Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 61975018, 11574033, 11674032)
Received Date:31 May 2021
Accepted Date:18 July 2021
Available Online:20 August 2021
Published Online:05 December 2021
Abstract:The electromagnetic boundary conditions have great important applications in many physical branchs. Here, the nanoscale electromagnetic boundary conditions are derived by using the integral Maxwell’s equations through constructing the dielectric transition layer across the interface between the two materials. The two interface response functions are obtained to reflect the electromagnetic field response characteristics of the interface. Based on the Maxwell’s equations, the physical meanings of the interface response functions are given as the position of the equivalent interfacial polarization charge and the gradient position of interfacial polarization current density, respectively. The influence of the dielectric constant of the medium, the transition line shape of the electric field and the frequency on the interface response functions are analyzed. When the material scale is large, the interface response function can be ignored, and the nanoscale electromagnetic boundary conditions degenerate to the classical boundary conditions given by the abrupt junction. On this basis, the interface electric dipole moment, the equivalent interfacial polarization charge area density, the equivalent interfacial polarization current density and the equivalent interfacial magnetic current density are introduced, leading to three forms of nanoscale electromagnetic boundary conditions. The results provide a clear physical picture and necessary theoretical basis for nanoscale electromagnetism and interface optics. Keywords:Maxwell’s equations/ boundary conditions/ nanoscale electromagnetic theory
为了研究电位移矢量法向分量的跃变, 构建如图2所示的积分箱与坐标系, 考虑入射角频率为ω的TM波, 由麦克斯韦方程组中的高斯定律: 图 2 计算电位移矢量法向分量跃变使用的积分区域 Figure2. Integral box for obtaining the normal component discontinuity of the electric displacement vector.
针对银[13]-真空界面, 假设界面过渡区范围为[–0.7, 0.5] nm, 基于(38)式 — (40)式可得到界面响应函数$ {d}_{\perp } $的实部、虚部随入射电磁波频率的变化规律, 如图4(a)和4(b)所示. 可以看出, 在银-真空界面上, $ {d}_{\perp } $随入射光频率的增大先缓慢增大而后快速增大, 当达到金属等离子体共振频率附近时, $ {d}_{\perp } $实部、虚部同时达到局域最大值, 这是由于银的相对介电函数的实部在等离激元共振频率(3.8 eV)附近趋近于1所导致的. 随着频率的继续增大, $ {d}_{\perp } $先快速减小, 而后又缓慢增大. $ {d}_{\perp } $随入射电磁波频率变化规律本质上是由Ag的体介电常数随频率变化规律所决定的. 结果表明, 可以选择合适频率的电磁波入射, 以便更好地观察$ {d}_{\perp } $对界面光学性质的影响. 同时, 过渡区介电常数的函数形式对界面响应函数也有影响, 这也为界面响应函数的调控提供了一种途径. 图 4 不同函数形式下银-真空界面上$ {d}_{\perp } $(实线)以及金-真空界面以指数形式过渡的$ {d}_{\perp } $(虚线)实部(a), 虚部(b) 随频率的变化 Figure4. Real part (a) and image part (b) variations of the interfacial response function $ {d}_{\perp } $ with the frequency for different function forms. Solid lines are for the Ag-vacuum interface and the dashed line represents $ {d}_{\perp } $ at the interface of Au-vacuum.
为了展示模型的有效性, 在过渡区尺寸不变的情况下, 利用界面响应函数表达式(39)计算了金-真空界面的界面响应函数, 可以看出, 界面响应函数的虚部在其等离子体共振频率附近出现了峰值, 但$ {d}_{\perp } $实部也在等离子体共振频率附近存在一个局域极值. 其中, 在频率范围为[1.0, 2.0] eV时, 金-真空界面$ {d}_{\perp } $实部随频率的增大几乎不变, 保持在–0.2 nm左右, 而$ {d}_{\perp } $虚部随频率的增大从0 nm几乎线性增大到0.2 nm, 该结果与文献[9]中基于实验测量给出的结果几乎一致, 体现了指数过渡模型的合理性和有效性. 对单一界面来说, 过渡区域的范围并不影响界面响应函数随频率的变化规律, 且相比于文献[9]中的金-氧化铝薄层-金耦合界面, 对应的单一界面具有相对较小的过渡层厚度. 为此, 我们固定过渡区域范围为[–0.4, 0.2] nm, 探究指数过渡的情况下不同金属(金, 银, 铜)-介质(真空, 二氧化硅)界面上$ {d}_{\perp } $的实部、虚部随入射电磁波频率的变化规律, 得到如图5(a), (b)所示结果. 对于银-真空/二氧化硅界面上, $ {d}_{\perp } $的实部与虚部在低频和高频时都较小, 但是在靠近金属等离子体共振频率时会出现一个明显的尖峰, 且银-二氧化硅界面的界面响应函数大于银-真空界面的$ {d}_{\perp } $. 该结果与文献[9]TDDFT计算的结果一致, 表明可以通过增大介质的介电常数在金属-介质界面上获得相对较大的界面响应函数$ {d}_{\perp } $. 不同于银-真空界面, 铜-真空界面的界面响应函数$ {d}_{\perp } $较小, 这是由于铜在[0.66, 6.6] eV的频率范围内介电常数均小于0造成的. 这表明, 铜-介质界面不适合用于观察界面响应函数的影响. 对比计算了金-真空/二氧化硅界面的界面响应函数(绿线), 可以看出, 在频率区间[0.66, 6.6] eV内, 金-二氧化硅界面的$ {d}_{\perp } $虚部总是大于金-真空界面, 但$ {d}_{\perp } $的实部却表现出丰富的行为. 图 5 不同金属-真空界面$ {d}_{\perp } $(实线)以及金属-二氧化硅界面的$ {d}_{\perp } $(虚线)实部 (a) 与虚部 (b) 随频率的变化; (c) (d) 金属-金属界面$ {d}_{\perp } $(实线)以及金属-介质界面的$ {d}_{\perp } $(虚线)的实部 (c) 与虚部 (d) 随频率的变化 Figure5. Real part (a) and image part (b) variations of the interfacial response function $ {d}_{\perp } $ with the frequency of metal-vacuum interface in contrast with metal-$ {\rm{S}}{\rm{i}}{{\rm{O}}}_{2} $ interface. Real part (c) and image part (d) variations of the interfacial response function $ {d}_{\perp } $ with the frequency of metal-metal interface in contrast with metal-dielectric interface.