“十三五”规划项目“中国EFL学习者韵律边界加工机制研究” 的阶段性成果(GD19WXZ11)Prosodic boundaries in speech: A window to spoken language comprehension
FANG Lan1,2, ZHENG Yuanyi3,4, JIN Han2, LI Xiaoqing3,4, YANG Yufang3,4, WANG Ruiming1(
1Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, & Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou 510631, China
2School of Foreign Studies, Guangzhou University, Guangzhou 510030, China
3Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
4Department of Psychology, Universities of Chinese Academy of Sciences, Beijing 100149, China
Received:
2020-05-04Online:
2021-03-15Published:
2021-01-26Contact:
WANG Ruiming E-mail:wruiming@163.com摘要/Abstract
摘要: 韵律边界加工与言语理解紧密相关, 最近十几年来逐渐成为心理学和语言学的研究焦点。韵律系统包含若干由小到大的韵律单位, 不同单位的韵律成分其边界强度不同, 表现在音高、延宕和停顿三个声学线索上的参数也不同。句子的听力理解过程中, 听话人运用声学线索感知权重策略对韵律边界的声学线索进行加工。从神经层面上来看, 对于韵律边界的加工, 大脑显示出独立且特异性的神经机制。韵律边界的加工能力在婴儿出生后随年龄的增长而发展, 到了老年阶段则逐渐退化, 而且似乎能够对二语迁移。未来, 需要扩大对韵律边界声学表现的考查范围, 进一步明确韵律边界的加工过程, 进一步厘清韵律边界加工和句法加工之间的关系, 进一步关注二语者韵律边界加工能力的发展。
参考文献 74
[1] | 杨玉芳. (2015). 心理语言学. 北京: 科学出版社. |
[2] | 周游, 刘方舟. (2017). 汉语韵律结构与语法结构的对比分析. 见:中国中文信息学会语音信息专业委员会(编), 第十四届全国人机语音通讯学术会议(NCMMSC’2017)论文集 |
[3] | Aasland, W., & Baum, S. (2003). Temporal parameters as cues to phrasal boundaries: A comparison of processing by left-and right-hemisphere brain-damaged individuals. Brain and Language, 87(3), 385-399. URLpmid: 14642541 |
[4] | B?gels, S., Schriefers, H., Vonk, W., Chwilla, D. J., & Kerkhofs, R. (2010). The interplay between prosody and syntax in sentence processing: The case of subject-and object-control verbs. Journal of Cognitive Neuroscience, 22(5), 1036-1053. doi: 10.1162/jocn.2009.21269URLpmid: 19445602 |
[5] | B?gels, S., Schriefers, H., Vonk, W., Chwilla, D. J., & Kerkhofs, R. (2013). Processing consequences of superfluous and missing prosodic breaks in auditory sentence comprehension. Neuropsychologia, 51(13), 2715-2728. doi: 10.1016/j.neuropsychologia.2013.09.008URL |
[6] | Brodbeck, C., Hong, L. E., & Simon, J. Z. (2018). Rapid transformation from auditory to linguistic representations of continuous speech. Current Biology, 28( 24), 3976- 3983. e5. |
[7] | Buxó-Lugo, A., & Watson, D. G. (2016). Evidence for the in?uence of syntax on prosodic parsing. Journal of Memory and Language, 90, 1-13. URLpmid: 30853752 |
[8] | Cason, N., Astésano, C., & Sch?n, D. (2015). Bridging music and speech rhythm: Rhythmic priming and audio-motor training affect speech perception. Acta Psychologica, 155, 43-50. URLpmid: 25553343 |
[9] | Clahsen, H., & Felser, C. (2018). Some notes on the shallow structure hypothesis. Studies in Second Language Acquisition, 40(3), 693-706. doi: 10.1017/S0272263117000250URL |
[10] | Clifton, C, & Duffy, S. A. (2001). Sentence and text Comprehension: Roles of linguistic structure. Annual Review of Psychology, 52, 167-196. URLpmid: 11148303 |
[11] | Clifton, C., Carlson, K., & Frazier, L. (2002). Informative prosodic boundaries. Language and Speech, 45(2), 87-114. doi: 10.1177/00238309020450020101URL |
[12] | Cole, J. (2015). Prosody in context: A review. Language, Cognition and Neuroscience, 30(1-2), 1-31. doi: 10.1080/23273798.2014.963130URL |
[13] | Cole, J., Mo, Y., & Bae, S. (2010). The role of syntactic structure in guiding prosody perception with ordinary listeners and everyday speech. Language and Cognitive Process, 25(7-9), 1141-1177. doi: 10.1080/01690960903525507URL |
[14] | Cumming, R., Wilson, A., Leong, V., Colling, L. J., & Goswami, U. (2015). Awareness of rhythm patterns in speech and music in children with specific language impairments. Frontiers in Human Neuroscience, 9, 672. doi: 10.3389/fnhum.2015.00672URLpmid: 26733848 |
[15] | Dilley, L. C., & Pitt, M. A. (2010). Altering context speech rate can cause words to appear or disappear. Psychological Science, 21(11), 1664-1670. doi: 10.1177/0956797610384743URLpmid: 20876883 |
[16] | Ding, N., & Jin, P. (2019). Low-frequency neural activity reflects rule-based chunking during speech listening. bioRxiv, Article 742585v1. https://www.biorxiv.org/content/10.1101/ 742585v1.full.pdf |
[17] | Ding, N., Chatterjee, M., & Simon, J. Z. (2014). Robust cortical entrainment to the speech envelope relies on the spectro-temporal fine structure. Neuroimage, 88, 41-46. URLpmid: 24188816 |
[18] | Ding, N., Melloni, L., Zhang, H., Tian, X., & Poeppel, D. (2015). Cortical tracking of hierarchical linguistic structures in connected speech. Nature Neuroscience, 19(1), 158-164. doi: 10.1038/nn.4186URLpmid: 26642090 |
[19] | Ding, N., Pan, X., Luo, C., Su, N., Zhang, W., & Zhang, J. (2018). Attention is required for knowledge-based sequential grouping: Insights from the integration of syllables into words. Journal of Neuroscience, 38(5), 1178-1188. doi: 10.1523/JNEUROSCI.2606-17.2017URL |
[20] | Doelling, K. B., Arnal, L. H., Ghitza, O., & Poeppel, D. (2014). Acoustic landmarks drive delta-theta oscillations to enable speech comprehension by facilitating perceptual parsing. Neuroimage, 85, 761-768. doi: 10.1016/j.neuroimage.2013.06.035URL |
[21] | Flaugnacco, E., Lopez, L., Terribili, C., Montico, M., Zoia, S., & Sch?n, D. (2015). Music training increases phonological awareness and reading skills in developmental dyslexia: A randomized control trial. PLOS One, 10( 9), Article e0138715. https://doi.org/10.1371/journal.pone. 0138715 |
[22] | Frazier, L., Clifton, C., & Carlson, K. (2004). Don't break, or do: Prosodic boundary preferences. Lingua, 114 (1), 3-27. doi: 10.1016/S0024-3841(03)00044-5URL |
[23] | Frazier, L., Carlson, K., & Clifton, C. (2006). Prosodic phrasing is central to language comprehension. Trends in Cognitive Sciences, 10(6), 244-249. doi: 10.1016/j.tics.2006.04.002URLpmid: 16651019 |
[24] | Giraud, A. L., & Poeppel, D. (2012). Cortical oscillations and speech processing: Emerging computational principles and operations. Nature Neuroscience, 15(4), 511-517. URLpmid: 22426255 |
[25] | Gross, J., Hoogenboom, N., Thut, G., Schyns, P., Panzeri, S., Belin, P., & Garrod, S. (2013). Speech rhythms and multiplexed oscillatory sensory coding in the human brain. PLOS Biology, 11(12). Article e1001752. https://doi.org/ 10.1371/journal.pbio.1001752 doi: 10.1371/journal.pbio.1001732URLpmid: 24339748 |
[26] | Halle, M., & Stevens, K. (1962). Speech recognition: A model and a program for research. IRE Transactions on Information Theory, 8(2), 155-159. |
[27] | Hawthorn, K., & Gerke, L. (2014). From pauses to clauses: Prosody facilitates learning of syntactic constituency. Cognition, 133(2), 420-428. URLpmid: 25151251 |
[28] | Hidalgo, C., Falk, S., & Sch?n, D. (2017). Speak on time! Effects of a musical rhythmic training on children with hearing loss. Hearing Research, 351, 11-18. URLpmid: 28552493 |
[29] | Holliman, A. J., Gutiérrez Palma, N., Critten, S., Wood, C., Cunnane, H., & Pillinger, C. (2017). Examining the independent contribution of prosodic sensitivity to word reading and spelling in early readers. Reading and Writing, 30, 509-521. doi: 10.1007/s11145-016-9687-zURL |
[30] | Holzgrefe, J., Wellmann, C., Petrone, C., Truckenbrodt, H., H?hle, B., & Wartenburger, I. (2013). Brain response to prosodic boundary cues depends on boundary position. Frontiers in Psychology Language Sciences, 4, 421. |
[31] | Holzgrefe-Lang., J., Wellmann, C., Petrone, C., & R?ling, R. (2016). How pitch change and final lengthening cue boundary perception in German: Converging evidence from ERPs and prosodic judgements. Language, Cognition and Neuroscience, 31(7), 904-920. |
[32] | Honbolygo, F., T?r?k, á., Bánréti, Z., Hunyadi, L., & Csépe, V. (2016). ERP correlates of prosody and syntax interaction in case of embedded sentences. Journal of Neurolinguistics, 37, 22-33. doi: 10.1016/j.jneuroling.2017.10.001URLpmid: 29422720 |
[33] | Howard, M. F., & Poeppel, D. (2010). Discrimination of speech stimuli based on neuronal response phase patterns depends on acoustics but not comprehension. Journal of Neurophysiology, 104(5), 2500-2511. doi: 10.1152/jn.00251.2010URLpmid: 20484530 |
[34] | Hwang, H., & Steinhauer, K. (2011). Phrase length matters: The interplay between implicit prosody and syntax in Korean “garden path” sentences. Journal of Cognitive Neuroscience, 23(11), 3555-3575. URLpmid: 21391765 |
[35] | Ischebeck, A. K., Friederici, A. D., & Alter, K. (2008). Processing prosodic boundaries in natural and hummed speech: An fMRI study. Cerebral Cortex, 18(3), 541-552. URLpmid: 17591598 |
[36] | Kayser, S. J., Ince, R. A. A., Gross, J., & Kayser, C. (2015). Irregular speech rate dissociates auditory cortical entrainment, evoked responses, and frontal alpha. Journal of Neuroscience, 35(44), 14691-14701. URLpmid: 26538641 |
[37] | Kjelgaard, M. M., & Speer, S. R. (1999). Prosodic facilitation and interference in the resolution of temporary syntactic closure ambiguity. Journal of Memory and Language, 40(2), 153-194. doi: 10.1006/jmla.1998.2620URL |
[38] | Ko?sem, A., & van Wassenhov, V. (2016). Distinct contributions of low- and high-frequency neural oscillations to speech comprehension. Language, Cognition and Neuroscience, 32(5), 536-544. |
[39] | Kreiner, H., & Eviatar, Z. (2014). The missing link in the embodiment of syntax: Prosody. Brain and Language, 137, 91-102. URLpmid: 25190329 |
[40] | Krivokapi?, J., & Byrd, D. (2012). Prosodic boundary strength: An articulatory and perceptual study. Journal of Phonetics, 40(3), 430-442. URLpmid: 23441103 |
[41] | Li, W. J., & Yang, Y. (2009). Perception of prosodic hierarchical boundaries in Mandarin Chinese sentences. Neuroscience, 158(4), 1416-1425. URLpmid: 19111906 |
[42] | M?nnel, C., & Friederici, A. D. (2016). Neural correlates of prosodic boundary perception in German preschoolers: If pause is present, pitch can go. Brain Research, 1632, 27-33. doi: 10.1016/j.brainres.2015.12.009URLpmid: 26683081 |
[43] | M?nnel, C., Schipke, C. S., & Friederici, A. D. (2013). The role of pause as a prosodic boundary marker: Language ERP studies in German 3- and 6-year-olds. Developmental Cognitive Neuroscience, 5, 86-94. doi: 10.1016/j.dcn.2013.01.003URL |
[44] | Marcus, M., & Hindle, D. (1990). “Description theory and intonation boundaries”. In G. Altman (Eds.), Cognitive Models of Speech Processing: Psycholinguistic and Computational Perspectives (pp. 483-512). Cambridge, MA, USA: MIT Press. |
[45] | Maslowski, M., Meyer, A. S., & Bosker, H. R. (2019). Listeners normalize speech for contextual speech rate even without an explicit recognition task. The Journal of the Acoustical Society of America, 146(1), 179-188. URLpmid: 31370593 |
[46] | Meyer, L., Henry, M. J., Gaston, P., Schmuck, N., & Friederici, A. D. (2017). Linguistic bias modulates interpretation of speech via neural delta-band oscillations. Cerebral Cortex, 27(9), 4293-4302. doi: 10.1093/cercor/bhw228URLpmid: 27566979 |
[47] | Nickels, S., Opitz, B., & Steinhauer, K. (2013). ERPs show that classroom-instructed late second language learners rely on the same prosodic cues in syntactic parsing as native speakers. Neuroscience Letters, 557, 107-111. URLpmid: 24141083 |
[48] | Nickels, S., & Steinhauer, K. (2018). Prosody-syntax integration in a second language: Contrasting event-related potentials from German and Chinese learners of English using linear mixed effect models. Second Language Research, 34(1), 9-37. doi: 10.1177/0267658316649998URL |
[49] | Pannekamp, A., Toepel, U., Alter, K., Hahne, A., & Friederici, A. D. (2005). Prosody-driven sentence processing: An event-related brain potential study. Journal of Cognitive Neuroscience, 17(3), 407-421. URLpmid: 15814001 |
[50] | Park, H., Ince, R. A., Schyns, P. G., Thut, G., & Gross, J. (2015). Frontal top-down signals increase coupling of auditory low-frequency oscillations to continuous speech in human listeners. Current Biology, 25(12), 1649-1653. URLpmid: 26028433 |
[51] | Pauker, E., Itzhak, I., Baum, S. R., & Steinhauer, K. (2011). Effects of cooperating and conflicting prosody in spoken English garden path sentences: ERP evidence for the boundary deletion hypothesis. Journal of Cognitive Neuroscience, 23(10), 2731-2751. URLpmid: 21281091 |
[52] | Pennington, M. C., & Ellis, N.C. (2000). Cantonese Speakers’ Memory for English Sentences with Prosodic Cues. The Modern Language Journal, 84(3), 372-389. doi: 10.1111/modl.2000.84.issue-3URL |
[53] | Petrone, C., Truckenbrodt, H., Wellmann, C., Holzgrefe- Lang, J., Wartenburger, I., & Hohle, B. (2017). Prosodic boundary cues in German: Evidence from the production and perception of bracketed lists. Journal of Phonetics, 61, 71-92. doi: 10.1016/j.wocn.2017.01.002URL |
[54] | Poeppel, D. (2003). The analysis of speech in different temporal integration windows: Cerebral lateralization as 'asymmetric sampling in time'. Speech Communication, 41(1), 245-255. doi: 10.1016/S0167-6393(02)00107-3URL |
[55] | Qin, Z., Chien, Y., & Tremblay, A. (2016). Processing of word-level stress by Mandarin-speaking second language learners of English. Applied Psycholinguistics, 38(3), 541-570. doi: 10.1017/S0142716416000321URL |
[56] | Roll, M., Lindgren, M., Alter, K., & Horne, M. (2012). Time-driven effects on parsing during reading. Brain and Language, 121(3), 267-272. doi: 10.1016/j.bandl.2012.03.002URLpmid: 22480626 |
[57] | Schmidt, E., Pérez, A., Cilibrasi, L., & Tsimpli, I. (2019). Prosody facilitates memory recall in L1 but not in L2 in highly proficient listeners. Studies in Second Language Acquisition, 42(1), 223-238. doi: 10.1017/S0272263119000433URL |
[58] | Sch?n, D., & Tillmann, B. (2015). Short- and long-term rhythmic interventions: Perspectives for language rehabilitation. Annals of the New York Academy of Sciences, 1337, 32-39. URLpmid: 25773614 |
[59] | Schremm, A., Horne, M., & Roll, M. (2015). Brain responses to syntax constrained by time-driven implicit prosodic phrases. Journal of Neurolinguistics, 35, 68-84. doi: 10.1016/j.jneuroling.2017.10.001URLpmid: 29422720 |
[60] | Seidl, A. (2007). Infants’ use and weighting of prosodic cues in clause segmentation. Journal of Memory & Language, 57(1), 24-48. |
[61] | Seidl, A., & Cristià, A. (2008). Developmental changes in the weighting of prosodic cues. Developmental Science, 11(4), 596-606. URLpmid: 18576967 |
[62] | Selkirk, E. (2005). Comments on intonational phrasing in English. In S. Frota, M. Vigario, and M. J. Freitas (Eds.), Prosodies (pp. 11-58). Berlin, Germany: Mouton de Gruyter. |
[63] | Slater, J., & Kraus, N. (2016). The role of rhythm in perceiving speech in noise: A comparison of percussionists, vocalists and non-musicians. Cognitive Processing, 17(1), 79-87. URLpmid: 26445880 |
[64] | Steinhauer, K., Abada, S. H., Pauker, E., Itzhak, I., & Baum, S. R. (2010). Prosody-syntax interactions in aging: Event-related potentials reveal dissociations between on-line and off-line measures. Neuroscience Letters, 472(2), 133-138. URLpmid: 20138120 |
[65] | Steinhauer, K., Alter, K., & Friederici, A. D. (1999). Brain potentials indicate immediate use of prosodic cues in natural speech processing. Nature Neuroscience, 2(2), 191-196. doi: 10.1038/5757URLpmid: 10195205 |
[66] | Truckenbrodt, H. (1995). Phonological phrases: Their relation to syntax, focus and prominance (Unpublished doctorial Dissertation), Massachusetts Institute of Technology. |
[67] | van Ommena, S., Boll-Avetisyanb, N., Larrazaa, S., Wellmannb, C., Bijeljac-Babica, R., H?hleb, B., & Nazzi, T. (2020). Language-specific prosodic acquisition: A comparison of phrase boundary perception by French- and German- learning infants. Journal of Memory and Language, 112, 104-108. |
[68] | Wagner, M., & Watson, D. G. (2010). Experimental and theoretical advances in prosody: A review. Language and Cognitive Processes, 25(7-9), 905-945. doi: 10.1080/01690961003589492URLpmid: 22096264 |
[69] | Webman-Shafran, R., &Fodor, J. D. (2016). Phrase length and prosody in on-line ambiguity resolution. Journal of Psycholinguist Research, 45(3), 447-474. doi: 10.1007/s10936-015-9358-2URL |
[70] | Xu, G., Zhang, L., Shu, H., Wang, X., & Li, P. (2013). Access to lexical meaning in pitch-flattened Chinese sentences: An fMRI study. Neuropsychologia, 51(3), 550-556. URLpmid: 23262075 |
[71] | Yang, L. C. (2016, March). Optimizing pronunciation and prosody teaching in second language learning. Paper presented at the meeting of ISAPh 2016 International Symposium on Applied Phonetics, Nagoya, Japan. |
[72] | Yang, X., Shen, X., Li, W., & Yang, Y. (2014). How listeners weight acoustic cues to intonational phrase boundaries. PLOS One, 9(7), Article e102166. http://doi.org10.1371/ journal.pone.0102166 URLpmid: 25080093 |
[73] | Zoefel, B., & VanRullen, R. (2015). Selective perceptual phase entrainment to speech rhythm in the absence of spectral energy fluctuations. Journal of Neuroscience, 35(5), 1954-1964. URLpmid: 25653354 |
[74] | Zoefel, B., & VanRullen, R. (2016). EEG oscillations entrain their phase to high-level features of speech sound. Neuroimage, 124, 16-23. doi: 10.1016/j.neuroimage.2015.08.054URLpmid: 26341026 |
相关文章 13
[1] | 叶超群, 林郁泓, 刘春雷. 创造力产生过程中的神经振荡机制[J]. 心理科学进展, 2021, 29(4): 697-706. |
[2] | 章小丹, 张沥今, 丁玉珑, 曲折. 注意过程中的行为振荡现象[J]. 心理科学进展, 2021, 29(3): 460-471. |
[3] | 贾磊, 徐玉帆, 王成, 任俊, 汪俊. γ节律神经振荡:反映自闭症多感觉整合失调的一项重要生物指标[J]. 心理科学进展, 2021, 29(1): 31-44. |
[4] | 钟楚鹏, 曲折, 丁玉珑. 刺激前alpha振荡对视知觉的影响[J]. 心理科学进展, 2020, 28(6): 945-958. |
[5] | 李萍, 张明明, 李帅霞, 张火垠, 罗文波. 面孔表情和声音情绪信息整合加工的脑机制[J]. 心理科学进展, 2019, 27(7): 1205-1214. |
[6] | 韩海宾, 许萍萍, 屈青青, 程茜, 李兴珊. 语言加工过程中的视听跨通道整合[J]. 心理科学进展, 2019, 27(3): 475-489. |
[7] | 钱浩悦, 黄逸慧, 高湘萍. Gamma神经振荡和信息整合加工[J]. 心理科学进展, 2018, 26(3): 433-441. |
[8] | 袁祥勇, 张西磊, 王莹, 蒋毅. 视听整合增强视觉节律的神经振荡[J]. 心理科学进展, 2017, 25(suppl.): 53-53. |
[9] | 王苹;潘治辉;张立洁;陈煦海. 动态面孔和语音情绪信息的整合加工及神经生理机制[J]. 心理科学进展, 2015, 23(7): 1109-1117. |
[10] | 郑媛媛;李晓庆. 主语优先现象及其认知机制[J]. 心理科学进展, 2011, 19(12): 1749-1758. |
[11] | 于泽; 韩玉昌; 任桂琴. 韵律在语言加工中的作用及其神经机制[J]. 心理科学进展, 2010, 18(3): 420-425. |
[12] | 方杰;李小健. 言语产生的同音词表征:模型争论与再思[J]. 心理科学进展, 2009, 17(5): 909-916. |
[13] | 杨玉芳;黄贤军;高路. 韵律特征研究[J]. 心理科学进展, 2006, 14(4): 546-550. |
PDF全文下载地址:
http://journal.psych.ac.cn/xlkxjz/CN/article/downloadArticleFile.do?attachType=PDF&id=5378