1.School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China 2.Department of Engineering Physics, Novgorod State University, Novgorod 173003, Russia
Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 520721178, 51911530120, 51790492, 11874032), the Fundamental Research Funds for the Central Universities, China (Grant No. 30920041119), and the Russian Foundation for Basic Research (Grant No. 19-07-00391).
Received Date:11 May 2021
Accepted Date:28 August 2021
Available Online:02 September 2021
Published Online:20 December 2021
Abstract:Magnetoelectric voltage tunable inductor (ME-VTI) realizes the modulation of electric field to inductance based on magnetoelectric effect. Compared with other adjustable inductors, it has the advantages of low energy consumption, small volume, large tunability and continuity. However, previous reports on ME-VTI mainly focused on structure and magnetostrictive materials, resulting in the complexity of inductor structure and slight improvement of tunability. This study focuses on the influence of field-induced strain in piezoelectric materials on inductance tunability by constructing a theoretical model. The magnetoelectric laminate of Metglas/ PMN-PT single crystal /Metglas is employed as a magnetic core to design ME-VTI. The tunability is as high as 680% at 1 kHz, which is over 2.4 times larger than that of the Metglas/PZT/Metglas magnetic core. The quality factor of the PMN-PT based ME laminate reaches 15.6, which is 2.8 times higher than that of the PZT-based one. The proposed PMN-PT based ME-VTI provides an alternative approach for developing the integrated and miniaturized devices, and has an important prospect of application in the field of power electronics. Keywords:tunable inductor/ magnetoelectric effect/ field-induced strain/ piezoelectric single crystal
ME-VTI的制作主要分两步, 具体为: 1) 磁芯的制备. 选用PMN-PT单晶和PZT陶瓷的尺寸为28 mm × 6 mm × 0.6 mm, Metglas的尺寸为24 mm × 6 mm × 0.025 mm. 按一定比例配制黏合剂, PMN-PT和PZT上下表面各沾一层Metglas. 将三明治结构的磁电复合材料常温固化24 h, 固化后, PMN-PT和PZT上下表面各引一根导线. 2)线圈的制备. 选用铜线直径φ = 0.2 mm. 根据上述磁芯尺寸, 围绕磁芯紧密缠绕约50圈线圈. 23.3.表征方法 -->
图2(a)-(i)对比几种PZT陶瓷和PMN-PT单晶的场致应变, PMN-PT的场致应变远大于PZT. 对于PMN-PT单晶的场致应变可以划分为3个阶段. 阶段I: 当电场E < 10 kV/cm时, PMN-PT单晶应变随着电场增加而线性增加; 阶段II: 当电场E增加至10—12 kV/cm时, 应变突增至0.36%; 阶段III: 当电场E > 12 kV/cm, 单晶应变又随着电场增加而线性增加, 且Δε/ΔE小于阶段I. PMN-PT单晶场致应变之所以有3个阶段, 原因如图2(a)-(ii)所示. 阶段I: 初始态PMN-PT单晶为三方相(R), 有8个等价的随机分布的自发极化方向$ \langle 111\rangle $, 沿[110]方向加电场, 铁电畴发生翻转, 最终形成“2R”工程畴结构[28], 此阶段应变主要源于电畴翻转; 阶段II: 当[110]方向电场进一步增大, 原本的三方相晶格在电场作用下发生R -MB -O相变[29], 此时应变主要源于场致相变; 阶段III: 在大电场下, PMN-PT单晶为正交相, 且正交相自发极化方向沿$ \langle 110 \rangle $方向, 与外电场方向平行, 因此形成了“1O”的单畴结构[28], 此时应变主要来源于本征压电晶格畸变. 考虑到压电相上下表面附着磁相后场致应变可能会被束缚, 因此针对研究所需PZT和PMN-PT进行磁电复合后场致应变分析. 如图2(b)所示, PZT的场致应变曲线复合前后几乎没有改变, 而PMN-PT单晶的场致应变复合后呈线性趋势增加, 整体变为复合前的1/3, 且仍大于PZT复合的场致应变. 图 2 (a) (i)和(ii) 分别为PZT及PMN-PT的场致应变图和PMN-PT的相变示意图; (b) Metglas束缚时PZT和PMN-PT的场致应变图 Figure2. (a) (i) Electric-field induced strain of PZT and PMN-PT and (ii) the phase transition of PMN-PT; (b) the electric-field induced strain of PZT and PMN-PT based ME composites.
24.2.可调性分析 -->
4.2.可调性分析
图3(a)—(c)展示了不同电场下PZT基和PMN-PT基ME-VTI的电感频谱图. 较高频率下, PZT基的电感比PMN-PT基的衰减得更快, 二者在高频下降的原因是涡流损耗. 高频下磁芯为了抵挡外部交流磁场, 内部会产生涡流, 而Metglas具有较小的电阻率, 导致较大电流, 因此有较大的涡流损耗. 图3(d)—(f)展示不同电场下PZT基和PMN-PT基ME-VTI的可调性频谱图. 较低频率时, PMN-PT基电感相比于PZT基, 随电场的增加电感下降得更快. 较高频率时, PMN-PT基电感可调性稳定性较好. 如图3(g)和图3(h)所示, 在频率为1 kHz时, PMN-PT基电感可调性达到680%, 相当于PZT基电感的3倍. 原因是PMN-PT单晶的应变远大于PZT, 对磁性材料磁畴的翻转影响更大. 可调性起初增加缓慢, 因为电场导致的应力或应变较小, 磁畴只在面内转动; 电场超过临界电场, 电场导致的应变增大, 磁畴面外转动占主导因素. 图 3 (a)?(c)和(d)?(f) 分别为磁电电压可调电感器PZT基 (E-field up)、PMN-PT基(E-field up)、PMN-PT基 (E-field down)的电感频谱图和可调性频谱图; (g) 1 kHz时直流电场对PZT基和PMN-PT基电感的影响; (h) 1 kHz时PZT基和PMN-PT基的电感可调性 Figure3. (a)?(c) Inductance and (d)?(f) tunable spectra of PZT based (E-field up), PMN-PT based (E-field up) and PMN-PT based (E-field down) ME-VTI, respectively; (g) inductance of PZT based and PMN-PT based ME-VTI as a function of the applied dc voltage at 1 kHz; (h) tunability γ of PZT based and PMN-PT based ME-VTI at 1 kHz.
24.3.品质因子分析 -->
4.3.品质因子分析
图4(a)—(c)代表不同电场下PZT基和PMN-PT基ME-VTI的品质因子频谱图. 品质因子体现电感储能的优劣. PMN-PT基电感品质因子明显高于PZT基, 并随电场增加峰值右移且增加. 两个体系的品质因子在频率较高时, 随着电场的增加品质因子均增加, 原因是磁导率的降低导致趋肤深度增加, 电阻降低, 因此涡流损耗减少. 而PMN-PT基电感品质因子的峰值之所以会右移, 与应力导致磁致伸缩材料磁导率的降低有关, 因此也可以利用电场实现对铁磁共振频率的调控. 图 4 (a)?(c) 磁电电压可调电感器PZT基(E-field up)、PMN-PT基(E-field up)、PMN-PT基 (E-field down)的品质因子频谱图 Figure4. (a)?(c) Quality factor spectra of PZT based (E-field up), PMN-PT based (E-field up), and PMN-PT based (E-field down) ME-VTI.
-->
5.1.理论分析
根据实验数据及以往的研究报道[30], Metglas的饱和磁致伸缩系数为27 × 10–6, 杨氏模量为110 GPa, 初始磁各向异性约为700 J/m3. PZT和PMN-PT的弹性柔顺常数分别为16.5 × 10–12 m2/N和112 × 10–12 m2/N, 压电常数d31分别为–274 × 10–12 C/N和–1883 × 10–12 C/N. 实验中采用的压电材料和磁致伸缩材料体积比分别为0.9231和0.0769. 根据初始磁各向异性的符号及实验数据电感随电场减小, 可知符号因子n为–1. 由图2分析, PZT基和PMN-PT基的应变传递因子k分别取1和0.7. 结合前述推导的(13)式, 如图5所示, 通过拟合PZT基和PMN-PT基电场对电感的调控, 可以看出理论与实验数据趋势较为一致, 其中微弱的偏离与磁畴和材料微观结构的不均匀性、胶水造成的应力松弛等因素有关. 图 5 (a) PZT基和 (b) PMN-PT基电场对电感的调控, 黑色的点代表实验数据, 红色的线代表理论曲线. Figure5. Variation of (a) PZT based and (b) PMN-PT based inductance under electric field, respectively. The black dots represent the experimental data, and the red line represents the theoretical curve.
25.2.有限元模拟分析 -->
5.2.有限元模拟分析
图6(a)展示了不同频率下PMN-PT基ME-VTI的可调性, 各频率下随电场的增加可调性均增加. 图6(c)和图6(d)对磁性材料的应力和磁导率进行有限元分析, 可以看出应力导致磁导率降低, 而磁导率又直接影响电感的变化, 模拟结果与图6(b)中的实验结果一致. 图 6 (a) 各频率下PMN-PT基电压可调电感器电场对可调性的影响; (b) 1 kHz下PMN-PT基电压可调电感器电场对电感和可调性的影响; (c), (d) 分别为电场对应力和磁导率影响的模拟图 Figure6. Influence of electric field of PMN-PT based ME-VTI on (a) tunability at various frequencies; (b) influence of electric field of PMN-PT based ME-VTI on inductance and tunability at 1 kHz; simulation of electric field dependent (c) stress and (d) permeability, respectively.