State Key Laboratory of Ocean Engineering, Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai Jiao Tong University, Shanghai 200240, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 11774229)
Received Date:17 January 2021
Accepted Date:16 February 2021
Available Online:19 August 2021
Published Online:05 September 2021
Abstract:An annular groove (AG) structure with depth gradient is proposed which can manipulate the spatial distribution of the acoustic scattering field for a finite rigid cylinder in water. An analytical analysis is given for better understanding the underlying mechanism of the abnormal scattered wave, which can be accomplished by using the phased array theory. When the plane acoustic wave is normally incident, the scattering acoustic wave in the transverse direction of the cylinder deflects, which is due to the interaction between the phase delay modulated by the AG structure with varying groove depths and the Bragg scattering of adjacent grooves. The finite element method is used to calculate the acoustic scattering field of a finite rigid cylinder with annular grooves and obtain the frequency and spatial distribution characteristics. How the structural parameters such as depth, gradient, and duty ratio of the annular grooves affect the acoustic scattering field is discussed in detail. The results show that the target strength in the transverse direction decreases linearly with duty ratio increasing while the target strength in the deflection direction of the acoustic wave increases with the duty ratio until δ = 30%, after which it remains almost constant. When the incident acoustic wave is fixed, the acoustic scattering wave of the AG cylinder can be deflected by designing the gradient appropriately, and the deflection direction is independent of the frequency. Numerical and experimental results for a cylinder with multiple annular-groove units show that the spatial directivity of the scattering field of the grooved cylinder changes, and the target strength is enhanced at six pre-designed deflection angles. Meanwhile, the deflected acoustic wave has a certain width and the interference among periodic structures of the AG units exists, which makes the spatial directivity of the scattering field of the cylinder equalize and changes the scattering characteristics of the cylinder, thereby providing a theoretical basis for designing three-dimensional underwater objects each with an acoustic stealth. Keywords:annular grooves/ acoustic deflection/ cylinder/ acoustic scattering
根据(5)式得到环形凹槽圆柱体归一化指向性函数的频率-角度谱(见图3), 在θ = 45°方向散射声波最强, 且偏转声波具有一定宽度, 主波束宽度与频率相关, 频率越高, 宽度越窄, 与数值计算结果吻合较好. 图 3 凹槽圆柱归一化指向性函数频率-角度谱 Figure3. Frequency-angle spectra of the normalized directional factors for the annular groove cylinder by Eq. (5)
-->
3.1.占空比
定义环形凹槽结构占空比为$\delta ={w / d} \times $100%, d = 0.6 cm, 环形凹槽结构梯度g = –0.35. 基于有限元方法计算占空比δ = 0和83.3%的环形凹槽圆柱在频率f = 80 kHz目标强度的空间指向性如图4所示, 占空比δ = 0(即刚性圆柱, 图4中黑色线)在θ = 90°方向目标强度最强, 当圆柱表面具有凹槽结构δ = 83.3%时, θ = 45°方向目标强度最强, θ = 90°方向相较于圆柱目标强度约减小了15 dB. 图5显示了环形凹槽圆柱在θ = 45°(黑色线)和θ = 90°(红色虚线)方向目标强度随占空比变化规律, 显然随着占空比增大, 环形凹槽圆柱反向散射(θ = 90°)目标强度单调下降; 当δ < 30%时, 随着δ增大, 散射声波偏转方向(即θ = 45°)目标强度单调增加, 当δ > 30%, 其目标强度基本不变. 为了不改变圆柱整体外部结构而使圆柱散射声波偏转且正横方向目标强度较低, 文中数值仿真均选定凹槽宽度w = 0.5 cm, 此时环形凹槽圆柱正横目标强度相较于光滑圆柱降低了15 dB左右. 图 4 频率f = 80 kHz占空比δ = 0和δ = 83.3%凹槽圆柱目标强度空间指向性 Figure4. Spatial directivity of target strength of the annular groove cylinder with δ = 0 and 83.3% at f = 80 kHz.
图 5f = 80 kHz, 不同占空比凹槽圆柱在45°和90°方位目标强度 Figure5. Target strength of the annular groove cylinder with varying δ in the 45° and 90° direction at f = 80 kHz.
23.2.梯 度 -->
3.2.梯 度
环形凹槽深度梯度分别为g = –0.25, g = –0.13和g = 0.25, g = 0.13的凹槽圆柱在频率f = 80 kHz的目标强度空间指向性如图6所示, 凹槽圆柱目标强度最大值分别出现在θ = 60°, 75°, 105°和120°方向, 与公式理论预报的声波偏转方向一致. 因此, 通过设计不同环形凹槽的深度梯度可以使得环形凹槽圆柱正横散射目标强度偏转到任意角度, 从而实现对有限长刚性圆柱散射声场空间分布的调控. 利用此特征, 设计不同深度梯度的环形凹槽单元组合使得圆柱正横方向目标强度在一定空间范围内均衡化, 从而改变圆柱整体的回波特征. 环形凹槽圆柱结构参数为: 半径a = 3.5 cm, L = 38 cm, 每个凹槽单元中凹槽最深的深度相同hmax = 1.95 cm. 6个环形凹槽单元梯度依次为g1 = –0.13, g2 = 0.25, g3 = –0.35, g4 = 0.35, g5 = –0.25, g6 = 0.13. 由公式可知, 6个环形凹槽单元对应声波偏转方向依次为θ1 = 75°, θ2 = 120°, θ3 = 45°, θ4 = 135°, θ5 = 60°和θ6 = 105°. 图 6f = 80 kHz, 不同梯度环形凹槽结构圆柱目标强度空间指向性 Figure6. Spatial directivity of target strength of the annular groove cylinder with different g at f = 80 kHz.
获取了频率f = 80 kHz 6个环形凹槽单元组合圆柱不同接收角度的目标强度(图7中红色虚线), 对比相同尺度光滑圆柱(图7中黑色线)目标强度的指向性可以发现: 环形凹槽圆柱在正横方向(即90°)较光滑圆柱目标强度约降低了15 dB, 正横方向散射声波均衡分布在45°—135°范围内. 利用此结构使得圆柱正横方向较为集中的散射能量被分散到其他区域内, 使得散射声场均衡化, 改变了圆柱整体的散射特征. 图 7 6个环形凹槽单元组合圆柱目标强度指向性, f = 80 kHz Figure7. Spatial directivity of target strength of the cylinder with six annular groove units at f = 80 kHz
-->
4.1.实验布置
开展了6个环形凹槽单元组合结构圆柱收发分置声散射特性水池实验, 此次实验是在上海交通大学水声工程所水池完成. 两个实验模型(圆柱和环形凹槽圆柱)均为实心不锈钢材料, 近似为刚性, 几何结构参数与3.2节中6个环形凹槽单元组合圆柱相同. 测试模型水平置于空间尺寸为5 m × 5 m × 5 m的充水水池中, 发射换能器采用刚性连接吊放位置距离目标2.15 m, 水听器为B&K8103, 固定于悬臂梁上距离目标1.05 m, 均匀旋转悬臂梁从而获取收发分置条件下测试模型正横方向入射, 不同接收方向的散射声场. 发射换能器、水听器和目标三者处于同一深度, 距离水面2.4 m, 实验模型及具体布放如图8和图9所示. 为排除市电干扰, 测量过程中所有设备全程处于UPS直流供电状态. 图 8 实验模型 Figure8. Experimental models.
图 9 实验装置布放图 Figure9. Diagram of experimental system setup.