1.School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China 2.College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou 310027, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 61971115, 61975177, 61721001)
Received Date:12 April 2021
Accepted Date:17 May 2021
Available Online:07 June 2021
Published Online:05 October 2021
Abstract:Orbital angular momentum, as a basic physical quantity of electromagnetic waves, has been widely studied since 1992. Recently, the geometric phase metasurface, which is also known as Pancharatnam-Berry (P-B) phase metasurface, has been proposed. Because of its frequency-independent and angle-dependent phase control characteristics, it can generate high-performance and broadband vortex wave. However, the current design of reflective metasurface encounters the following problems: 1) the reflected vortex wave is partly blocked by the feeding antenna; 2) in practical applications, the cross-polarized field will inevitably be induced due to the feed antenna and the reflective metasurface. How to avoid the cross-polarization is still worth further investigating. In this work, an offset-fed vortex wave generator is proposed. It consists of a right-handed circularly polarized Archimedes spiral antenna and a reflective metasurface. Firstly, the offset feeding design is introduced to avoid generating the cross-polarized fields caused by the feeding antenna. A geometric meta-atom of the reflective metasurface is designed at a working frequency of 8.5 GHz. By regularly arranging meta-atoms with different orientation angles, the convergence and phase compensation functions are imparted only to the co-polarization field. The cross-polarized field is intentionally weakened and refracted along other directions. Subsequently, a low cross-polarized vortex wave with an enhancement effect is obtained at the desired observation position. There are three contributions made in this work: 1) a P-B meta-atom is proposed to fabricate the reflective metasurface; 2) the conversion relationship between the co-polarized and cross-polarized field is studied from the initial state to the final state, and the four transformation processes are demonstrated in detail; 3) an offset-fed vortex wave generator is established which allows one to generate high-performance vortex beam with arbitrary OAM mode. The experimental results are in good agreement with those simulation results, proving the proposed method effective and feasible. The proposed design shows its advantages including simple structure, polarization selectivity, and regional field enhancement effect, which has great potential applications in vortex wave communication and OAM-based target detection. Keywords:metasurfaces/ vortex wave/ offset-fed/ Pancharatnam-Berry phase
全文HTML
--> --> --> 1.引 言轨道角动量(orbital angular momentum, OAM) 作为电磁波的一个基础物理量, 自1992年发现以来已受到国内外****的广泛研究[1]. 携带轨道角动量的涡旋波束具有螺旋的空间相位分布exp(ilφ), φ是空间方位角, l为OAM模式数一般取整数. 由于具有不同模式的涡旋波相互正交, 因此被广泛应用于光子[2]、微波[3]、和声学领域[4,5], 并成功应用于超分辨率成像[6]、微纳操控[7]和高速率信息传输[8,9]等相关应用. 在微波频段, 常见的涡旋波生成方法有螺旋相位板[10]、天线阵[11]、行波天线[12]、准连续光栅和人工超表面等[13,14]. 其中超表面由于避免了复杂的馈电设计, 具有体积小、重量轻的特点. 通过合理的设计和排列超表面单元, 能够实现对电磁波的幅度、极化和相位的自由调控. 近年来, 随着现代微波射频系统的小型化、集成化和低成本等应用需求的提高, 基于超表面的高效涡旋波产生装置越来越得到研究人员的青睐. 谐振单元超表面是通过改变谐振单元的几何尺寸来实现线极化波的相位调控, 例如“V”形结构[15]、条带结构[16]和十字架结构[17]的超表面单元. 但是基于谐振结构单元难以实现宽的带宽与高的模式纯度. 对于透射型超表面往往需要多层结构来构造宽带性能, 例如通过设计四层透射超表面, 实现了33%的相对带宽和接近百分之60%的转化效率[18]. 而一种基于PEC-PMC结构的反射式超表面被证明能够实现接近100%的转化效率[19]. 近几年, 几何相位又名Pancharatnam-Berry (P-B) 相位, 其受益于频率无关和仅与取向角度相关的相位调控特性, 被广泛应用于宽带反射式几何相位超表面中. 例如平行放置的双层偶极子结构[20]、双箭头结构[21]、单层十字结构[22]和变形方形环结构等[23,24]. 通过对阵列中单元取向角的设计来引入涡旋相位, 在宽带范围内实现了涡旋波的高效产生. 同时, 通过引入汇聚相位面概念, 实现了对涡旋波束的非衍射[25]和场增强效果[26,27]. 其中几何相位单元相较于谐振单元更容易实现自由的相位调控和宽带涡旋波产生. 基于几何相位的超表面单元也能设计出接近100%的转化效率. 在微波频段, 金属和介质损耗较低, 附有金属地的反射型超表面几乎能够实现无损耗的反射电磁波. 但目前反射型超表面仍然存在如下问题值得深入研究: 1) 反射形成的涡旋波容易受到馈源的遮挡; 2) 由于受到单元旋转排列的影响, 在实际设计中, 超表面仍然会产生交叉极化, 如何进一步避免超表面的交叉极化影响依然值深入研究. 本文对反射式超表面引入偏馈设计, 避免了由馈源引起的遮挡. 设计了工作在微波段的几何相位单元, 并组成具有汇聚和极化选择的OAM超表面. 通过对主极化和交叉极化场的详细分析, 给出了具体的传播分析图. 最终通过仿真和实验验证, 在预定的观测面上探测了由该装置所产生的高质量涡旋波束(见图1). 图 1 偏馈式涡旋波产生装置工作示意图, 其中超表面单元的具体结构被放大显示 Figure1. The work schematic diagram of the offset-fed vortex wave generator, where the specific structure of the metasurface unit is also displayed.
通过印制线路板(printed circuit board, PCB)工艺, 可以加工出上述单层反射式超表面, 具体参数与节2.2中描述一致(即l = 1, $ {{\boldsymbol{r}}_{\rm{f}}} = {\rm{ }}\left[ { - 8 p, 0, 8 p} \right] $, $ {{\boldsymbol{r}}_{\rm{o}}} = {\rm{ }}\left[ {0, 0, 24 p} \right] $). 具体实物图见图6, 图6(a))和图6(b)分别是超表面的正面与反面, 介质板上下面金属为厚度0.018 mm的铜, 介质板为厚度3 mm的F4B (εr = 2.65 + 0.002j). 超表面与馈源用3D打印定制的支架固定并对准如图6(c)所示, 具体空间位置和设置参数与仿真中给出的偏馈汇聚模型一致. 最后我们将整个涡旋波发生装置放置暗室中测量其方向图, 测量系统为法国MVG集团的SATIMO天线测量系统, 测量场景如图6(d)所示. 通过探头探测近场信息后, 该系统可以计算出远场方向图见图7. 从图7的增益图中可以看出, 其主极化辐射沿正z方向即θ = 0°且增益达到 14 dB. 甜甜圈状的方向图和一个周期的螺旋相位证明了l = 1涡旋波的产生. 对于交叉极化场, 其主瓣如图4(d)所示, 从(θ = 45o, φ = 180o)方向入射被有效的折射到(θ = 45o, φ = 0o)方向. 测量结果与理论设计一致, 有效地验证了方法可行性. 图 6 实物照片 (a) 超表面正面; (b) 超表面背面; (c) 偏馈式涡旋波发生装置; (d) 暗室测量图 Figure6. The photograph of the specific generator and the fabricated metasurface: (a) The front view of the metasurface; (b) the back view of the metasurface; (c) the offset-fed vortex wave generator; (d) the measurement scene in anechoic chamber.
图 7 上半平面的远场测量结果, 包括主、交叉极化的增益和电场相位图, 其中半径大小对应于θ范围0°到90° Figure7. Far-field measurement results of the upper half plane including the gain and phase pattern of the co and cross polarization.