Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 11764039, 11847304, 11865014, 11475027, 11305132, 11274255), the Natural Science Foundation of Gansu Province, China (Grant No. 17JR5RA076), and the Scientific Research Foundation of the High Education Institutions of Gansu Province, China (Grant No. 2016A-005)
Received Date:14 April 2021
Accepted Date:26 May 2021
Available Online:30 September 2021
Published Online:20 October 2021
Abstract:In a recent experiment [Hamner C, et al. 2015 Phys. Rev. Lett.114 070401], spin-orbit coupled Bose-Einstein condensates in a translating optical lattice have been successfully prepared into any Bloch band, and directly proved to be the lack of Galilean invariance in the presence of the spin-orbit coupling. The energy band structure of the system becomes complicated because of the lack of Galilean invariance. At present, the energy band structure of the spin-orbit coupled Bose-Einstein condensates in optical lattice is still an open issue, especially the theoretical evidence for the in-depth understanding of the competition mechanism among the spin-orbit coupling, the Raman coupling, the optical lattice and the atomic interactions of the nonlinear energy band structure has not been clear yet.In this paper, based on the two-mode approximation and variational analysis, the nonlinear energy band structure and current density of the spin-orbit coupled Bose-Einstein condensates in the one-dimensional optical lattice are investigated. We find that when the spin-orbit coupling, the Raman coupling, the optical lattice, and the atomic interactions satisfy certain conditions, a loop structure in the Brillouin zone edge will emerge. The critical condition for the loop structure emerging in the Brillouin zone edge is obtained in a parameter space. The Raman coupling and the optical lattice suppress the emergence of the loop structure, while the spin-orbit coupling and the atomic interactions promote the emerging of the loop structure and make the energy band structure more complex. Interestingly, the atomic interactions can make the loop structure occur at both the higher-lying bands and the lowest energy band. The energy band structure is closely related to the current density of the system. The spin-orbit coupling causes the current density to be strongly asymmetric and leads the current density distributions of different spin states to be separated from each other in the momentum space near the boundary of the Brillouin zone. The optical lattice strength and the Raman coupling can weaken the asymmetry. The appearance of loop structure breaks the Bloch oscillation and gives rise to the Landau-Zener tunneling. The separation of the current density distributions of different spin states in the momentum space means the emergence of the spin exchange dynamics. Our results are beneficial to the in-depth understanding of the nonlinear dynamics of the spin-orbit coupled Bose-Einstein condensates in optical lattice. Keywords:Bose-Einstein condensates/ optical lattice/ spin-orbit coupling/ nonlinear energy band structure
图1是在不同系统参数下的最低能带. 可以看出, 在最低能带的布里渊区的边界处, 即$ k = 0.5 $处出现了特殊的loop结构. 而且在每一行中(请看第2行—第4行中$ V_{0} = 0.2 $情况), 随着拉曼耦合$ \varOmega $ 的增大, loop宽度先变小, 然后在布里渊区边界处出现尖点, 最后loop消失. 每一列中, 随着自旋轨道耦合强度$ k_{0} $的增大, 能带先在边界附近出现尖点, 继续增大$ k_{0} $, 布里渊区的边界处出现了loop结构, 最后loop的宽度变大的同时能带结构变得更加复杂(如每一列中$ V_{0} = 0.2 $情况). 在每一副子图中不同颜色对应着不同的光晶格强度, 对于较小的光晶格强度$ V_{0} $, 能带结构在布里渊区的边界处先出现了较大的loop结构, 继续增大$ V_{0} $, 能带在边界处出现尖点, 最后loop消失(如$ k_{0} = 0.3 $, $ \varOmega = 1.5 $情况). 总之, 我们发现拉曼耦合和光晶格强度抑制了最低能带在边界处loop结构的出现, 自旋轨道耦合促进了loop结构的产生, 使loop结构变得更加复杂. 能带结构中不同能量最小值处(图1中用小球表示)的凝聚体处于不同的基态相, 为了进一步研究能量最小值处凝聚体所处的基态相, 图2给出了不同拉曼耦合下的极化图. 可以看出, 当自旋轨道耦合强度$ k_{0} $较小时($ k_{0} = 0.2 $), 能量最小值处的凝聚体处于非极化的Bloch相 (图2中的所有黑球). 随着$ k_{0} $的增大, 当$ s\neq0 $时凝聚体处于极化Bloch相, 相反, 当$ s = 0 $时凝聚体处于非极化Bloch相. 图 1 不同系统参数下的非线性能谱结构. 每副子图中不同的颜色代表不同的光晶格强度, $ V_{0} = 0.05 $ (红色), $ 0.2 $ (绿色), $ 0.4 $ (蓝色). 能量最小值处用不同颜色的小球表示. 其他参数: $g = 0.2, \;g_{12} = 0.1$ Figure1. Nonlinear energy band structure for different system parameter. Different colored curves in every subplots correspond to different optical lattice strength, $ V_{0} = 0.05 $ (red), $ 0.2 $ (green), $ 0.4 $ (blue). The energy minima is indicated by different colored ball. The other parameters are $ g = 0.2 $ and $ g_{12} = 0.1 $.
图 2 不同拉曼耦合$\varOmega$下的极化图. 其他参数: $g = 0.2, $$ g_{12} = 0.1, V_{0} = 0.4$ Figure2. Spin polarization $ s $ as a function of Raman coupling $ \varOmega $ for different $ k_{0} $. The other parameters are $ g = 0.2 $, $ g_{12} = 0.1 $ and $ V_{0} = 0.4 $.
能带布里渊区边界处loop结构的出现, 还与原子间相互作用有关. 为了进一步研究原子间相互作用对能带结构的影响, 图3中绘制了不同种间原子间相互作用$ g_{12} $下的能带. 可以发现: 最低能带中不仅在布里渊区的边界处($ k = 0.5 $)出现loop结构, 在远离边界的两端也有loop的存在(图中在$ k = 0, 1 $附近). 同时在高能带的布里渊区边界处也出现了loop结构, 而且随着$ g_{12} $的增大, 不同位置的loop结构宽度都变大, 能带中还会出现高低能带loop交叉等更加复杂的现象. 由此可知, 原子间相互作用的非线性效应会使能带中loop结构更加复杂. 图 3 不同种间原子间相互作用$ g_{12} $下的非线性能谱结构. 其他参数: $\varOmega = 0.1$, $ k_{0} = 0.2 $, $ V_{0} = 0.1 $, $ g = 0.1 $ Figure3. Nonlinear energy band structure for different interspecies interaction $ g_ {12} $. The other parameters are $ \varOmega = 1.0 $, $ k_{0} = 0.4 $, $ g = 0.2 $ and $ g_{12} = 0.1 $.
22.3.能带出现loop结构的临界条件 -->
2.3.能带出现loop结构的临界条件
当最低能带在布里渊区边界处出现尖点时, 便是达到了出现loop的临界条件. 为了直观地观测不同参数对最低能带布里渊区边界处出现loop结构的影响, 绘制了不同自旋轨道耦合$ k_{0} $下, loop结构出现的临界$ \varOmega $图(图4). 从图4可以发现, 在$ k_{0}\text{-}\varOmega $ 平面, 较强的光晶格使loop的区域向大自旋轨道耦合区域扩展. 当$ k_{0} $一定时, 弱拉曼耦合$ \varOmega $有利于loop结构的出现, 随着$ k_{0} $的增大, 较强的拉曼耦合$ \varOmega $才会使能带中不出现loop. 此外, 增大种间原子间相互作用$ g_{12} $(图4(b)和图4(c)), 当$ k_{0} $较小时, 光晶格强度$ V_{0} $对能带在布里渊区边界处出现loop结构的临界$ \varOmega $的影响减弱. 随着$ k_{0} $ 的增大, 较强的光晶格强度则需要更大的拉曼耦合值才能使最低能带的边界处不出现loop结构. 图 4$ g = 0.2 $时最低能带出现loop 的临界$ \varOmega $, (b) 中不同形状的符号表示相应光晶格强度下(9)式给出的理论值 Figure4. Critical condition for appearing the loop structure in the lowest energy band at $ g = 0.2 $. The different symbols in panel (b) represent the theoretical values given by Eq. (9) under the corresponding optical lattice strength.
为了进一步理解自旋轨道耦合、拉曼耦合、光晶格和原子间相互作用对形成loop的竞争机理, 针对$ g = g_{12} $的情况进行了理论分析. loop结构最先在布里渊区边界出现, 在变分方程(6a)和(6b)中令$ k = 1/2 $且$ G_{2} = 0 $, 即$ g = g_{12} $, 消去$ s $可得
数值求解变分方程组(6a)和(6b)中的$ s $和$ \theta $, 代入(11)式可得到在布里渊区边界附近非线性Bloch波的流密度. 图5是与能带图图1第二列对应的不同自旋态的流密度图. 从图5可以发现, 当自旋轨道耦合强度$ k_{0} $较小时, 不同自旋态的流密度基本重合. 若能带在布里渊区边界处无loop结构, 则在$ k = 0.5 $处的凝聚体流密度为零, 即$ j_{i} = 0 $, 凝聚体将维持Bloch振荡, 同时将伴随着弱的自旋交换(例如$ k_{0} = 0.01, V_{0} = 0.2 $). 随着$ k_{0} $的增大, 虽然布里渊区边界处的凝聚体流密度$ j_{i} $仍然为0, 但是流密度呈现出一定的不对称性(例如$k_{0} = 0.1, $$ V_{0} = 0.2$), 且在动量空间中不同自旋态流密度的分布发生分离, 凝聚体在进行Bloch振荡的同时, 自旋交换加强. 继续增大$ k_{0} $, 在布里渊区边界附近相同凝聚体动量所对应的流密度$ j_{i} $出现多值, 相应的能量值出现多根, 所以能带结构在布里渊区边界处出现了loop结构(例如$ k_{0} = 0.2, V_{0} = 0.2 $), 破坏了系统的Bloch振荡, 使原子在不同Bloch带之间发生了非线性Landau-Zener隧穿, 由于两自旋态的流密度在动量空间的分布明显分离, 因此自旋交换也加强. 另外, 从图5还发现, 光晶格强度的增大不仅减小了能带结构布里渊区边界处的loop宽度, 同时使不同自旋态的流密度在动量空间中重合, 减弱了流密度的不对称性和自旋交换. 图 5 不同自旋轨道耦合$ k_{0} $和光晶格强度$ V_{0} $下的凝聚体流密度. 其他参数: $ \varOmega = 0.15 $, $ g = 0.2 $, $ g_{12} = 0.1 $. 图中红色和黑色的线表示不同自旋态的凝聚体流密度 Figure5. Current density for different spin-orbit coupling $ k_{0} $ and optical lattice strength $ V_{0} $. The other parameters are $ \varOmega = 0.15 $, $ g = 0.2 $ and $ g_{12} = 0.1 $. The red and black lines represent the current density of different spin states.
图6进一步研究了自旋轨道耦合与拉曼耦合对不同自旋态流密度的耦合影响. 从图6可以直观地发现, 随着$ \varOmega $的增大, 能带结构中loop宽度减小的同时, 凝聚体流密度的不对称性减弱. 当自旋轨道耦合强度$ k_{0} $较小时(图6第一、二行$ k_{0} = 0.1 $), 不同自旋态的流密度基本重合且自旋交换较小, 但是随着$ k_{0} $的增大(图8第三、四行$ k_ {0} = 0.2 $), 不同自旋态的流密度呈现出明显的不对称性. 而$ \varOmega $的增大会强烈地减弱这种不对称性, 使不同自旋态的流密度的变化规律与无自旋轨道耦合的情况相似. 同时还发现, 在动量空间loop宽度所对应的凝聚体动量, 正好与凝聚体流密度中出现多值所对应的动量区间一致(图中用粉色垂线表示), 所以可以通过直接地观测凝聚体流密度出现多值的区域来研究loop结构的大小. 图 6 不同拉曼耦合$ \varOmega $下的能带和相应的凝聚体流密度. 其他参数: $ V_{0} = 0.05 $, $ g = 0.2 $, $ g_{12} = 0.1 $. 图中红色和黑色的线表示不同自旋态的流密度 Figure6. Energy band and current density for different Raman coupling $ \varOmega $. The other parameters are $ V_{0} = 0.05 $, $ g = 0.2 $ and $ g_{12} = 0.1 $. The red and black lines represent the current density of different spin states.