1.Photonics Research Center, School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, China 2.Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin 541004, China
Fund Project:Project supported by the Fund for Less Developed Regions of the National Natural Science Foundation of China (Grant No. 61965008) and the Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, China (Grant No. YQ21109)
Received Date:30 May 2021
Accepted Date:27 July 2021
Available Online:17 August 2021
Published Online:05 December 2021
Abstract:In order to obtain the internal fine structure of biological tissues and living cells, the microscopic imaging technology is required to be capable of microscopy. In the wide-field fluorescence microscopy with dynamic speckle illumination, a series of dynamically changing speckle patterns are used to illuminate a biological sample in the whole field. The fluorescence sectioning images of sample’s three-dimensional structural are obtained by extracting intensely changing fluorescence signals in the focal plane. In this paper, the process of obtaining fluorescence sectioning images by the fluorescence microscopy is studied by theoretical analysis and simulation. Two main factors affecting the imaging quality of fluorescence sectioning image are analyzed, which are the number of original fluorescence images recorded by CCD and granularity of diffuser. The simulation results indicates that the imaging quality of fluorescence sectioning images first increases and then tends to saturation with the number of original fluorescence images increasing. It first increases and then decreases with the graininess of diffusers increasing. Considering the imaging quality and imaging time, when the number of original fluorescence images is 60 that is used to extract fluorescence sectioning images, and the granularity of diffuser is about 1000, the high spatial resolution fluorescence sectioning images with contrast higher than 85% can be obtained. Theoretical analysis and simulation research provide a theoretical basis and guidance for designing the system structure, implementing and optimizing the wide-field fluorescence microscopy with dynamic speckle illumination. Keywords:speckle/ fluorescence microscopy/ sectioning imaging/ wide-field illumination
3.模拟仿真结果分析为深入研究散射体颗粒度G和需记录的原始荧光图像数量N对具有不同几何尺寸的待测样品的层析图像成像质量的影响, 模拟仿真过程中首先设计了半径分别为R和10R的两个小球作为待测样品. 模拟生成的具有不同半径的小球样品的焦平面荧光图像和叠加了离焦信号的离焦荧光图像如图1所示. 图 1 不同半径的两个小球样品的焦平面荧光图像 R (a), 10R (b) 和离焦荧光图像 R (c), 10R (d) Figure1. Fluorescence images of focal (a), (b) and defocus (c), (d) planes of two small spherical samples with radii of R and 10R respectively.
当激光光束通过具有不同颗粒度的散射体时, 形成的一系列强度分布不同的照明散斑图案模拟结果如图2所示. 图 2 激光光束通过颗粒度分别为100 (a), 1000 (b)和3000 (c)的散射体形成的照明散斑图案 Figure2. Illumination speckle patterns are formed when a laser beam passes through diffusers with different granularity of 100 (a), 1000 (b) and 3000 (c), respectively.
将模拟仿真生成的不同散斑强度分布的N幅照明散斑图案与具有不同半径的小球样品的离焦图像叠加, 获得照明散斑图案激发小球样品的离焦荧光图像. 随后, 利用层析图像提取算法处理离焦荧光图像, 获得消除离焦背景噪声干扰的荧光层析图像. 利用上述基于动态散斑照明的宽场荧光显微成像技术实现荧光层析成像方法, 分析了当颗粒度为固定值时, 对于不同半径的小球样品, 荧光层析图像的对比度和空间分辨率与原始荧光图像的数量之间的关系. 对于半径为R的小球样品, 当散射体颗粒度固定为G = 1000时, 原始荧光图像的数量N分别为20, 60和200时, 层析图像的模拟仿真结果如图3(a)—(c)所示. 图3(d)—(f)分别为半径为R的小球样品的重构层析图像中心位置处荧光信号归一化强度曲线. 其中, 实线为焦平面上小球样品的荧光信号的归一化强度, 虚线为利用层析图像处理算法处理包含离焦信号的小球样品离焦荧光图像得到的层析图像的荧光信号归一化强度, 即图像对比度. 层析图像的荧光信号归一化强度平均值分别为63.14%, 86.42%和86.21%, 先提高后趋于饱和. 用信号归一化强度曲线的半高全宽(full width at half maximum, FWHM)表示图像的空间分辨率. 由仿真结果可以看出, 重构得到的小球样品的荧光层析图像的空间分辨率与焦平面图像的基本一致. 图 3 颗粒度为1000时, 半径为R的小球样品荧光层析图像 (a)—(c)及中心位置处荧光信号归一化强度(d)—(f) (a), (d) N = 20; (b), (e) N = 60; (c), (f) N = 200 Figure3. The fluorescence sectioning images (a)–(c) of a small spherical sample with a radius of R and the normalized intensity (d)–(f) of the fluorescence signal at the center position with the granularity of diffuser being 1000: (a), (d) N = 20; (b), (e) N = 60; (c), (f) N = 200.
对于半径为10R的小球样品而言, 当颗粒度固定为G = 500时, 原始荧光图像的数量N分别为20, 60和200时, 层析成像的模拟仿真结果如图4(a)—(c)所示. 图4(d)—(f)分别为半径为10R的小球样品层析重构图像中心位置处信号归一化强度曲线. 其中, 实线为焦平面上小球样品的荧光信号的归一化强度, 虚线为利用层析图像处理算法处理包含离焦信号的小球样品离焦荧光图像得到的层析图像的荧光信号归一化强度. 层析图像的荧光信号归一化强度平均值分别为50.5%, 81.71%和83.02%, 先提高后趋于饱和. 小球样品的荧光层析图像的空间分辨率与焦平面图像的基本一致. 图 4 颗粒度为500时, 半径为10R的小球样品荧光层析图像 (a)—(c)及中心位置处荧光信号归一化强度(d)—(f) (a), (d) N = 20; (b), (e) N = 60; (c), (f) N = 200 Figure4. The fluorescence sectioning images (a)–(c) of a small spherical sample with a radius of 10R and the normalized intensity (d)–(f) of the fluorescence signal at the center position with the granularity of diffuser being 500: (a), (d) N = 20; (b), (e) N = 60; (c), (f) N = 200.
为获得不同颗粒度条件下, 荧光层析图像的图像质量与原始荧光图像数量之间的关系. 利用上述层析图像提取算法进一步分析了在不同散射体的颗粒度G = 20, 100, 500, 1000, 1500, 2000, 3000, 3500条件下, 不同直径的小球样品的层析图像的荧光信号归一化强度平均值与CCD相机记录小球样品的原始荧光图像数量之间的关系, 如图5所示. 图 5 不同颗粒度条件下, 层析图像荧光信号归一化强度平均值与原始荧光图像数量之间的关系 (a)小球样品; (b)大球样品 Figure5. When the granularities of diffusers are different, the relationships between the average values of the normalized intensity of the fluorescence signals of sectioning images and the numbers of the original fluorescence images: (a) Small ball; (b) large ball.
由图5可知, 对于不同直径的小球样品而言, 当散射体的颗粒度一定时, 荧光层析图像的对比度随着CCD相机记录的原始荧光图像数量的增加而增大, 并逐渐趋于饱和. 根据模拟仿真结果分析可知, 在动态散斑照明条件下, 散斑照明区域随机分布, 激发产生的荧光信号也是随机产生的. 当散射体的颗粒度一定时, 采集的原始荧光图像数量过少, 利用算法提取得到的图像信息有所丢失, 导致获得的荧光层析图像的图像质量较差. 当采集的原始荧光图像达到一定数量后, 即可较完整地恢复焦平面上待测样品的荧光图像, 从而获得高质量的荧光层析图像. 随着原始荧光图像数量的进一步增加, 对图像质量的提升没有影响, 反而会降低系统的成像速度. 此外, 利用这一方法分析了对于不同半径的小球样品, 当CCD记录的原始荧光图像数量为固定值时, 荧光层析图像的对比度和空间分辨率与散射体颗粒度之间的关系. 对于半径为R的小球样品而言, 当原始荧光图像的数量N固定为120, 颗粒度G分别为100, 1000和3000时, 层析成像的模拟仿真结果如图6(a)—(c)所示. 层析图像的荧光信号归一化强度平均值分别为80.03%, 97.22%和76.81%, 先增加后减小, 如图6(d)—(f)所示. 小球样品的荧光层析图像的空间分辨率与焦平面图像的基本一致. 图 6 CCD记录120幅原始荧光图像时, 半径为R的小球样品荧光层析图像 (a)—(c)及中心位置处荧光信号归一化强度 (d)—(f) (a), (d) G =100; (b), (e) G =1000; (c), (f) G = 3000 Figure6. The fluorescence sectioning images (a)–(c) of a small spherical sample with a radius of R and the normalized intensity (d)–(f) of the fluorescence signal at the center position with 120 original fluorescence images being recorded by CCD: (a), (d) G =100; (b), (e) G =1000; (c), (f) G = 3000.
对于半径为10R的小球样品而言, 当原始荧光图像的数量N固定为120, 颗粒度G分别为20, 1000和3000时, 层析成像的模拟仿真结果如图7(a)—(c)所示. 层析图像的荧光信号归一化强度平均值分别为63.27%, 83.28%和73.04%, 如图7(d)—(f)所示, 也是呈现先增大后减小的趋势. 小球样品的荧光层析图像的空间分辨率与焦平面图像的基本一致. 图 7 CCD记录120幅原始荧光图像时, 半径为10R的小球样品荧光层析图像 (a)—(c)及中心位置处荧光信号归一化强度 (d)—(f) (a), (d) G =20; (b), (e) G =1000; (c), (f) G = 3000 Figure7. When 120 original fluorescence images are recorded by CCD and the different granularity of diffuser, G=20, 1000, 3000, The fluorescence sectioning images (a)–(c) of a small spherical sample with a radius of 10R and the normalized intensity (d)–(f) of the fluorescence signal at the center position with 120 original fluorescence images being recorded by CCD: (a), (d) G =20; (b), (e) G =1000; (c), (f) G = 3000.
由仿真结果还可以看出, 当G = 20时, 由于散射体颗粒度较小, 单位面积内照明的散斑面积较大. 照明散斑图案强度分布变化的过程中, 较大体积的均匀待测样品的中心部分荧光信号强度的变化不大, 而边缘部分的则变化较大. 因此, 荧光层析图像中心位置的对比度低于边缘部分, 如图7(d)所示. 仿真结果说明, 利用小颗粒度的散射体可获取包含均匀介质的大体积样品边界轮廓的荧光层析图像. 为了获得不同原始荧光图像数量条件下, 荧光层析图像的图像质量与散射体颗粒度之间的关系. 利用上述层析图像提取算法分析了在CCD相机记录小球样品的不同原始荧光图像数量N = 20, 40, 60, 80, 100, 120, 160, 200条件下, 不同直径的小球样品的层析图像归一化强度平均值与散射体颗粒度G之间的关系, 如图8所示. 图 8 CCD记录不同原始荧光图像数量时, 层析图像荧光信号归一化强度平均值与散斑颗粒度之间的关系 (a)小球样品; (b)大球样品 Figure8. The relationships between the average values of the normalized intensity of the fluorescence signals of sectioning images and the diffuser granularities with different numbers of the original fluorescence images being recorded by CCD: (a) Small ball; (b) large ball.