1.School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China 2.Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 11890701), the Guangdong Basic and Applied Basic Research Foundation, China (Grant Nos. 2019B151502012, 2021B1515020086, 2021A1515010347), and the China Postdoctoral Science Foundation (Grant No. 2020M672615)
Received Date:14 April 2021
Accepted Date:13 May 2021
Available Online:07 June 2021
Published Online:20 September 2021
Abstract:The accidentally degenerate type-II Dirac points in sonic crystal has been realized recently. However, elastic phononic crystals with type-II Dirac points have not yet been explored. In this work, we design a two-dimensional phononic crystal plate in square lattice with type-II Dirac points for elastic waves. The type-II Dirac points, different from the type-I counterparts, have the tiled dispersions and thus the iso-frequency contours become crossed lines. By tuning structures to break the mirror symmetry, the degeneracies of the type-II Dirac points are lifted, leading to a band inversion. In order to have a further explanation, we also calculate the Berry curvatures of phononic crystals with opposite structure parameters, and it turns out that these two crystals hold opposite signs around the valley. The phononic crystal plates before and after the band inversion belong to different topological valley phases, whose direct consequence is that the topologically protected gapless interface states exist between two distinct topological phases. Topologically protected interface states are found by calculating the projected band structures of a supercell that contains two kinds of interfaces between two topological phases. Robustness of the interface transport is verified by comparing the transmission rate for perfect interface with that for defective interface. Moreover, owing to the special stress field distributions of the elastic plate waves, the boundaries of a single phononic crystal phase can similarly host the gapless boundary states, which is found by calculating the projected band structures of a supercell with a single phase, thus having two free boundaries on the edges. This paper extends the two-dimensional Dirac points and valley states in graphene-like systems to the type-II cases, and obtains in the same structure the gapless interface and boundary propagations. Owing to the simple design scheme of the structure, the phononic crystal plates can be fabricated and scaled to a small size. Our system provides a feasible way of constructing high-frequency elastic wave devices. Keywords:phononic crystal plate/ type-II Dirac point/ elastic wave/ band inversion
全文HTML
--> --> --> -->
4.1.界面态传输
具有相反符号$ \Delta h $的弹性声子晶体属于不同的能谷相. 将$ \Delta h=-2.5\;\mathrm{m}\mathrm{m} $的声子晶体(记为A)和$ \Delta h=2.5\;\mathrm{m}\mathrm{m} $的声子晶体(记为B)沿$ y $方向以ABA的方式拼接, 排布示意图如图3(a)所示, 实际计算时$ y $方向共有46个周期单元, 两端设为连续边界条件. 如此组成的ABA结构存在AB和BA两种不同界面, 计算得到的投影能带如图3(b)所示, 其中灰色部分为体能带在界面方向上的投影, 蓝线和红线分别对应AB界面和BA界面上的界面态色散. 两条界面态均具有无带隙的特征, 即色散贯穿整个体能带的带隙频率范围. 图3(c)分别给出了投影能带中蓝、红五角星标记的界面态位移本征场及其在界面上的局部放大图. AB和BA界面上的界面态具有明显不同的场分布特征, AB界面态在界面处$ z $方向上的位移为零, 而BA界面态在界面处$ z $方向上的位移极大, 这样的场分布是由于两个界面都具有镜面对称性, 且AB和BA界面态分别具有奇宇称和偶宇称的镜面对称性. 图 3 声子晶体板的界面态传输 (a)在y方向上依次由ABA拼成的声子晶体板; (b) ABA结构的投影能带; (c)分别表示(b)中蓝色和红色五角星标记的位移本征场分布, 其中形变表示总位移, 彩色条表示z方向上的位移, 绿色虚线为边界所在位置; (d)含缺陷的BA界面态传输, 绿线为边界位置, 绿色五角星为位移沿z方向的偏振点源, 激发频率$ 22.3\;\mathrm{k}\mathrm{H}\mathrm{z} $; (e)蓝色点线和红色点线分别是无缺陷和存在缺陷时的两种边界态传输率; (f) AB和BA界面态的剪切应力分布 Figure3. Interface state transports of phononic crystal plates. (a) Schematic of sandwich structure ABA successively consisting phononic crystal plates of phases A and B along the y direction. (b) Projected dispersions of the sandwich structure ABA. (c) Displacement field eigenmodes marked by the blue and red star in panel (b), where the deformation is the total displacement. The color bar is the displacement in z direction, and the green dotted line is the boundary position. (d) Interface state transports along the BA interface with defect (denoted by green line). Green star denotes the point source polarized along the z direction and operating at $ f=22.3\;\mathrm{k}\mathrm{H}\mathrm{z} $. (e) Transmissions for perfect and defective interfaces. (f) Shear stress distributions corresponding to AB and BA interface states.
无带隙界面态的存在源自能谷态的体-边对应关系[38,39], 色散位于$ {k}_{x}=\mathrm{\pi }/a $左侧和右侧的界面态分别由$ D $能谷和$ {D}' $能谷诱导. 对于$ D $能谷, AB界面左侧(沿$ x $正方向看)的声子晶体A的谷陈数$ {C}_{D}^{\mathrm{A}}=-1/2 $, 右侧B的谷陈数$ {C}_{D}^{\mathrm{B}}=+1/2 $, 于是$ \Delta {C}_{D}^{\mathrm{A}\mathrm{B}}={C}_{D}^{\mathrm{A}}-{C}_{D}^{\mathrm{B}}=-1 $, 即在AB界面上存在$ D $能谷投影点附近群速度为负的界面态; 同理, 对于BA界面, $ \Delta {C}_{D}^{\mathrm{B}\mathrm{A}}={C}_{D}^{\mathrm{B}}-{C}_{D}^{\mathrm{A}}=1 $, 该界面上可以存在由$ D $能谷诱导的群速度为正的界面态. $ {D}' $能谷的情形可由$ D $能谷时间反演直接得到. 受能谷拓扑保护, 界面态对于界面上的弯折和缺陷具有一定的抗反射特性. 我们在BA界面上引入了一个小的弯折, 破坏了$ x $方向上的晶格平移对称性. 图3(d)展示了在外界激励下的弹性波传输情况, 其中的计算区域由$ 30\times 30 $个周期单元拼接而成, 四周均设置为低反射边界条件, 绿线表示BA界面所在位置. 在BA界面左端(五角星处)放置$ z $方向偏振的弹性波源, 可以激发群速度向右的由$ D $能谷诱导的弹性波界面态($ {D}' $能谷诱导的界面态群速度向左, 无法与左端的激励源耦合), 该界面态很好地跨过缺陷区域在界面上向右传播. 同时由于体带隙的存在, $ z $向偏振点源激发出界面态被很好地局域在边界处. 图3(e)给出了不同频率激发下无缺陷和存在缺陷的两种不同界面的透射率, 可以看到, 在体带隙频率范围内两种边界具有很高的透射率, 两条曲线几乎重合表明了该界面态具有一定的抗缺陷反射能力. 24.2.边界态传输 -->
4.2.边界态传输
和界面态的位移场分布类似, 界面上的镜面对称性对弹性应力分布同样有约束. 对于薄板中的弹性波, BA界面态在界面处底板上沿$ z $方向的剪切应力分布为零, 即$ {\sigma }_{yz}=0 $(图3(f)左下), 而AB界面态在界面处底板上的剪切应力则具有非零分布(图3(f)右上). BA界面态在界面处独特的应力分布启发我们是否可以只利用声子晶体B构建沿自由边界传播的表面态. 因此考察了具有自由边界的单一能谷相声子晶体. 声子晶体B组成的超胞($ y $方向上15个周期单元, 两端为自由边界)的投影能带图如图4(a)所示, 其中插图为五角星标记点的本征场. 可以看到, 边界态仅局域在下边界传播, 并且单一能谷相声子晶体的边界态能带和图3(b)中的BA界面态能带十分相似, 也具有无带隙的特征. 这表明声子晶体B的下边界, 由于提供了BA界面态所需的零剪切应力条件, 从而可以很好地支持边界态的传输; 另一方面, 由于AB界面态的剪切应力分布与自由边界完全不同, 声子晶体B的上边界在不施加外应力的自由边界下无法支持边界态的存在. 图 4 声子晶体板的边界态传输 (a)声子晶体B在自由边界下的投影能带, 插图为边界态位移本征场分布(仅存在于下边界); (b), (c)分别是无缺陷和存在缺陷时两种沿自由边界传播的边界态传输; (d)蓝色点线和红色点线分别是对应(b)和(c)情形的透射率 Figure4. Boundary state transports of phononic crystal plates. (a) Projected dispersions of phononic crystal plates of phase B. Inset: the displacement field eigenmodes of the boundary state, locating at the bottom free boundary. (b), (c) Boundary state transports along the free boundaries without and with defect. (d) Transmissions for two distinct boundaries corresponding to (b) and (c).