删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

γ节律神经振荡:反映自闭症多感觉整合失调的一项重要生物指标

本站小编 Free考研考试/2022-01-01

贾磊, 徐玉帆, 王成, 任俊(), 汪俊()
浙江师范大学教师教育学院心理系, 金华 321004
收稿日期:2019-11-20出版日期:2021-01-15发布日期:2020-11-23
通讯作者:任俊,汪俊E-mail:drinren@163.com;jun.wang@zjnu.edu.cn

基金资助:* 全国教育科学规划国家一般项目“多模态教育视角下自闭症儿童跨通道感觉统合障碍的神经机制及干预研究”(BBA180083)

Gamma oscillation: An important biomarker reflecting multisensory integration deficits in autism spectrum disorders

JIA Lei, XU Yu-fan, WANG Cheng, REN Jun(), WANG Jun()
Department of Psychology, College of Teacher Education, Zhejiang Normal University, Jinhua 321004, China
Received:2019-11-20Online:2021-01-15Published:2020-11-23
Contact:REN Jun,WANG Jun E-mail:drinren@163.com;jun.wang@zjnu.edu.cn






摘要/Abstract


摘要: 多感觉整合是对不同感官信息进行选择、联系、统一乃至解释的加工过程, 它需要神经系统不同功能区域的共同投入与相互协调, 以实现多种感觉信息的时间捆绑以及全局性的预测编码。而γ神经振荡因具有反映神经皮层兴奋/抑制的平衡状况, 实现多感官信息的时间同步, 以及通过跨频耦合实现全局性预测编码的特点, 在多感觉整合的加工过程中发挥着重要作用。相比正常个体, 自闭症患者神经系统中的GABA中间神经元存在结构与功能异常, 导致γ神经振荡紊乱, 由此破坏了正常的时间同步以及预测编码加工, 并最终引发多感觉整合失调。基于上述因果关联, 未来研究可结合无创可逆性干预技术, 以γ节律神经振荡为生物反馈指标, 形成科学系统化的临床干预治疗方案。


表1神经振荡频谱能量分析提取的不同方法及其衍生出的不同类型
频谱能量类型 刺激/反应的锁相情况 与锁相系数的相关性 提取分析方法
总频谱能量(total) 非确定性的 根据锁相系数的大小来确定神经振荡是诱发型的还是引发型的 基于单个试次做频谱/时频分析后, 再对所有试次进行平均;
诱发型(evoked) 高锁相 正相关 先在时域对试次平均后进行频谱/时频分析;
引发型(induced) 低锁相或非锁相 负相关 用总的神经振荡能量减去诱发性的神经振荡能量;
自发型(spontaneous) 非确定性的 非确定性的 对连续记录的EEG/MEG数据进行分段后, 基于每个分段进行频谱/时频分析, 之后再做平均。

表1神经振荡频谱能量分析提取的不同方法及其衍生出的不同类型
频谱能量类型 刺激/反应的锁相情况 与锁相系数的相关性 提取分析方法
总频谱能量(total) 非确定性的 根据锁相系数的大小来确定神经振荡是诱发型的还是引发型的 基于单个试次做频谱/时频分析后, 再对所有试次进行平均;
诱发型(evoked) 高锁相 正相关 先在时域对试次平均后进行频谱/时频分析;
引发型(induced) 低锁相或非锁相 负相关 用总的神经振荡能量减去诱发性的神经振荡能量;
自发型(spontaneous) 非确定性的 非确定性的 对连续记录的EEG/MEG数据进行分段后, 基于每个分段进行频谱/时频分析, 之后再做平均。







[1] 陈彩琦, 刘志华, 金志成. (2003). 特征捆绑机制的理论模型. 心理科学进展, 11(6), 616-622.
[2] 陈楚侨, 杨斌让, 王亚. (2008). 内表型方法在精神疾病研究中的应用. 心理科学进展, 16(3), 378-391.
[3] 李涛涛, 胡金生, 王琦, 李骋诗, 李松泽, 何建青, ... 刘淑清. (2018). 孤独症谱系障碍者的视听时间整合. 心理科学进展, 26(6), 1031-1040.
[4] 钱浩悦, 黄逸慧, 高湘萍. (2018). Gamma神经振荡和信息整合加工. 心理科学进展, 26(3), 433-441.
[5] 王静, 李小俚, 邢国刚, 万有. (2011). Gamma神经振荡产生机制及其功能研究进展. 生物化学与生物物理进展, 38(8), 688-693.
doi: 10.3724/SP.J.1206.2010.00413URL
[6] 武侠, 钟楚鹏, 丁玉珑, 曲折. (2018). 利用时频分析研究非相位锁定脑电活动. 心理科学进展, 26(8), 1349-1364.
[7] 袁祥勇, 黄希庭. (2011). 多感觉整合的时间再校准. 心理科学进展, 19(5), 692-700.
[8] Arnal, L. H., & Giraud, A.-L. (2012). Cortical oscillations and sensory predictions. Trends in Cognitive Sciences, 16(7), 390-398.
doi: 10.1016/j.tics.2012.05.003URL
[9] Balz, J., Keil, J., Romero, Y. R., Mekle, R., Schubert, F., Aydin, S., ... Senkowski, D. (2016). GABA concentration in superior temporal sulcus predicts gamma power and perception in the sound-induced flash illusion. NeuroImage, 125, 724-730.
doi: 10.1016/j.neuroimage.2015.10.087URLpmid: 26546865
[10] Baruth, J. M., Casanova, M. F., El-Baz, A., Horrell, T., Mathai, G., Sears, L., & Sokhadze, E. (2010). Low-frequency repetitive transcranial magnetic stimulation modulates evoked-gamma frequency oscillations in autism spectrum disorder. Journal of Neurotherapy, 14(3), 179-194.
doi: 10.1080/10874208.2010.501500URLpmid: 21116441
[11] Baum, S. H., Stevenson, R. A., & Wallace, M. T. (2015). Behavioral, perceptual, and neural alterations in sensory and multisensory function in autism spectrum disorder. Progress in Neurobiology, 134, 140-160.
doi: 10.1016/j.pneurobio.2015.09.007URLpmid: 26455789
[12] Bebko, J. M., Schroeder, J. H., & Weiss, J. A. (2014). The McGurk effect in children with autism and Asperger syndrome. Autism Research, 7(1), 50-59.
doi: 10.1002/aur.1343URL
[13] Beker, S., Foxe, J. J., & Molholm, S. (2018). Ripe for solution: Delayed development of multisensory processing in autism and its remediation. Neuroscience & Biobehavioral Reviews, 84, 182-192.
doi: 10.1016/j.neubiorev.2017.11.008URLpmid: 29162518
[14] Brandwein, A. B., Foxe, J. J., Butler, J. S., Frey, H.-P., Bates, J. C., Shulman, L. H., & Molholm, S. (2015). Neurophysiological indices of atypical auditory processing and multisensory integration are associated with symptom severity in autism. Journal of Autism and Developmental Disorders, 45(1), 230-244.
doi: 10.1007/s10803-014-2212-9URLpmid: 25245785
[15] Brock, J., Brown, C. C., Boucher, J., & Rippon, G. (2002). The temporal binding deficit hypothesis of autism. Development and Psychopathology, 14(2), 209-224.
doi: 10.1017/s0954579402002018URLpmid: 12030688
[16] Brown, C., Gruber, T., Boucher, J., Rippon, G., & Brock, J. (2005). Gamma abnormalities during perception of illusory figures in autism. Cortex, 41(3), 364-376.
doi: 10.1016/s0010-9452(08)70273-9URLpmid: 15871601
[17] Canolty, R. T., Edwards, E., Dalal, S. S., Soltani, M., Nagarajan, S. S., ... Knight, R. T. (2006). High gamma power is phase-locked to theta oscillations in human neocortex. Science, 313(5793), 1626-1628.
doi: 10.1126/science.1128115URLpmid: 16973878
[18] Casanova, M. F., Buxhoeveden, D. P., & Brown, C. (2002). Clinical and macroscopic correlates of minicolumnar pathology in autism. Journal of Child Neurology, 17(9), 692-695.
URLpmid: 12503647
[19] Casanova, M. F., Hensley, M. K., Sokhadze, E. M., El-Baz, A. S., Wang, Y., Li, X. L., & Sears, L. (2014). Effects of weekly low-frequency rTMS on autonomic measures in children with autism spectrum disorder. Frontiers in Human Neuroscience, 8, 851.
doi: 10.3389/fnhum.2014.00851URLpmid: 25374530
[20] Cellot, G., & Cherubini, E. (2014). GABAergic signaling as therapeutic target for autism spectrum disorders. Frontiers in Pediatrics, 2, 70.
doi: 10.3389/fped.2014.00128URLpmid: 25478553
[21] Chan, J. S., Langer, A., & Kaiser, J. (2016). Temporal integration of multisensory stimuli in autism spectrum disorder: A predictive coding perspective. Journal of Neural Transmission, 123(8), 917-923.
doi: 10.1007/s00702-016-1587-5URLpmid: 27324803
[22] Courchesne, E., & Pierce, K. (2005). Why the frontal cortex in autism might be talking only to itself: local over- connectivity but long-distance disconnection. Current Opinion in Neurobiology, 15(2), 225-230.
doi: 10.1016/j.conb.2005.03.001URLpmid: 15831407
[23] di Martino, A., Ross, K., Uddin, L. Q., Sklar, A. B., Castellanos, F. X., & Milham, M. P. (2009). Functional brain correlates of social and nonsocial processes in autism spectrum disorders: An activation likelihood estimation meta-analysis. Biological Psychiatry, 65(1), 63-74.
doi: 10.1016/j.biopsych.2008.09.022URLpmid: 18996505
[24] Engel, A. K., & Singer, W. (2001). Temporal binding and the neural correlates of sensory awareness. Trends in Cognitive Sciences, 5(1), 16-25.
doi: 10.1016/s1364-6613(00)01568-0URLpmid: 11164732
[25] Ernst, M. O., & Bülthoff, H. H. (2004). Merging the senses into a robust percept. Trends in Cognitive Sciences, 8(4), 162-169.
doi: 10.1016/j.tics.2004.02.002URL
[26] Foss-Feig, J. H., Kwakye, L. D., Cascio, C. J., Burnette, C. P., Kadivar, H., Stone, W. L., & Wallace, M. T. (2010). An extended multisensory temporal binding window in autism spectrum disorders. Experimental Brain Research, 203(2), 381-389.
doi: 10.1007/s00221-010-2240-4URL
[27] Gabard-Durnam, L. J., Wilkinson, C., Kapur, K., Tager-Flusberg, H., Levin, A. R., & Nelson, C. A. (2019). Longitudinal EEG power in the first postnatal year differentiates autism outcomes. Nature Communications, 10(1), 4188.
doi: 10.1038/s41467-019-12202-9URLpmid: 31519897
[28] Gogolla, N., Leblanc, J. J., Quast, K. B., Sudhof, T. C., Fagiolini, M., Hensch, T. K. (2009). Common circuit defect of excitatory-inhibitory balance in mouse models of autism. Journal of Neurodevelopmental Disorders, 1, 172-181.
doi: 10.1007/s11689-009-9023-xURL
[29] Gogolla, N., Takesian, A. E., Feng, G. P., Fagiolini, M., & Hensch, T. K. (2014). Sensory integration in mouse insular cortex reflects GABA circuit maturation. Neuron, 83(4), 894-905.
doi: 10.1016/j.neuron.2014.06.033URL
[30] Gondan, M., Lange, K., R?sler, F., & R?der, B. (2004). The redundant target effect is affected by modality switch costs. Psychonomic Bulletin & Review, 11(2), 307-313.
doi: 10.3758/bf03196575URLpmid: 15260198
[31] Hagiwara, K., Okamoto, T., Shigeto, H., Ogata, K., Somehara, Y., Matsushita, T., ... Tobimatsu, S. (2010). Oscillatory gamma synchronization binds the primary and secondary somatosensory areas in humans. NeuroImage, 51(1), 412-420.
doi: 10.1016/j.neuroimage.2010.02.001URL
[32] Hoy, J. A., Hatton, C., & Hare, D. (2004). Weak central coherence: A cross-domain phenomenon specific to autism? Autism, 8(3), 267-281.
doi: 10.1177/1362361304045218URLpmid: 15358870
[33] Jochaut, D., Lehongre, K., Saitovitch, A., Devauchelle, A.-D., Olasagasti, I., Chabane, N., ... Giraud, A. L. (2015). Atypical coordination of cortical oscillations in response to speech in autism. Frontiers in Human Neuroscience, 9, 171.
doi: 10.3389/fnhum.2015.00171URLpmid: 25870556
[34] Kaiser, J., Hertrich, I., Ackermann, H., Mathiak, K., & Lutzenberger, W. (2004). Hearing lips: Gamma-band activity during audiovisual speech perception. Cerebral Cortex, 15(5), 646-653.
doi: 10.1093/cercor/bhh166URLpmid: 15342432
[35] Kanayama, N., Sato, A., & Ohira, H. (2007). Crossmodal effect with rubber hand illusion and gamma-band activity. Psychophysiology, 44(3), 392-402.
doi: 10.1111/j.1469-8986.2007.00511.xURLpmid: 17371495
[36] Kessler, K., Seymour, R. A., & Rippon, G. (2016). Brain oscillations and connectivity in autism spectrum disorders (ASD): New approaches to methodology, measurement and modelling. Neuroscience & Biobehavioral Reviews, 71, 601-620.
doi: 10.1016/j.neubiorev.2016.10.002URLpmid: 27720724
[37] Khan, S., Gramfort, A., Shetty, N. R., Kitzbichler, M. G., Ganesan, S., Moran, J. M., ... Kenet, T. (2013). Local and long-range functional connectivity is reduced in concert in autism spectrum disorders. Proceedings of the National Academy of Sciences, 110(8), 3107-3112.
doi: 10.1073/pnas.1214533110URL
[38] Lawson, R. P., Rees, G., & Friston, K. J. (2014). An aberrant precision account of autism. Frontiers in Human Neuroscience, 8, 302.
doi: 10.3389/fnhum.2014.00302URLpmid: 24860482
[39] Liu, Z. M., de Zwart, J. A., Yao, B., van Gelderen, P., Kuo, L. W., & Duyn, J. H. (2012). Finding thalamic BOLD correlates to posterior alpha EEG. NeuroImage, 63(3), 1060-1069.
doi: 10.1016/j.neuroimage.2012.08.025URL
[40] Malekmohammadi, M., Elias, W. J., & Pouratian, N. (2014). Human thalamus regulates cortical activity via spatially specific and structurally constrained phase-amplitude coupling. Cerebral Cortex, 25(6), 1618-1628.
doi: 10.1093/cercor/bht358URLpmid: 24408958
[41] Mckavanagh, R., Buckley, E., & Chance, S. A. (2015). Wider minicolumns in autism: A neural basis for altered processing? Brain, 138(7), 2034-2045.
doi: 10.1093/brain/awv110URL
[42] Michalareas, G., Vezoli, V., van Pelt, S., Schoffelen, J.-M., Kennedy, H., Fries, P. (2016). Alpha-beta and gamma rhythms subserve feedback and feedforward influences among human visual cortical areas. Neuron, 89(2), 384-397.
doi: 10.1016/j.neuron.2015.12.018URLpmid: 26777277
[43] Noel, J.-P., de Niear, M. A., Stevenson, R., Alais, D., & Wallace, M. T. (2017). Atypical rapid audio-visual temporal recalibration in autism spectrum disorders: Audiovisual temporal recalibration in ASD. Autism Research, 10(1), 121-129.
doi: 10.1002/aur.1633URLpmid: 27156926
[44] Pellicano, E., & Burr, D. (2012). When the world becomes “too real”: A Bayesian explanation of autistic perception. Trends in Cognitive Sciences, 16(10), 504-510.
doi: 10.1016/j.tics.2012.08.009URL
[45] Rojas, D. C., Maharajh, K., Teale, P., & Rogers, S. J. (2008). Reduced neural synchronization of gamma-band MEG oscillations in first-degree relatives of children with autism. BMC Psychiatry, 8(1), 66.
doi: 10.1186/1471-244X-8-66URL
[46] Rojas, D. C., Teale, P. D., Maharajh, K., Kronberg, E., Youngpeter, K., Wilson, L. B., ... Hepburn, S. (2011). Transient and steady-state auditory gamma-band responses in first-degree relatives of people with autism spectrum disorder. Molecular Autism, 2, 11.
doi: 10.1186/2040-2392-2-11URLpmid: 21729257
[47] Rojas, D. C., & Wilson, L. B. (2014). γ-band abnormalities as markers of autism spectrum disorders. Biomarkers in Medicine, 8(3), 353-368.
doi: 10.2217/bmm.14.15URL
[48] Schuetze, M., Park, M. T. M., Cho, I. Y. K., Macmaster, F. P., Chakravarty, M. M., & Bray, S. L. (2016). Morphological alterations in the thalamus, striatum, and pallidum in autism spectrum disorder. Neuropsychopharmacology, 41(11), 2627-2637.
doi: 10.1038/npp.2016.64URLpmid: 27125303
[49] Senkowski, D., Schneider, T. R., Foxe, J. J., & Engel, A. K. (2008). Crossmodal binding through neural coherence: Implications for multisensory processing. Trends in Neurosciences, 31(8), 401-409.
doi: 10.1016/j.tins.2008.05.002URLpmid: 18602171
[50] Senkowski, D., Talsma, D., Grigutsch, M., Herrmann, C. S., & Woldorff, M. G. (2007). Good times for multisensory integration: Effects of the precision of temporal synchrony as revealed by gamma-band oscillations. Neuropsychologia, 45(3), 561-571.
doi: 10.1016/j.neuropsychologia.2006.01.013URL
[51] Senkowski, D., Schneider, T. R., Tandler, F., & Engel, A. K. (2009). Gamma-band activity reflects multisensory matching in working memory. Experimental Brain Research, 198(2), 363-372.
doi: 10.1007/s00221-009-1835-0URL
[52] Simon, D. M., & Wallace, M. T. (2016). Dysfunction of sensory oscillations in autism spectrum disorder. Neuroscience & Biobehavioral Reviews, 68, 848-861.
doi: 10.1016/j.neubiorev.2016.07.016URLpmid: 27451342
[53] Sokhadze, E. M., El-baz, A., Baruth, J., Mathai, G., Sears, L., & Casanova, M. F. (2009). Effects of low frequency repetitive transcranial magnetic stimulation (rTMS) on gamma frequency oscillations and event-related potentials during processing of illusory figures in autism. Journal of Autism and Developmental Disorders, 39(4), 619-634.
doi: 10.1007/s10803-008-0662-7URL
[54] Steriade, M., Contreras, D., Amzica, F., & Timofeev, I. (1996). Synchronization of fast (30-40 Hz) spontaneous oscillations in intrathalamic and thalamocortical networks. Journal of Neuroscience, 16(8), 2788-2808.
URLpmid: 8786454
[55] Stevenson, R. A., Siemann, J. K., Woynaroski, T. G., Schneider, B. C., Eberly, H. E., Camarata, S. M., & Wallace, M. T. (2014). Evidence for diminished multisensory integration in autism spectrum disorders. Journal of Autism and Developmental Disorders, 44(12), 3161-3167.
doi: 10.1007/s10803-014-2179-6URL
[56] Tallon-Baudry, C., & Bertrand, O. (1999). Oscillatory gamma activity in humans and its role in object representation. Trends in Cognitive Sciences, 3(4), 151-162.
doi: 10.1016/S1364-6613(99)01299-1URL
[57] Tamura, R., Kitamura, H., Endo, T., Hasegawa, N., & Someya, T. (2010). Reduced thalamic volume observed across different subgroups of autism spectrum disorders. Psychiatry Research: Neuroimaging, 184(3), 186-188.
doi: 10.1016/j.pscychresns.2010.07.001URLpmid: 20850279
[58] Uddin, L. Q., & Menon, V. (2009). The anterior insula in autism: Under-connected and under-examined. Neuroscience & Biobehavioral Reviews, 33(8), 1198-1203.
doi: 10.1016/j.neubiorev.2009.06.002URLpmid: 19538989
[59] van de Cruys, S., Evers, K., van der Hallen, R., van Eylen, L., Boets, B., de-Wit, L., Wagemans, J. (2014). Precise minds in uncertain worlds: Predictive coding in autism. Psychological Review, 121(4), 649-675.
doi: 10.1037/a0037665URL
[60] Wang, D. D., & Kriegstein, A. R. (2009). Defining the role of GABA in cortical development. The Journal of Physiology, 587(9), 1873-1879.
doi: 10.1113/jphysiol.2008.167635URL
[61] Wang, J., Barstein, J., Ethridge, L. E., Mosconi, M. W., Takarae, Y., & Sweeney, J. A. (2013). Resting state EEG abnormalities in autism spectrum disorders. Journal of Neurodevelopmental Disorders, 5(1), 24.
doi: 10.1186/1866-1955-5-24URLpmid: 24040879
[62] Weinstein, M., Ben-Sira, L., Levy, Y., Zachor, D. A., Itzhak, E. B., Artzi, M., ... Bashat, D. B. (2011). Abnormal white matter integrity in young children with autism. Human Brain Mapping, 32(4), 534-543.
doi: 10.1002/hbm.21042URL
[63] Zhang, Y. Y., Zhang, Y. F., Cai, P., Luo, H., & Fang, F. (2019). The causal role of α-oscillations in feature binding. Proceedings of the National Academy of Sciences, 116(34), 17023-17028.
[64] Zhou, H.-Y., Cai, X.-L., Weigl, M., Bang, P., Cheung, E. F. C., & Chan, R. C. K. (2018). Multisensory temporal binding window in autism spectrum disorders and schizophrenia spectrum disorders: A systematic review and meta-analysis. Neuroscience & Biobehavioral Reviews, 86, 66-76.
doi: 10.1016/j.neubiorev.2017.12.013URLpmid: 29317216




[1]霍超, 李祚山, 孟景. 自闭症谱系障碍个体的共情干预:扬长还是补短?[J]. 心理科学进展, 2021, 29(5): 849-863.
[2]杨伟平, 李胜楠, 李子默, 郭敖, 任艳娜. 老年人视听觉整合的影响因素及其神经机制[J]. 心理科学进展, 2020, 28(5): 790-799.
[3]王爱君, 黄杰, 陆菲菲, 何嘉滢, 唐晓雨, 张明. 多感觉整合中的声音诱发闪光错觉效应[J]. 心理科学进展, 2020, 28(10): 1662-1677.
[4]刘春燕, 陈功香. 自闭症谱系障碍个体的焦虑:发生机制、评估与治疗[J]. 心理科学进展, 2019, 27(10): 1713-1725.
[5]赵佩琼, 陈巍, 张静, 平贤洁. 橡胶手错觉:拥有感研究的实验范式及其应用[J]. 心理科学进展, 2019, 27(1): 37-50.
[6]孙岩, 房林, 王亭予, 崔丽. 自闭症谱系障碍者抑制控制的影响因素及神经机制[J]. 心理科学进展, 2018, 26(8): 1450-1464.
[7]李开云, 陈功香, 傅小兰. 自闭症谱系障碍者的视运动知觉[J]. 心理科学进展, 2018, 26(5): 831-845.
[8]林弋琪, 王希, 彭凯平, 倪士光. 虚拟现实技术与自闭症谱系障碍治疗:科技新希望[J]. 心理科学进展, 2018, 26(3): 518-526.
[9]彭姓, 常若松, 任桂琴, 王爱君, 唐晓雨. 外源性注意与多感觉整合的交互关系[J]. 心理科学进展, 2018, 26(12): 2129-2140.
[10]罗霄骁, 康冠兰, 周晓林. McGurk效应的影响因素与神经基础[J]. 心理科学进展, 2018, 26(11): 1935-1951.
[11]郝艳斌, 王福兴, 谢和平, 安婧, 王玉鑫, 刘华山. 自闭症谱系障碍者的面孔加工特点——眼动研究的元分析[J]. 心理科学进展, 2018, 26(1): 26-41.
[12]孟景; 沈林. 自闭症谱系障碍个体的共情及其理论与神经机制[J]. 心理科学进展, 2017, 25(1): 59-66.
[13]武文佼;张鹏. 自闭症谱系障碍的生物基础[J]. 心理科学进展, 2016, 24(5): 739-752.
[14]张芬;王穗苹;杨娟华;冯刚毅. 自闭症谱系障碍者异常的大脑功能连接[J]. 心理科学进展, 2015, 23(7): 1196-1204.
[15]周爱保;张彦驰;刘沛汝;尹玉龙;张 奋. 我是谁?——人际间多感觉刺激下的识脸错觉[J]. 心理科学进展, 2015, 23(2): 159-167.





PDF全文下载地址:

http://journal.psych.ac.cn/xlkxjz/CN/article/downloadArticleFile.do?attachType=PDF&id=5291
相关话题/科学 心理 神经 信息 生物