1.The 27th Institute of CETC, Zhengzhou 450047, China 2.Laboratory of Opto-electronics Technology, College of Electronic Information and Control Engineering, Faculty of Information Technology, Beijing University of Technology, Beijing 100124
Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 60908012, 61575008, 61775007), the Natural Science Foundation of Beijing City, China (Grant No. 4172011) and the Beijing Municipal Commission of Education of China (Grant No. 040000546319525).
Received Date:08 February 2021
Accepted Date:25 June 2021
Available Online:15 August 2021
Published Online:20 November 2021
Abstract:In this paper, the 795-nm vertical cavity surface emitting laser (VCSEL) with sub-wavelength grating coupled cavity is proposed and designed based on the theory of resonant coupled cavity, and the mechanism of multi-cavity coupling linewidth narrowing and influencing factors are analyzed in detail by using the COMSOL software finite element method. The analysis results show that when photonic resonance takes place in a multi-coupled cavity, the grating-coupled cavity with reasonable design parameters and the multi-coupled cavity formed by precisely controlled lasers are phase-matched, which greatly strengthens the narrowing effect of the spectral linewidth resonance, and a 795-nm VCSEL laser with high beam quality and ultra-narrow linewidth output is obtained, finally. Theoretical results display that the reflection spectrum cold cavity linewidth Δλc of the coupling cavity with a thickness of 180nm of the spacer layer can reach 7 pm, which lays a theoretical foundation for achieving a kHz-level spectral linewidth output of VCSEL lasers. Keywords:resonant coupled cavity/ vertical cavity surface emitting laser/ ultra-narrow linewidth/ subwavelength grating
3.结果与分析图2为光栅周期和耦合腔间隔层对共振谱线的影响, 其中, 光栅厚度为175 nm, 间隔层厚度为150 nm, 基底层厚度为400 nm. 从图2中可以看出, 随着光栅周期和间隔层厚度的增加, 耦合腔共振波长均将发生红移, 而光栅周期增加引起的共振波长红移比达到1.6, 远大于间隔层引起的波长红移比0.01. 同时, 共振光谱线宽随着间隔层的增加从0.12 nm减小到0.09 nm, 而随着光栅周期的增加, 光谱线宽保持在0.11 nm不变. 这说明对于795 nm的中心波长来说, 亚波长光栅周期衍射效率更大地影响了共振波长位置, 而间隔层厚度更多影响了耦合腔的共振强度, 进而决定了线宽压窄程度. 图 2 光栅结构参数对共振谱线的影响 (a)改变光栅周期; (b)改变间隔层厚度 Figure2. The influence of grating structure parameters on the resonance spectrum: (a) Change the grating period; (b) change the thickness of the spacer layer.
相比于光栅耦合腔共振波长受到亚波长光栅周期影响, 激光器谐振腔共振波长同样受到多光腔耦合效应的影响, 如图3(a)所示, 随着VCSEL限制层厚度的变化, 有源区谐振波长在795 nm处出现非线性趋势, 这是因为当有源区谐振波长与光栅耦合腔谐振波长接近时, 多光腔耦合效应逐渐增强[19], 使得有源区谐振波长发生红移. 为了实现激光器多光腔共振耦合, 使新型795 nm VCSEL激光器具有线宽压窄特性, 需要调控光栅耦合腔使其与激光器谐振腔共振波长一致, 进而实现耦合腔相位相互匹配. 光栅周期的变化将会改变光栅耦合腔的谐振波长, 并出现两个共振峰, 其中一个为有源区的谐振腔共振峰, 另一个为光栅耦合腔共振峰(图3(b)插图). 如图3(b)所示, 当周期为457.447 nm时, 谐振腔耦合强度最大, 共振耦合波长为795 nm, 且此时光栅耦合腔内部的电场值最大, 也就是说其电场值的半高全宽最窄. 同时, 从图3(b)中可以看出, 光栅周期对有源区谐振波长影响非常小, 因此, 通过改变光栅周期, 可以精确调控光栅耦合腔谐振波长使其与VCSEL有源区谐振在795 nm处高度一致, 从而使得耦合腔和有源区在795 nm处同时发生谐振, 二者相位相互匹配, 进而增强了光栅耦合腔在激光器中压窄线宽的作用[20]. 耦合腔产生共振耦合时, 其多耦合腔共振电场各自达到最大值, 且各自电场值的半高全宽也达到最窄, 如图3(c)和图3(d)所示, 分别表示两个谐振腔相互耦合之后, 光栅耦合腔与有源区的电场光谱图. 图 3 (a), (b)两个谐振腔相互耦合的变化过程, 限制层厚度与光栅周期调节使其相互耦合; (c), (d)相互耦合完成之后, 不同间隔层厚度亚波长光栅VCSEL有源区与光栅耦合腔的谐振电场分布 Figure3. (a) and (b) The variation process of the mutual coupling of the two resonant cavities, limiting the layer thickness and adjusting the grating period to make them coupled; (c) and (d) after the mutual coupling is completed, the subwavelength grating VCSEL with different spacing layer thickness is active Resonant electric field distribution of coupling cavity between zone and grating
图4为在不同间隔层厚度时, 光栅耦合腔与VCSEL谐振腔相位变化、反射谱及共振电场的强度分布. 从图4中可以看出, 随着间隔层厚度从60 nm增加到180 nm, 激光器在795 nm共振中心波长处的相位斜率变化越来越大, 从60 nm时的3.52 rad/nm增加到180 nm时的3831.17 rad/nm, 使得满足激光器耦合腔相位匹配的共振波长范围进一步减小, 表明耦合腔激光器的模式选择能力被逐渐提高[21-23]. 另一方面, 从反射谱也可以看出, 激光器对耦合共振波长的透射越来越强, 反射率从64.76%减小到4.29%, 中心波长处透射率趋近于100%, 反射谱的线宽从0.064 nm减小到0.007 nm, 线宽减小一个数量级, 达到了pm量级. 随着间隔层厚度的增大, 在有源区的共振电场值也进一步增大, 表明谐振腔能够更加精确地对795 nm的光波进行选择. 比较不同间隔层有源区的电场值, 间隔层为180 nm的光栅耦合腔VCSEL在795 nm处的电场值比间隔层为60 nm的大约大了一个数量级. 有源区的电场光谱图与光栅耦合腔的变化趋势几乎一样, 随着间隔层厚度的增加, 795 nm波长处的电场值越来越大, 在耦合腔内发生的共振现象也越来越强. 光栅耦合腔VCSEL的谐振腔品质因子Q与耦合腔间隔层关系如图5所示, 在没有耦合腔作用的情况下, VCSEL的Q值处于103量级, 为普通VCSEL激光器Q值平均水平. 当间隔层厚度为60 nm时, Q因子上升到104量级, 随着耦合腔间隔层厚度的增加, 耦合腔共振效应越来越显著, Q因子逐渐增大; 当间隔层厚度增加到初始值的3倍时, Q因子达到105量级, 比普通VCSEL腔增加了两个量级. 图 4 间隔层厚度不同时, 基于导模共振耦合腔的VCSEL的冷腔反射谱的半高全宽与光场分布图 (a) db=60 nm; (b) db=120 nm; (c) db=150 nm; (d) db=180 nm Figure4. Full width at half maximum and optical field distribution of cold cavity reflection spectrum of VCSEL based on guided mode resonant coupled cavity when the thickness of the spacer layer is different: (a) db=60 nm; (b) db=120 nm; (c) db=150 nm; (d) db=180 nm.
图 5 光栅耦合腔VCSEL品质因子Q与间隔层厚度变化关系 Figure5. The relationship between the quality factor Q of the grating coupled cavity VCSEL and the thickness of the spacer layer.