1.School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454003, China 2.School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
Fund Project:Project supported by the Joint Funds of the National Natural Science Foundation of China (Grant No. U1604140), the Key Science and Technology Program of Henan Province, China (Grant Nos. 172102210269, 192102210052, 212102210108, 212102210004), the Major Achievements Cultivation Project of Henan Province, China (Grant No. NSFRF170503), and the Henan Polytechnic University Innovation Team Foundation, China (Grant No. T2019-5)
Received Date:19 May 2021
Accepted Date:31 July 2021
Available Online:30 August 2021
Published Online:20 December 2021
Abstract:In order to improve the working performance and optimize the working parameters of the typical engineering pendulum of a typical system that it is abstracted as a physical simple pendulum model with vertical excitation and horizontal constraint. The dynamical equation of the system with vertical excitation and horizontal constraint is established by using Lagrange equation. The multiple-scale method is used to analyze the subharmonic response characteristics of the system. The amplitude-frequency response equation and the phase-frequency response equation are obtained through calculation. The effects of the system parameters on the amplitude resonance bandwidth and variability are clarified. According to the singularity theory and the universal unfolding theory, the bifurcation topology structure of the subharmonic resonance of the system is obtained. The Melnikov function is applied to the study of the critical conditions for the chaotic motion of the system. The parameter equation of homoclinic orbit motion is obtained through calculation. The threshold conditions of chaos in the sense of Smale are analyzed by solving the Melnikov function of the homoclinic motion orbit. The dynamic characteristics of the system, including single-parameter bifurcation, maximum Lyapunov exponent, bi-parameter bifurcation, and manifold transition in the attraction basin, are analyzed numerically. The results show that the main path of the system entering into the chaos is an almost period doubling bifurcation. Complex dynamical behaviors such as periodic motion, period doubling bifurcation and chaos are found. The bi-parameter matching areas of the subharmonic resonance bifurcation and chaos of the system are clarified. The results reveal the global characteristics of the system with vertical excitation and horizontal constraint, such as subharmonic resonance bifurcation, periodic attractor multiplication, and the coexistence of periodic and chaotic attractors. The results further clarify the mechanism of the influence of system parameters change on the movement form transformation, energy distribution and evolution law of the system. The mechanism of the influence of relevant parameters on the performance of the engineering system with vertical excitation and horizontal constraint is also obtained. The results of this research provide theoretical bases for adjusting the parameters of working performances of this typical physical system in engineering domain and the vibration reduction and suppression of the system in actual working conditions. Keywords:simple pendulum/ subharmonic resonance/ bifurcation/ chaos
全文HTML
--> --> -->
2.受垂直激励和水平约束的单摆系统动力学方程图1为受垂直激励和水平约束的单摆模型. 其中, x和y分别表示水平方向和垂直方向, o为悬挂点, 摆球悬挂点受到垂直激励y1(t), 摆球等效质量为m, 不计悬挂点处质量, 重力加速度为g, 摆球与垂直方向夹角为u(t), 摆长为l. 摆球在运动过程中受到水平方向的约束作用, 表现为弹性回复力和阻尼力形式, 其刚度系数和阻尼系数分别为k和c. 图 1 受垂直激励和水平约束的单摆模型 Figure1. Simple pendulum model with vertical excitation and horizontal constraint.
图 10 单摆系统亚谐共振在ωb = 2时的混沌吸引子 Figure10. Chaotic attractor of simple pendulum system when ωb = 2.
图 11 摆长l变化下的分岔图 Figure11. Bifurcation diagram with different l.
-->
5.1.受垂直激励和水平约束单摆系统的亚谐共振分岔与混沌
35.1.1.ωb对单摆系统分岔的影响 -->
5.1.1.ωb对单摆系统分岔的影响
随ωb变化的单摆系统的运动分岔及最大Lyapunov指数如图12(a)和图12(b)所示. 可见, 随ωb增大, 单摆系统历经“单周期-二周期-四周期-混沌-四周期-混沌-二周期-混沌-四周期-二周期-单周期”的系列复杂运动变化, 且中间交替发生多次的倍周期分岔. 图 12ωb变化下的(a)分岔和(b)最大Lyapunov指数 Figure12. (a) Bifurcation and (b) maximum Lyapunov exponent with different ωb.
图 14 当ωb = 1.8时b变化下的时间历程图 (a) b = 0.28; (b) b = 0.38; (c) b = 0.58 Figure14. Time history diagram when b changes and ωb = 1.8: (a) b = 0.28; (b) b = 0.38; (c) b = 0.58.
35.1.2.c11对单摆系统分岔的影响 -->
5.1.2.c11对单摆系统分岔的影响
随c11变化的系统分岔和最大Lyapunov指数如图15(a)和图15(b)所示. 可见, 随水平约束阻尼系数c11增大, 系统历经“混沌-四周期-二周期-混沌-八周期-四周期-二周期-单周期”的系列复杂运动变化过程. 图 15c11变化下的(a)分岔和(b)最大Lyapunov指数 Figure15. (a) Bifurcation and (b) maximum Lyapunov exponent with different c11.
随g1变化的系统分岔图及最大Lyapunov指数曲线如图17(a)和图17(b)所示. 可见, 随g1增大, 单摆系统历经“混沌-四周期-二周期-单周期”的运动状态改变. g1取不同值的相图和时间历程如图18所示. 其中图18(a)—(c), 随系统历经双曲混沌、混沌、二周期等运动状态的改变, 这与图18(d)—(f)中, g1变化引起的系统动力学行为相一致. 图 17g1变化下的(a)分岔和(b)最大Lyapunov指数 Figure17. (a) Bifurcation and (b) maximum Lyapunov exponent with different g1.
图 18g1变化下的(a)?(c)相图和(d)?(f)时间历程图 (a), (d) g1 = 0.27; (b), (e) g1 = 0.28; (c), (f) g1 = 0.36 Figure18. (a)?(c) Phase diagram and (d)?(f) time history diagram with different g1: (a), (d) g1 = 0.27; (b), (e) g1 = 0.28; (c), (f) g1 = 0.36.
35.1.4.k33对单摆系统分岔的影响 -->
5.1.4.k33对单摆系统分岔的影响
随k33变化的系统分岔及最大Lyapunov指数曲线如图19(a)和图19(b)所示. 随k33增大, 系统历经“单周期-二周期-四周期-八周期-混沌”系列运动状态的改变过程. 随k33变化的相图和时间历程如图20所示. 其中图20(a)—(c), k33 = 0.6, 1.2, 1.4时, 系统分别处于四周期、混沌、双曲混沌运动. 随k33变化, 单摆的周期性也发生改变如图20(d)—(f), 其变化过程与系统动力学行为(图20(a)—(c))相一致. 图 19k33变化下的(a)分岔和(b)最大Lyapunov指数 Figure19. (a) Bifurcation and (b) maximum Lyapunov exponent with different k33..
图 20k33变化下的(a)?(c)相图和(d)?(f)时间历程图 (a), (d) k33 = 0.6; (b), (e) k33 = 1.2; (c), (f) k33 = 1.4 Figure20. (a)?(c) Phase diagram and (d)?(f) time history diagram with different k33: (a), (d) k33 = 0.6; (b), (e) k33 = 1.2; (c), (f) k33 = 1.4
35.1.5.b对单摆系统分岔的影响 -->
5.1.5.b对单摆系统分岔的影响
随b变化单摆系统的运动分岔及最大Lyapunov指数如图21(a)和图21(b)所示. 可见, 随b增加, 单摆系统历经“单周期-二周期-四周期-混沌-四周期-二周期-单周期”的系列复杂运动变化. 图 21b变化下的(a)分岔和(b)最大Lyapunov指数 Figure21. (a) Bifurcation and (b) maximum Lyapunov exponent with different b.
b变化的相图和时间历程如图22(a)—(f)所示. 其中图22(a)—(f)中, b = 0.19, 0.28, 0.36系统分别处于二周期、混沌、双曲混沌的运动状态. b = 0.36的时间历程图(图23(a)—(c))显示出系统运动中较明显的交叠拍振共振行为, 伴随ωb变化, 系统能量也不断交替改变, 系统共振频次和振幅带宽都发生变化. 比较图22(d)—(f)发现, b变化改变了单摆的运动周期, 其变化过程与系统动力学行为(图22(a)—(c))相一致. 图 22b变化下的(a)?(c)相图和(d)?(f)时间历程图 (a), (d) b = 0.19; (b), (e) b = 0.28; (c), (f) b = 0.36 Figure22. (a)?(c) Phase diagram and (d)?(f) time history diagram with different b: (a), (d) b = 0.19; (b), (e) b = 0.28; (c), (f) b = 0.36
图 23 当b = 0.36时ωb变化下的时间历程图 (a) ωb = 1.3 (b) ωb = 1.5; (c) ωb = 1.7 Figure23. Time history diagram when ωb changes and b = 0.36: (a) ωb = 1.3; (b) ωb = 1.5; (c) ωb = 1.7.