1.College of Electronic and Electrical Engineering, Henan Normal University, Xinxiang 453007, China 2.Key Laboratory of Interfacial Physics Technology Project, Chinese Academy of Sciences, Shanghai 201800, China 3.Key Laboratory Optoelectronic Sensing Integrated Application of Henan Province, Henan Normal University, Xinxiang 453007, China 4.Academician Workstation of Electromagnetic Wave Engineering of Henan Province, Henan Normal University, Xinxiang 453007, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 62075057), Key Laboratory of Interfacial Physics Technology Project, Chinese Academy of Sciences (Grant No. CASKL-IPT2003), Basic Research Project of Key Scientific Research Projects of Higher Education Institutions of Henan Province, China (Grant No. 19B510006), and the Ph. D. Program of Henan Normal University (HNU), China (Grant Nos. gd17167, 5101239170010)
Received Date:14 April 2021
Accepted Date:19 May 2021
Available Online:15 August 2021
Published Online:20 November 2021
Abstract:In this paper, a porous silicon-calcium fluoride hybrid plasmonic waveguide (PS-CaF2 HPW) with an asymmetric silver film is studied. The PS-CaF2 HPW is composed of a PS strip waveguide deposited with asymmetric CaF2 and Ag thin film layers on an SiO2 substrate. In the mid-infrared (MIR) region, the mode characteristics and waveguide sensitivity of the mode in the PS-CaF2 HPW are simulated by using the finite element method (FEM). The results show that there are two fundamental modes (PM 1 and PM 2) with different polarization states in the PS-CaF2 HPW. The real part of the effective refractive index (Re(neff)), transmission loss (α), normalized effective mode field area (A), quality factor (FOM) and sensitivity (Swg) for each of the PM 1 and the PM 2 are studied and optimized. Moreover, the effect of temperature on the performances of the PS-CaF2 HPW is also analyzed. Firstly, the mode field distributions calculated by the FEM indicate that the mode field energy for each of the PM 1 and PM 2 in the PS-CaF2 HPW is mostly restricted to the PS layer and CaF2 layer. Comparing with conventional dielectric waveguides, the mode field energy of the PS-CaF2 HPW is well confined in the PS layer and CaF2 layer. The geometric parameters of the PS-CaF2 HPW are optimized by changing the geometric parameters (W1, W2, and W3). When W1 = 1500 nm, W2 = 300 nm, W3 = 70 nm, and the operating wavelength is ~3.5 μm, α and FOM are 0.019 dB/μm and 1594.99 for the PM 1, and α and FOM are 0.016 dB/μm and 1335.54 for the PM 2, respectively. Secondly, the waveguide sensitivity of the PS-CaF2 HPW is analyzed. The results show that the size of PS layer has a great influence on the waveguide sensitivity. The waveguide sensitivity decreases with the size of the PS layer increasing. In addition, the PS-CaF2 HPW has good temperature resistance. Moreover, temperature has almost no effect on Re(neff), nor α nor A nor FOM nor Swg in a temperature range from -40 K to 40 K. Finally, the fabrication tolerances of the PS-CaF2 HPW are demonstrated, and the good properties are maintained in a size tolerance range from -10 nm to 10 nm. With the advantages in propagation property and loss reduction, the PS-CaF2 HPW provides a feasible label-free biochemical sensing scheme and a method of polarization control devices. Keywords:hybrid plasmonic waveguide/ surface plasmon polaritons/ propagation property/ waveguide sensitivity
5.波导制备方法与容差分析本文提出了制备非对称银膜PS-CaF2混合等离子体波导的可行方案, 流程图如图8所示: 首先, 在SiO2衬底层上使用分子束外延(molecular beam epitaxy, MBE)技术在超高真空下外延生长PS层, 并用传统的深紫外线光刻刻蚀PS层; 其次, 利用分子束外延技术在超高真空条件下外延生长非对称CaF2层; 再利用真空蒸发法沉积不对称Ag膜; 最后, 利用固态水等离子体刻蚀法刻蚀掉多余的PS和CaF2部分. 图 8 制造流程 (a)在SiO2衬底上外延生长PS层; (b)电子束光刻使其成型; (c)涂上抗蚀剂; (d) 在PS上外延生长CaF2层; (e) 倾斜沉积金属Ag层; (f)电子束光刻使其成型, 并清除抗蚀剂 Figure8. (a) Grow PS on a SiO2 substrate; (b) pattern the resist through E-beam lithography; (c) it is coated with a resist; (d) grow CaF2 layers epitaxially on a PS layer; (e) oblique deposition of metal Ag; (f) electron beam lithography moulds it and removes the resist.
尺寸容差对非对称银膜PS-CaF2 混合等离子体波导的影响是波导实际应用必须考虑的问题, 因此需要讨论尺寸容差对非对称银膜PS-CaF2 混合等离子体波导性能的影响. 本文设计的非对称银膜PS-CaF2 混合等离子体波导部分覆盖CaF2和Ag薄膜, 在制造过程中要求较大的对准容差. 尺寸容差对非对称银膜PS-CaF2 混合等离子体波导性能的影响如图9—图11所示. 根据前文的参数优化, 在下面的仿真过程中, W1(= H1), W2(= H2)和W3(= H3)分别为1500 nm, 300 nm和70 nm. 此时, PM 1和PM 2的FOM分别是1335.45和1594.99; A分别为0.30, 0.52; Swg分别为0.080, 0.064. 在 ± 10 nm的容差范围内, 研究了ΔW1, ΔH1, ΔW2, ΔH2, ΔW3和ΔH3对FOM, A和Swg的影响. 图 9 不同的尺寸容差下, PM 1和PM 2 的FOM的变化 (ΔFOM)随(a) ΔW1和ΔH, (b) ΔW2和ΔH2; (c) ΔW3和ΔH3的变化规律, W1 (= H1), W2 (= H2) 和W3 (= H3)分别取1500 nm, 300 nm和70 nm Figure9. The changes of FOM (ΔFOM) for the PM 1 and PM 2 with different dimensional tolerances: (a) ΔW1 and ΔH1 at W2 (= H2) = 300 nm and W3 (= H3) = 70 nm; (b) ΔW2 and ΔH2 at W1 (= H1) = 1500 nm and W3 (= H3) = 70 nm; (c) ΔW3 and ΔH3 at W1 (= H1) = 1500 nm and W2 (= H2) = 300 nm.
图 11 不同的尺寸容差, PM 1和PM 2 的Swg (ΔSwg)随(a) ΔW1和ΔH1, (b) ΔW2和ΔH2, (c) ΔW3和ΔH3的变化规律. W1(= H1), W2(= H2) 和W3(= H3)分别取1500 nm, 300 nm和70 nm Figure11. The changes of Swg (ΔSwg) for the PM 1 and PM 2 with different dimensional tolerances: (a) ΔW1 and ΔH1 at W2(= H2) = 300 nm and W3(= H3) = 70 nm; (b) ΔW2 and ΔH2 at W1(= H1) = 1500 nm and W3(= H3) = 70 nm; (c) ΔW3 and ΔH3 at W1(= H1) = 1500 nm and W2(= H2) = 300 nm.
不同尺寸容差下, FOM的变化(ΔFOM)如图9(a)—(c)所示. 在图9(a)中, ΔW1和ΔH1的变化对ΔFOM的影响较小, 变化幅度小于20.7和16.5. 然而, 因为银膜厚度与欧姆损耗紧密相关, ΔW3和ΔH3的变化对ΔFOM有明显的影响. 对于PM 1来说, ΔW1(ΔW2或ΔW3)的影响比ΔH1(ΔH2或ΔH3)大. 对于PM 2来说, ΔW1(或ΔW3)和ΔH1(或ΔH3)对ΔFOM的影响基本一样. 由于极化方向的不同, ΔW2(或ΔH2)对PM 1和PM 2的ΔFOM有相反的影响, 如图9(b)所示. 由图9可知, 不同尺寸容差对FOM的影响小于80. 不同尺寸容差下, A的变化(ΔA)如图10(a)—(c)所示. 在图10(a)中, ΔW1(或ΔH1)对于PM 2的A几乎没有影响; 而对于PM 1来说, A都随ΔW1(或ΔH1)增大而增加, 但ΔW1的影响更明显. 在图10(b)中, ΔW2(或ΔH2)对PM 2的A没有明显影响; 而对ΔW2和ΔH2对PM 1的A的影响呈现相反的趋势. 如图10(c)所示, ΔW3 (或ΔH3)对PM 2的A几乎没有影响; 然而ΔW3和ΔH3对PM 1的A有不同的影响, A先随ΔW3增大而增大然后几乎不变, ΔH3对A几乎没影响. 总的来说, 不同尺寸容差对A的影响都小于0.06. 图 10 在不同的尺寸容差下, PM 1和PM 2 的A 的变化(ΔA)随(a) ΔW1和ΔH1, (b) ΔW2和ΔH2, (c) ΔW3和ΔH3的变化规律. W1(= H1), W2(= H2) 和W3(= H3)分别取1500 nm, 300 nm和70 nm Figure10. The changes of A (ΔA) for the PM 1 and PM 2 with different dimensional tolerances: (a) ΔW1 and ΔH1 at W2 (= H2) = 300 nm and W3 (= H3) = 70 nm; (b) ΔW2 and ΔH2 at W1 (= H1) = 1500 nm and W3 (= H3) = 70 nm; and (c) ΔW3 and ΔH3 at W1 (= H1) = 1500 nm and W2 (= H2) = 300 nm.